Panda, S.,
Ames, D.,
Panigrahi, S.,
Application of Vegetation Indices for Agricultural Crop Yield
Prediction Using Neural Network Techniques,
RS(2), No. 3, March 2010, pp. 673-696.
DOI Link
1203
BibRef
Rembold, F.[Felix],
Atzberger, C.[Clement],
Savin, I.[Igor],
Rojas, O.[Oscar],
Using Low Resolution Satellite Imagery for Yield Prediction and Yield
Anomaly Detection,
RS(5), No. 4, April 2013, pp. 1704-1733.
DOI Link
1305
BibRef
And:
Correction:
RS(5), No. 11, 2013, pp. 5572-5573.
DOI Link
1312
BibRef
Mishra, V.[Vikalp],
Cruise, J.F.[James F.],
Mecikalski, J.R.[John R.],
Hain, C.R.[Christopher R.],
Anderson, M.C.[Martha C.],
A Remote-Sensing Driven Tool for Estimating Crop Stress and Yields,
RS(5), No. 7, 2013, pp. 3331-3356.
DOI Link
1308
BibRef
Jiang, Z.W.[Zhi-Wei],
Chen, Z.X.[Zhong-Xin],
Chen, J.[Jin],
Ren, J.Q.[Jian-Qiang],
Li, Z.N.[Zong-Nan],
Sun, L.[Liang],
The Estimation of Regional Crop Yield Using Ensemble-Based
Four-Dimensional Variational Data Assimilation,
RS(6), No. 4, 2014, pp. 2664-2681.
DOI Link
1405
BibRef
Prilepova, O.[Olga],
Hart, Q.[Quinn],
Merz, J.[Justin],
Parker, N.[Nathan],
Bandaru, V.[Varaprasad],
Jenkins, B.[Bryan],
Design of a GIS-Based Web Application for Simulating Biofuel
Feedstock Yields,
IJGI(3), No. 3, 2014, pp. 929-941.
DOI Link
1407
BibRef
Kouadio, L.[Louis],
Newlands, N.K.[Nathaniel K.],
Davidson, A.[Andrew],
Zhang, Y.[Yinsuo],
Chipanshi, A.[Aston],
Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop
Yield Forecasting at the Ecodistrict Scale,
RS(6), No. 10, 2014, pp. 10193-10214.
DOI Link
1411
BibRef
Hamada, Y.[Yuki],
Ssegane, H.[Herbert],
Negri, M.C.[Maria Cristina],
Mapping Intra-Field Yield Variation Using High Resolution Satellite
Imagery to Integrate Bioenergy and Environmental Stewardship in an
Agricultural Watershed,
RS(7), No. 8, 2015, pp. 9753.
DOI Link
1509
BibRef
Meroni, M.,
Fasbender, D.,
Balaghi, R.,
Dali, M.,
Haffani, M.,
Haythem, I.,
Hooker, J.,
Lahlou, M.,
Lopez-Lozano, R.,
Mahyou, H.,
Ben Moussa, M.,
Sghaier, N.,
Wafa, T.,
Leo, O.,
Evaluating NDVI Data Continuity Between SPOT-VEGETATION and PROBA-V
Missions for Operational Yield Forecasting in North African Countries,
GeoRS(54), No. 2, February 2016, pp. 795-804.
IEEE DOI
1601
Agriculture
BibRef
Zhang, X.Y.[Xiao-Yang],
Zhang, Q.Y.[Qing-Yuan],
Monitoring interannual variation in global crop yield using long-term
AVHRR and MODIS observations,
PandRS(114), No. 1, 2016, pp. 191-205.
Elsevier DOI
1604
Global crop yield
BibRef
Bose, P.[Pritam],
Kasabov, N.K.[Nikola K.],
Bruzzone, L.[Lorenzo],
Hartono, R.N.[Reggio N.],
Spiking Neural Networks for Crop Yield Estimation Based on
Spatiotemporal Analysis of Image Time Series,
GeoRS(54), No. 11, November 2016, pp. 6563-6573.
