Yuan, L.[Lin],
Zhang, J.C.[Jing-Cheng],
Shi, Y.[Yeyin],
Nie, C.W.[Chen-Wei],
Wei, L.G.[Li-Guang],
Wang, J.[Jihua],
Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution
Satellite Image,
RS(6), No. 5, 2014, pp. 3611-3623.
DOI Link
1407
BibRef
Ashourloo, D.[Davoud],
Mobasheri, M.R.[Mohammad Reza],
Huete, A.[Alfredo],
Developing Two Spectral Disease Indices for Detection of Wheat Leaf
Rust (Pucciniatriticina),
RS(6), No. 6, 2014, pp. 4723-4740.
DOI Link
1407
BibRef
Ashourloo, D.[Davoud],
Mobasheri, M.R.[Mohammad Reza],
Huete, A.[Alfredo],
Evaluating the Effect of Different Wheat Rust Disease Symptoms on
Vegetation Indices Using Hyperspectral Measurements,
RS(6), No. 6, 2014, pp. 5107-5123.
DOI Link
1407
BibRef
Jin, X.[Xiu],
Jie, L.[Lu],
Wang, S.[Shuai],
Qi, H.J.[Hai Jun],
Li, S.W.[Shao Wen],
Classifying Wheat Hyperspectral Pixels of Healthy Heads and Fusarium
Head Blight Disease Using a Deep Neural Network in the Wild Field,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Shi, Y.[Yue],
Huang, W.J.[Wen-Jiang],
González-Moreno, P.[Pablo],
Luke, B.[Belinda],
Dong, Y.Y.[Ying-Ying],
Zheng, Q.[Qiong],
Ma, H.Q.[Hui-Qin],
Liu, L.Y.[Lin-Yi],
Wavelet-Based Rust Spectral Feature Set (WRSFs): A Novel Spectral
Feature Set Based on Continuous Wavelet Transformation for Tracking
Progressive Host-Pathogen Interaction of Yellow Rust on Wheat,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Liu, W.W.[Wei-Wei],
Huang, J.F.[Jing-Feng],
Wei, C.W.[Chuan-Wen],
Wang, X.Z.[Xiu-Zhen],
Mansaray, L.R.[Lamin R.],
Han, J.H.[Jia-Hui],
Zhang, D.D.[Dong-Dong],
Chen, Y.L.[Yao-Liang],
Mapping Water-Logging Damage on Winter Wheat at Parcel Level Using
High Spatial Resolution Satellite Data,
PandRS(142), 2018, pp. 243-256.
Elsevier DOI
1807
Winter wheat, Water-logging, Parcel scale,
High resolution satellite data, Biophysical parameters
See also Mapping Above-Ground Biomass of Winter Oilseed Rape Using High Spatial Resolution Satellite Data at Parcel Scale under Waterlogging Conditions.
BibRef
Fitzgerald, G.J.[Glenn J.],
Perry, E.M.[Eileen M.],
Flower, K.C.[Ken C.],
Callow, J.N.[J. Nikolaus],
Boruff, B.[Bryan],
Delahunty, A.[Audrey],
Wallace, A.[Ashley],
Nuttall, J.[James],
Frost Damage Assessment in Wheat Using Spectral Mixture Analysis,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Bohnenkamp, D.[David],
Behmann, J.[Jan],
Mahlein, A.K.[Anne-Katrin],
In-Field Detection of Yellow Rust in Wheat on the Ground Canopy and
UAV Scale,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Zhang, X.[Xin],
Han, L.X.[Liang-Xiu],
Dong, Y.Y.[Ying-Ying],
Shi, Y.[Yue],
Huang, W.J.[Wen-Jiang],
Han, L.H.[Liang-Hao],
González-Moreno, P.[Pablo],
Ma, H.Q.[Hui-Qin],
Ye, H.C.[Hui-Chun],
Sobeih, T.[Tam],
A Deep Learning-Based Approach for Automated Yellow Rust Disease
Detection from High-Resolution Hyperspectral UAV Images,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Guo, A.T.[An-Ting],
Huang, W.J.[Wen-Jiang],
Dong, Y.Y.[Ying-Ying],
Ye, H.C.[Hui-Chun],
Ma, H.Q.[Hui-Qin],
Liu, B.[Bo],
Wu, W.B.[Wen-Bin],
Ren, Y.[Yu],
Ruan, C.[Chao],
Geng, Y.[Yun],
Wheat Yellow Rust Detection Using UAV-Based Hyperspectral Technology,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Guo, A.T.[An-Ting],
Huang, W.J.[Wen-Jiang],
Ye, H.[Huichun],
Dong, Y.Y.[Ying-Ying],
Ma, H.Q.[Hui-Qin],
Ren, Y.[Yu],
Ruan, C.[Chao],
Identification of Wheat Yellow Rust Using Spectral and Texture
Features of Hyperspectral Images,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Zhang, D.Y.[Dong-Yan],
Wang, D.Y.[Dao-Yong],
Gu, C.Y.[Chun-Yan],
Jin, N.[Ning],
Zhao, H.T.[Hai-Tao],
Chen, G.[Gao],
Liang, H.Y.[Hong-Yi],
Liang, D.[Dong],
Using Neural Network to Identify the Severity of
Wheat Fusarium Head Blight in the Field Environment,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Qiu, R.C.[Rui-Cheng],
Yang, C.[Ce],
Moghimi, A.[Ali],
Zhang, M.[Man],
Steffenson, B.J.[Brian J.],
Hirsch, C.D.[Cory D.],
Detection of Fusarium Head Blight in Wheat Using a Deep Neural
Network and Color Imaging,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Wang, S.[Shuai],
Chen, J.[Jin],
Rao, Y.H.[Yu-Han],
Liu, L.C.[Li-Cong],
Wang, W.Q.[Wen-Qing],
Dong, Q.[Qi],
Response of winter wheat to spring frost from a remote sensing
perspective: Damage estimation and influential factors,
PandRS(168), 2020, pp. 221-235.
