8.6.3.7.1 Organ Segmentation, Multi-Organ Segmentation, Anatomy Segmentation

Chapter Contents (Back)
Organ Segmentation. Anatomy Segmentation. Medical Images.
See also Abdominal Seqmentation.
See also Tomographic Object Construction, Object Extraction, Analysis, Organs.

McKenna, S.J.[Stephen J.], Amaral, T.[Telmo], Plötz, T.[Thomas], Kyriazakis, I.[Ilias],
Multi-part segmentation for porcine offal inspection with auto-context and adaptive atlases,
PRL(112), 2018, pp. 290-296.
Elsevier DOI 1809
BibRef
Earlier: A2, A4, A1, A3:
Weighted atlas auto-context with application to multiple organ segmentation,
WACV16(1-9)
IEEE DOI 1606
Multi-class segmentation, Auto-context, Atlas-based segmentation, Automated inspection. Computational modeling BibRef

Fang, X.[Xi], Yan, P.K.[Ping-Kun],
Multi-Organ Segmentation Over Partially Labeled Datasets With Multi-Scale Feature Abstraction,
MedImg(39), No. 11, November 2020, pp. 3619-3629.
IEEE DOI 2011
Image segmentation, Feature extraction, Semantics, Training, Biomedical imaging, Annotations, Fuses, Medical image segmentation, multiple datasets BibRef

Yang, M.J.[Mei-Juan], Yuan, Y.[Yuan], Li, X.L.[Xue-Long], Yan, P.K.[Ping-Kun],
Medical Image Segmentation Using Descriptive Image Features,
BMVC11(xx-yy).
HTML Version. 1110
BibRef

Zhang, L.[Liang], Zhang, J.M.[Jia-Ming], Shen, P.Y.[Pei-Yi], Zhu, G.M.[Guang-Ming], Li, P.[Ping], Lu, X.Y.[Xiao-Yuan], Zhang, H.[Huan], Shah, S.A.[Syed Afaq], Bennamoun, M.[Mohammed],
Block Level Skip Connections Across Cascaded V-Net for Multi-Organ Segmentation,
MedImg(39), No. 9, September 2020, pp. 2782-2793.
IEEE DOI 2009
Image segmentation, Kernel, Convolution, Labeling, Cranial, Computed tomography, Task analysis, Multi-organ segmentation, hard-to-segment BibRef

Tang, Y.C.[Yu-Cheng], Gao, R.Q.[Ri-Qiang], Han, S.Z.[Shi-Zhong], Chen, Y.Q.[Yun-Qiang], Gao, D.S.[Da-Shan], Nath, V.[Vishwesh], Bermudez, C.[Camilo], Savona, M.R.[Michael R.], Bao, S.[Shunxing], Lyu, I.[Ilwoo], Huo, Y.[Yuankai], Landman, B.A.[Bennett A.],
Body Part Regression With Self-Supervision,
MedImg(40), No. 5, May 2021, pp. 1499-1507.
IEEE DOI 2105
Computed tomography, Manuals, Unsupervised learning, Training, Navigation, Task analysis, multi-organ segmentation BibRef

El Jurdi, R.[Rosana], Petitjean, C.[Caroline], Honeine, P.[Paul], Cheplygina, V.[Veronika], Abdallah, F.[Fahed],
High-level prior-based loss functions for medical image segmentation: A survey,
CVIU(210), 2021, pp. 103248.
Elsevier DOI 2109
Survey, Segmentation. Survey, Medical. Prior-based loss functions, Anatomical constraint losses, Convolutional neural networks, Medical image segmentation, Deep learning BibRef

Yuan, F.N.[Fei-Niu], Tang, Z.D.[Zhao-Da], Wang, C.M.[Chun-Mei], Huang, Q.H.[Qing-Hua], Shi, J.T.[Jin-Ting],
A multiple gated boosting network for multi-organ medical image segmentation,
IET-IPR(17), No. 10, 2023, pp. 3028-3039.
DOI Link 2308
medical image processing, transforms BibRef

Pandey, P.[Prashant], Chasmai, M.[Mustafa], Sur, T.[Tanuj], Lall, B.[Brejesh],
Robust Prototypical Few-Shot Organ Segmentation With Regularized Neural-ODEs,
MedImg(42), No. 9, September 2023, pp. 2490-2501.
IEEE DOI 2310
BibRef

Xu, X.[Xuanang], Deng, H.H.[Hannah H.], Gateno, J.[Jamie], Yan, P.K.[Ping-Kun],
Federated Multi-Organ Segmentation With Inconsistent Labels,
MedImg(42), No. 10, October 2023, pp. 2948-2960.
IEEE DOI 2310
BibRef