IEEE DOI
1610
Agriculture
BibRef
Pascucci, S.[Simone],
Carfora, M.F.[Maria Francesca],
Palombo, A.[Angelo],
Pignatti, S.[Stefano],
Casa, R.[Raffaele],
Pepe, M.[Monica],
Castaldi, F.[Fabio],
A Comparison between Standard and Functional Clustering
Methodologies: Application to Agricultural Fields for Yield Pattern
Assessment,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Petersen, L.K.[Lillian Kay],
Real-Time Prediction of Crop Yields From MODIS Relative Vegetation
Health: A Continent-Wide Analysis of Africa,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Kim, N.[Nari],
Ha, K.J.[Kyung-Ja],
Park, N.W.[No-Wook],
Cho, J.[Jaeil],
Hong, S.[Sungwook],
Lee, Y.W.[Yang-Won],
A Comparison Between Major Artificial Intelligence Models for Crop
Yield Prediction: Case Study of the Midwestern United States,
2006-2015,
IJGI(8), No. 5, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Chen, Y.[Yang],
Lee, W.S.[Won Suk],
Gan, H.[Hao],
Peres, N.[Natalia],
Fraisse, C.[Clyde],
Zhang, Y.C.[Yan-Chao],
He, Y.[Yong],
Strawberry Yield Prediction Based on a Deep Neural Network Using
High-Resolution Aerial Orthoimages,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Chen, Y.[Yang],
McVicar, T.R.[Tim R.],
Donohue, R.J.[Randall J.],
Garg, N.[Nikhil],
Waldner, F.[François],
Ota, N.[Noboru],
Li, L.T.[Ling-Tao],
Lawes, R.[Roger],
To Blend or Not to Blend? A Framework for Nationwide Landsat-MODIS
Data Selection for Crop Yield Prediction,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Karst, I.G.[Isabel G.],
Mank, I.[Isabel],
Traoré, I.[Issouf],
Sorgho, R.[Raissa],
Stückemann, K.J.[Kim-Jana],
Simboro, S.[Séraphin],
Sié, A.[Ali],
Franke, J.[Jonas],
Sauerborn, R.[Rainer],
Estimating Yields of Household Fields in Rural Subsistence Farming
Systems to Study Food Security in Burkina Faso,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Trépos, R.[Ronan],
Champolivier, L.[Luc],
Dejoux, J.F.[Jean-François],
Bitar, A. .A.[Ahmad Al],
Casadebaig, P.[Pierre],
Debaeke, P.[Philippe],
Forecasting Sunflower Grain Yield by Assimilating Leaf Area Index
into a Crop Model,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Nevavuori, P.[Petteri],
Narra, N.[Nathaniel],
Linna, P.[Petri],
Lipping, T.[Tarmo],
Crop Yield Prediction Using Multitemporal UAV Data and
Spatio-Temporal Deep Learning Models,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Sagan, V.[Vasit],
Maimaitijiang, M.[Maitiniyazi],
Bhadra, S.[Sourav],
Maimaitiyiming, M.[Matthew],
Brown, D.R.[Davis R.],
Sidike, P.[Paheding],
Fritschi, F.B.[Felix B.],
Field-scale crop yield prediction using multi-temporal WorldView-3
and PlanetScope satellite data and deep learning,
PandRS(174), 2021, pp. 265-281.