Elsevier DOI
2009
Spring frost, Winter wheat, Damage assessment, Remote sensing, North China
BibRef
Xiao, Y.X.[Ying-Xin],
Dong, Y.Y.[Ying-Ying],
Huang, W.J.[Wen-Jiang],
Liu, L.Y.[Lin-Yi],
Ma, H.Q.[Hui-Qin],
Ye, H.C.[Hui-Chun],
Wang, K.[Kun],
Dynamic Remote Sensing Prediction for Wheat Fusarium Head Blight by
Combining Host and Habitat Conditions,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Liu, L.Y.[Lin-Yi],
Dong, Y.Y.[Ying-Ying],
Huang, W.J.[Wen-Jiang],
Du, X.P.[Xiao-Ping],
Ma, H.Q.[Hui-Qin],
Monitoring Wheat Fusarium Head Blight Using Unmanned Aerial Vehicle
Hyperspectral Imagery,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Ma, H.Q.[Hui-Qin],
Huang, W.J.[Wen-Jiang],
Dong, Y.Y.[Ying-Ying],
Liu, L.Y.[Lin-Yi],
Guo, A.[Anting],
Using UAV-Based Hyperspectral Imagery to Detect Winter Wheat Fusarium
Head Blight,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Chauhan, S.[Sugandh],
Darvishzadeh, R.[Roshanak],
Boschetti, M.[Mirco],
Nelson, A.[Andrew],
Discriminant analysis for lodging severity classification in wheat
using RADARSAT-2 and Sentinel-1 data,
PandRS(164), 2020, pp. 138-151.
Elsevier DOI
2005
Lodging score, Lodging severity, Sentinel-1, RADARSAT-2, PLS-DA,
Sustainable agriculture
BibRef
Zhang, Z.[Zhao],
Flores, P.[Paulo],
Igathinathane, C.,
Naik, D.L.[Dayakar L.],
Kiran, R.[Ravi],
Ransom, J.K.[Joel K.],
Wheat Lodging Detection from UAS Imagery Using Machine Learning
Algorithms,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Dehkordi, R.H.[Ramin Heidarian],
El Jarroudi, M.[Moussa],
Kouadio, L.[Louis],
Meersmans, J.[Jeroen],
Beyer, M.[Marco],
Monitoring Wheat Leaf Rust and Stripe Rust in Winter Wheat Using
High-Resolution UAV-Based Red-Green-Blue Imagery,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Zhang, T.X.[Tian-Xiang],
Xu, Z.Y.[Zhi-Yong],
Su, J.Y.[Jin-Ya],
Yang, Z.F.[Zhi-Fang],
Liu, C.J.[Cun-Jia],
Chen, W.H.[Wen-Hua],
Li, J.Y.[Jiang-Yun],
Ir-UNet: Irregular Segmentation U-Shape Network for Wheat Yellow Rust
Detection by UAV Multispectral Imagery,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
He, L.,
Qi, S.L.,
Duan, J.Z.,
Guo, T.C.,
Feng, W.,
He, D.X.,
Monitoring of Wheat Powdery Mildew Disease Severity Using Multiangle
Hyperspectral Remote Sensing,
GeoRS(59), No. 2, February 2021, pp. 979-990.