Francis, S.[Seenia], Jayaraj, P.B., Pournami, P.N., Puzhakkal, N.[Niyas],
ContourGAN: Auto-contouring of organs at risk in abdomen computed tomography images using generative adversarial network,
IJIST(33), No. 5, 2023, pp. 1494-1504.
DOI Link 2310
abdomen CT, auto-contouring, deep learning, generative models, OAR segmentation, radiation therapy, UNet BibRef

Liu, H.[Han], Xu, Z.B.[Zhou-Bing], Gao, R.Q.[Ri-Qiang], Li, H.[Hao], Wang, J.N.[Jia-Ning], Chabin, G.[Guillaume], Oguz, I.[Ipek], Grbic, S.[Sasa],
COSST: Multi-Organ Segmentation With Partially Labeled Datasets Using Comprehensive Supervisions and Self-Training,
MedImg(43), No. 5, May 2024, pp. 1995-2009.
IEEE DOI 2405
Task analysis, Training, Image segmentation, Biological systems, Annotations, Computed tomography, Biomedical imaging, pseudo label BibRef

Zhao, Y.Y.[Yi-Yang], Li, J.J.[Jin-Jiang], Liu, Y.P.[Ye-Peng],
Dynamic weight HiLo attention network for medical image multiple organ segmentation,
IJIST(34), No. 1, 2024, pp. e22966.
DOI Link 2401
attention mechanism, convolutional neural networks, medical image segmentation, multiscale feature extraction BibRef

You, C.Y.[Chen-Yu], Dai, W.C.[Wei-Cheng], Liu, F.[Fenglin], Min, Y.F.[Yi-Fei], Dvornek, N.C.[Nicha C.], Li, X.X.[Xiao-Xiao], Clifton, D.A.[David A.], Staib, L.[Lawrence], Duncan, J.S.[James S.],
Mine yOur owN Anatomy: Revisiting Medical Image Segmentation With Extremely Limited Labels,
PAMI(46), No. 12, December 2024, pp. 11136-11151.
IEEE DOI 2411
Biomedical imaging, Image segmentation, Training, Contrastive learning, Anatomy, Tail, Image reconstruction, semi-supervised learning BibRef

Huang, W.[Wei], Zhang, L.[Lei], Wang, Z.Z.[Zi-Zhou], Wang, L.[Lituan],
Exploring Inherent Consistency for Semi-Supervised Anatomical Structure Segmentation in Medical Imaging,
MedImg(43), No. 11, November 2024, pp. 3731-3741.
IEEE DOI 2411
Image segmentation, Anatomical structure, Task analysis, Biomedical imaging, Data models, Training, Predictive models, anatomical prior information BibRef

Liu, S.W.[Shang-Wang], Xu, R.N.[Ruo-Nan],
Multi-scale feature fusion based SAM for high-quality few-shot medical image segmentation,
CVIU(258), 2025, pp. 104389.
Elsevier DOI Code:
WWW Link. 2506
Low-rank adaptive, Weighted attention, Feature fusion, Few-shot segmentation, Multi-organ segmentation BibRef

Ghahremani, M.[Morteza], Ernhofer, B.R.[Benjamin Raphael], Wang, J.J.[Jia-Jun], Makowski, M.[Marcus], Wachinger, C.[Christian],
Organ-DETR: Organ Detection via Transformers,
MedImg(44), No. 6, June 2025, pp. 2657-2671.
IEEE DOI Code:
WWW Link. 2506
Transformers, Feature extraction, Computed tomography, Biomedical imaging, Training, Noise reduction, Accuracy, Decoding, one-to-many matching BibRef

Geng, H.X.[Hai-Xiao], Fan, J.F.[Jing-Fan], Yang, S.[Shuo], Chen, S.[Sigeng], Xiao, D.Q.[De-Qiang], Ai, D.[Danni], Fu, T.Y.[Tian-Yu], Song, H.[Hong], Yuan, K.[Kai], Duan, F.[Feng], Wang, Y.T.[Yong-Tian], Yang, J.[Jian],
DSC-Recon: Dual-Stage Complementary 4-D Organ Reconstruction From X-Ray Image Sequence for Intraoperative Fusion,
MedImg(43), No. 11, November 2024, pp. 3909-3923.
IEEE DOI 2411
X-ray imaging, Shape, Image reconstruction, Computed tomography, Interpolation, Deformation, Organ reconstruction, X-ray image sequence BibRef

Liu, Q.H.[Qing-Hao], Liu, M.[Min], Zhu, Y.H.[Yue-Hao], Liu, L.C.[Li-Cheng], Zhang, Z.[Zhe], Wang, Y.N.[Yao-Nan],
DAUNet: A deformable aggregation UNet for multi-organ 3D medical image segmentation,
PRL(191), 2025, pp. 58-65.
Elsevier DOI 2504
Deformable aggregation module, Fourier attention module, Medical image segmentation, Deep learning BibRef