Elsevier DOI
2103
PlanetScope, WorldView-3, Deep learning,
Convolutionneural network, ResNet, Artificial intelligence, Food security
BibRef
Jaafar, H.[Hadi],
Mourad, R.[Roya],
GYMEE: A Global Field-Scale Crop Yield and ET Mapper in Google Earth
Engine Based on Landsat, Weather, and Soil Data,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Abd-Elrahman, A.[Amr],
Wu, F.[Feng],
Agehara, S.[Shinsuke],
Britt, K.[Katie],
Improving Strawberry Yield Prediction by Integrating Ground-Based
Canopy Images in Modeling Approaches,
IJGI(10), No. 4, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Zhu, X.F.[Xiu-Fang],
Guo, R.[Rui],
Liu, T.T.[Ting-Ting],
Xu, K.[Kun],
Crop Yield Prediction Based on Agrometeorological Indexes and Remote
Sensing Data,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Chancia, R.[Robert],
van Aardt, J.[Jan],
Pethybridge, S.[Sarah],
Cross, D.[Daniel],
Henderson, J.[John],
Predicting Table Beet Root Yield with Multispectral UAS Imagery,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Saif, M.S.[Mohammad S.],
Chancia, R.[Robert],
Pethybridge, S.[Sarah],
Murphy, S.P.[Sean P.],
Hassanzadeh, A.[Amirhossein],
van Aardt, J.[Jan],
Forecasting Table Beet Root Yield Using Spectral and Textural
Features from Hyperspectral UAS Imagery,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Liu, Y.D.[Ya-Dong],
Kim, J.[Junhwan],
Fleisher, D.H.[David H.],
Kim, K.S.[Kwang-Soo],
Analogy-Based Crop Yield Forecasts Based on Temporal Similarity of
Leaf Area Index,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Teodoro, P.E.[Paulo Eduardo],
Ribeiro Teodoro, L.P.[Larissa Pereira],
Rojo Baio, F.H.[Fábio Henrique],
da Silva Junior, C.A.[Carlos Antonio],
dos Santos, R.G.[Regimar Garcia],
Marques Ramos, A.P.[Ana Paula],
Faita Pinheiro, M.M.[Mayara Maezano],
Osco, L.P.[Lucas Prado],
Gonçalves, W.N.[Wesley Nunes],
Carneiro, A.M.[Alexsandro Monteiro],
Junior, J.M.[José Marcato],
Pistori, H.[Hemerson],
Shiratsuchi, L.S.[Luciano Shozo],
Predicting Days to Maturity, Plant Height, and Grain Yield in
Soybean: A Machine and Deep Learning Approach Using Multispectral
Data,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Johnson, D.M.[David M.],
Rosales, A.[Arthur],
Mueller, R.[Richard],
Reynolds, C.[Curt],
Frantz, R.[Ronald],
Anyamba, A.[Assaf],
Pak, E.[Ed],
Tucker, C.[Compton],
USA Crop Yield Estimation with MODIS NDVI: Are Remotely Sensed Models
Better than Simple Trend Analyses?,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Haufler, A.F.[Alex F.],
Booske, J.H.[John H.],
Hagness, S.C.[Susan C.],
Microwave Sensing for Estimating Cranberry Crop Yield:
A Pilot Study Using Simulated Canopies and Field Measurement Testbeds,
GeoRS(60), 2022, pp. 1-11.
IEEE DOI
2112
Microwave theory and techniques, Agriculture, Machine learning,
Sensors, Permittivity, Yield estimation, Soil moisture,
microwave sensing
BibRef
Li, K.Y.[Kai-Yun],
Sampaio de Lima, R.[Raul],
Burnside, N.G.[Niall G.],
Vahtmäe, E.[Ele],
Kutser, T.[Tiit],
Sepp, K.[Karli],
Pinheiro, V.H.C.[Victor Henrique Cabral],
Yang, M.D.[Ming-Der],
Vain, A.[Ants],
Sepp, K.[Kalev],
Toward Automated Machine Learning-Based Hyperspectral Image Analysis
in Crop Yield and Biomass Estimation,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Bojanowski, J.S.[Jedrzej S.],
Sikora, S.[Sylwia],
Musial, J.P.[Jan P.],
Wozniak, E.[Edyta],
Dabrowska-Zielinska, K.[Katarzyna],
Slesinski, P.[Przemyslaw],
Milewski, T.[Tomasz],
Laczynski, A.[Artur],
Integration of Sentinel-3 and MODIS Vegetation Indices with ERA-5
Agro-Meteorological Indicators for Operational Crop Yield Forecasting,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Muruganantham, P.[Priyanga],
Wibowo, S.[Santoso],
Grandhi, S.[Srimannarayana],
Samrat, N.H.[Nahidul Hoque],
Islam, N.[Nahina],
A Systematic Literature Review on Crop Yield Prediction with Deep
Learning and Remote Sensing,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Dokoohaki, H.[Hamze],
Rai, T.[Teerath],
Kivi, M.[Marissa],
Lewis, P.[Philip],
Gómez-Dans, J.L.[Jose L.],
Yin, F.[Feng],
Linking Remote Sensing with APSIM through Emulation and Bayesian
Optimization to Improve Yield Prediction,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Lyle, G.[Greg],
Clarke, K.[Kenneth],
Kilpatrick, A.[Adam],
Summers, D.M.[David McCulloch],
Ostendorf, B.[Bertram],
A Spatial and Temporal Evaluation of Broad-Scale Yield Predictions
Created from Yield Mapping Technology and Landsat Satellite Imagery
in the Australian Mediterranean Dryland Cropping Region,
IJGI(12), No. 2, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Karaca, C.[Cihan],
Thompson, R.B.[Rodney B.],
Peña-Fleitas, M.T.[M. Teresa],
Gallardo, M.[Marisa],
Padilla, F.M.[Francisco M.],
Evaluation of Absolute Measurements and Normalized Indices of
Proximal Optical Sensors as Estimators of Yield in Muskmelon and
Sweet Pepper,
RS(15), No. 8, 2023, pp. 2174.
DOI Link
2305
BibRef
Dimov, D.[Dimo],
Noack, P.[Patrick],
Exploring the Potential of Multi-Temporal Crop Canopy Models and
Vegetation Indices from Pleiades Imagery for Yield Estimation,
RS(15), No. 16, 2023, pp. 3990.
DOI Link
2309
BibRef
Ma, Y.C.[Yu-Chi],
Yang, Z.W.[Zheng-Wei],
Huang, Q.Y.[Qun-Ying],
Zhang, Z.[Zhou],
Improving the Transferability of Deep Learning Models for Crop Yield
Prediction: A Partial Domain Adaptation Approach,
RS(15), No. 18, 2023, pp. 4562.
DOI Link
2310
BibRef
Ishaq, R.A.F.[Rana Ahmad Faraz],
Zhou, G.H.[Guan-Hua],
Tian, C.[Chen],
Tan, Y.M.[Yu-Min],
Jing, G.[Guifei],
Jiang, H.Z.[Hong-Zhi],
ur-Rehman, O.[Obaid],
A Systematic Review of Radiative Transfer Models for Crop Yield
Prediction and Crop Traits Retrieval,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Yu, F.[Feng],
Wang, M.[Ming],
Xiao, J.[Jun],
Zhang, Q.[Qian],
Zhang, J.M.[Jin-Meng],
Liu, X.[Xin],
Ping, Y.[Yang],
Luan, R.P.[Ru-Peng],
Advancements in Utilizing Image-Analysis Technology for Crop-Yield
Estimation,
RS(16), No. 6, 2024, pp. 1003.
DOI Link
2403
BibRef
Joshi, A.[Abhasha],
Pradhan, B.[Biswajeet],
Chakraborty, S.[Subrata],
Varatharajoo, R.[Renuganth],
Gite, S.[Shilpa],
Alamri, A.[Abdullah],
Deep-Transfer-Learning Strategies for Crop Yield Prediction Using
Climate Records and Satellite Image Time-Series Data,
RS(16), No. 24, 2024, pp. 4804.
DOI Link
2501
BibRef
Rericha, J.[Jana],
Kohútek, M.[Matej],
Vandírková, V.[Vera],
Krofta, K.[Karel],
Kumhála, F.[František],
Kumhálová, J.[Jitka],
Assessment of UAV Imageries for Estimating Growth Vitality, Yield and
Quality of Hop (Humulus lupulus L.) Crops,
RS(17), No. 6, 2025, pp. 970.