Hu, G.[Guyue], Kang, Y.K.[Yu-Kun], Zhao, G.[Gangming], Jin, Z.[Zhe], Li, C.L.[Cheng-Long], Tang, J.[Jin],
Dynamic Strip Convolution and Adaptive Morphology Perception Plugin for Medical Anatomy Segmentation,
MedImg(44), No. 6, June 2025, pp. 2541-2552.
IEEE DOI 2506
Medical anatomy segmentation. Convolution, Image segmentation, Anatomy, Strips, Morphology, Medical diagnostic imaging, Ribs, Shape, Kernel, Lungs, medical anatomy segmentation BibRef

Yang, F.Y.[Fei-Yang], Li, X.F.[Xiong-Fei], Wang, B.[Bo], Teng, P.H.[Pei-Hong], Liu, G.F.[Gui-Feng],
UMSCS: A Novel Unpaired Multimodal Image Segmentation Method Via Cross-Modality Generative and Semi-supervised Learning,
IJCV(133), No. 7, July 2025, pp. 4442-4464.
Springer DOI 2506
Unpaired multimodal medical image, Cross-modality generative, Semi-supervised medical image segmentation, Generative adversarial network, Deep learning BibRef


Li, C.[Chengyin], Sultan, R.I.[Rafi Ibn], Khanduri, P.[Prashant], Qiang, Y.[Yao], Indrin, C.[Chetty], Zhu, D.X.[Dong-Xiao],
AutoProSAM: Automated Prompting SAM for 3D Multi-Organ Segmentation,
WACV25(3570-3580)
IEEE DOI 2505
Image segmentation, Adaptation models, Solid modeling, Foundation models, Medical services, Manuals, Generators, Biomedical imaging BibRef

Li, Y.H.[Yu-Heng], Luan, T.Y.[Tian-Yu], Wu, Y.Z.[Yi-Zhou], Pan, S.[Shaoyan], Chen, Y.[Yenho], Yang, X.F.[Xiao-Feng],
Anatomask: Enhancing Medical Image Segmentation with Reconstruction-guided Self-masking,
ECCV24(LX: 146-163).
Springer DOI 2412
BibRef

Wu, H.[Huisi], Xiao, F.Y.[Fang-Yan], Liang, C.X.[Chong-Xin],
Dual Contrastive Learning with Anatomical Auxiliary Supervision for Few-Shot Medical Image Segmentation,
ECCV22(XX:417-434).
Springer DOI 2211
BibRef

Hammami, M.[Maryam], Friboulet, D.[Denis], Kechichian, R.[Razmig],
Data augmentation for multi-organ detection in medical images,
IPTA20(1-6)
IEEE DOI 2206
BibRef
And:
Cycle GAN-Based Data Augmentation For Multi-Organ Detection In CT Images Via Yolo,
ICIP20(390-393)
IEEE DOI 2011
Computed tomography, Magnetic resonance imaging, Supervised learning, Object detection, Tools, Biomedical imaging, medical imaging. Detectors. BibRef

Hassan, S.I., Stommel, M., Lowe, A., Zhang, Q., Xu, W.,
Semantic Segmentation of Sheep Organs by Convolutional Neural Networks,
IVCNZ19(1-5)
IEEE DOI 2004
biological organs, biology computing, convolutional neural nets, image segmentation, zoology, Deep convolutional neural networks BibRef

Yamada, M.[Mitsunori], Hontani, H.[Hidekata], Matsuzoe, H.[Hiroshi],
A Study on Model Selection from the q-Exponential Distribution for Constructing an Organ Point Distribution Model,
MCBMIIA15(258-269).
Springer DOI 1603
BibRef

Takaoka, T., Mochizuki, Y.[Yoshihiko], Ishikawa, H.[Hiroshi],
Multiple-organ segmentation by graph cuts with supervoxel nodes,
MVA17(424-427)
DOI Link 1708
Biomedical imaging, Computed tomography, Image segmentation, Labeling, Minimization, Object segmentation, Three-dimensional, displays BibRef

Morita, M.[Minato], Okagawa, A.[Asuka], Oyamada, Y.J.[Yu-Ji], Mochizuki, Y.[Yoshihiko], Ishikawa, H.[Hiroshi],
Multiple-organ segmentation based on spatially-divided neighboring data energy,
MVA15(158-161)
IEEE DOI 1507
Biomedical imaging BibRef

Joyseeree, R.[Ranveer], Jiménez del Toro, Ó.A.[Óscar Alfonso], Müller, H.[Henning],
Using Probability Maps for Multi-organ Automatic Segmentation,
MCV13(222-228).
Springer DOI 1405
BibRef

Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Weakly Supervised, Self Supervised Semantic Segmentation .


Last update:Jul 7, 2025 at 14:35:55