DOI Link
2503
BibRef
Zhang, P.P.[Peng-Peng],
Lu, B.[Bing],
Shang, J.L.[Jia-Li],
Tan, C.W.[Chang-Wei],
Xu, Q.[Qihan],
Shi, L.[Lei],
Jin, S.J.[Shu-Jian],
Wang, X.Y.[Xing-Yu],
Jiang, Y.F.[Yun-Fei],
Yang, Y.D.[Ya-Dong],
Zang, H.D.[Hua-Dong],
Ge, J.Y.[Jun-Yong],
Zeng, Z.[Zhaohai],
TKSF-KAN: Transformer-enhanced oat yield modeling and transferability
across major oat-producing regions in China using UAV multisource
data,
PandRS(224), 2025, pp. 166-186.
Elsevier DOI
2505
Crop yield, Multimodal data, Deep learning,
Stacking ensemble learning, Transfer learning
BibRef
Luo, K.[Ke],
Ren, J.Q.[Jian-Qiang],
Bu, X.X.[Xiang-Xin],
Zhao, H.W.[Hong-Wei],
Downscaling Method for Crop Yield Statistical Data Based on the
Standardized Deviation from the Mean of the Comprehensive Crop
Condition Index,
RS(17), No. 20, 2025, pp. 3408.
DOI Link
2510
BibRef
Yadav, S.A.[Suraj A.],
Huang, Y.B.[Yan-Bo],
Zhu, K.Q.[Kenny Q.],
Haque, R.[Rayyan],
Young, W.[Wyatt],
Harvey, L.[Lorin],
Hall, M.[Mark],
Zhang, X.[Xin],
Wijewardane, N.K.[Nuwan K.],
Qin, R.J.[Rui-Jun],
Feldman, M.[Max],
Yao, H.B.[Hai-Bo],
Brooks, J.P.[John P.],
Deep Transfer Learning for UAV-Based Cross-Crop Yield Prediction in
Root Crops,
RS(17), No. 24, 2025, pp. 4054.
DOI Link
2512
BibRef
Lin, F.D.[Fu-Dong],
Crawford, S.[Summer],
Guillot, K.[Kaleb],
Zhang, Y.[Yihe],
Chen, Y.[Yan],
Yuan, X.[Xu],
Chen, L.[Li],
Williams, S.[Shelby],
Minvielle, R.[Robert],
Xiao, X.M.[Xiang-Ming],
Gholson, D.[Drew],
Ashwell, N.[Nicolas],
Setiyono, T.[Tri],
Tubana, B.[Brenda],
Peng, L.[Lu],
Bayoumi, M.[Magdy],
Tzeng, N.F.[Nian-Feng],
MMST-ViT: Climate Change-aware Crop Yield Prediction via Multi-Modal
Spatial-Temporal Vision Transformer,
ICCV23(5751-5761)
IEEE DOI Code:
WWW Link.
2401
BibRef
Casado-García, Á.[Ángela],
Heras, J.[Jónathan],
Martínez-Goñi, X.S.[Xabier Simon],
Miranda-Apodaca, J.[Jon],
Pérez-López, U.[Usue],
Estimation of Crop Production by Fusing Images and Crop Features,
CVPPA23(525-530)
IEEE DOI
2401
BibRef
Baghdasaryan, L.[Liana],
Melikbekyan, R.[Razmik],
Dolmajain, A.[Arthur],
Hobbs, J.[Jennifer],
Deep density estimation based on multi-spectral remote sensing data
for in-field crop yield forecasting,
WiCV22(2013-2022)
IEEE DOI
2210
Deep learning, Satellites, Government, Estimation, Crops
BibRef
Narin, O.G.,
Sekertekin, A.,
Saygin, A.,
Balik Sanli, F.,
Gullu, M.,
Yield Estimation of Sunflower Plant With Cnn and Ann Using Sentinel-2,
SmartCityApp21(385-389).
DOI Link
2201
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Gross Primary Production, Net Primary Production, GPP, NPP .