IEEE DOI
2101
Diseases, Monitoring, Remote sensing, Indexes, Agriculture,
Correlation, Vegetation mapping, Band combination,
wheat
BibRef
Zhu, K.Y.[Kang-Ying],
Sun, Z.G.[Zhi-Gang],
Zhao, F.[Fenghua],
Yang, T.[Ting],
Tian, Z.R.[Zhen-Rong],
Lai, J.B.[Jian-Bin],
Zhu, W.X.[Wan-Xue],
Long, B.[Buju],
Relating Hyperspectral Vegetation Indices with Soil Salinity at
Different Depths for the Diagnosis of Winter Wheat Salt Stress,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Zheng, Q.[Qiong],
Ye, H.C.[Hui-Chun],
Huang, W.J.[Wen-Jiang],
Dong, Y.Y.[Ying-Ying],
Jiang, H.[Hao],
Wang, C.Y.[Chong-Yang],
Li, D.[Dan],
Wang, L.[Li],
Chen, S.[Shuisen],
Integrating Spectral Information and Meteorological Data to Monitor
Wheat Yellow Rust at a Regional Scale: A Case Study,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Khan, I.H.[Imran Haider],
Liu, H.Y.[Hai-Yan],
Li, W.[Wei],
Cao, A.Z.[Ai-Zhong],
Wang, X.[Xue],
Liu, H.Y.[Hong-Yan],
Cheng, T.[Tao],
Tian, Y.C.[Yong-Chao],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Yao, X.[Xia],
Early Detection of Powdery Mildew Disease and Accurate Quantification
of Its Severity Using Hyperspectral Images in Wheat,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Liu, W.[Wei],
Sun, C.F.[Chao-Fei],
Zhao, Y.[Yanan],
Xu, F.[Fei],
Song, Y.[Yuli],
Fan, J.[Jieru],
Zhou, Y.L.[Yi-Lin],
Xu, X.M.[Xiang-Ming],
Monitoring of Wheat Powdery Mildew under Different Nitrogen Input
Levels Using Hyperspectral Remote Sensing,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Su, W.H.[Wen-Hao],
Zhang, J.J.[Jia-Jing],
Yang, C.[Ce],
Page, R.[Rae],
Szinyei, T.[Tamas],
Hirsch, C.D.[Cory D.],
Steffenson, B.J.[Brian J.],
Automatic Evaluation of Wheat Resistance to Fusarium Head Blight
Using Dual Mask-RCNN Deep Learning Frameworks in Computer Vision,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Xiao, Y.X.[Ying-Xin],
Dong, Y.Y.[Ying-Ying],
Huang, W.J.[Wen-Jiang],
Liu, L.Y.[Lin-Yi],
Ma, H.Q.[Hui-Qin],
Wheat Fusarium Head Blight Detection Using UAV-Based Spectral and
Texture Features in Optimal Window Size,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Mustafa, G.[Ghulam],
Zheng, H.[Hengbiao],
Khan, I.H.[Imran Haider],
Tian, L.[Long],
Jia, H.Y.[Hai-Yan],
Li, G.Q.[Guo-Qiang],
Cheng, T.[Tao],
Tian, Y.C.[Yong-Chao],
Cao, W.X.[Wei-Xing],
Zhu, Y.[Yan],
Yao, X.[Xia],
Hyperspectral Reflectance Proxies to Diagnose In-Field Fusarium Head
Blight in Wheat with Machine Learning,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Li, L.[Lu],
Dong, Y.Y.[Ying-Ying],
Xiao, Y.X.[Ying-Xin],
Liu, L.Y.[Lin-Yi],
Zhao, X.[Xing],
Huang, W.J.[Wen-Jiang],
Combining Disease Mechanism and Machine Learning to Predict Wheat
Fusarium Head Blight,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Jiang, J.[Jiale],
Liu, H.Y.[Hai-Yan],
Zhao, C.[Chen],
He, C.[Can],
Ma, J.F.[Ji-Feng],
Cheng, T.[Tao],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Yao, X.[Xia],
Evaluation of Diverse Convolutional Neural Networks and Training
Strategies for Wheat Leaf Disease Identification with Field-Acquired
Photographs,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Jing, X.[Xia],
Zou, Q.[Qin],
Yan, J.[Jumei],
Dong, Y.Y.[Ying-Ying],
Li, B.[Bingyu],
Remote Sensing Monitoring of Winter Wheat Stripe Rust Based on
mRMR-XGBoost Algorithm,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Ruan, C.[Chao],
Dong, Y.Y.[Ying-Ying],
Huang, W.J.[Wen-Jiang],
Huang, L.S.[Lin-Sheng],
Ye, H.[Huichun],
Ma, H.Q.[Hui-Qin],
Guo, A.[Anting],
Sun, R.Q.[Rui-Qi],
Integrating Remote Sensing and Meteorological Data to Predict Wheat
Stripe Rust,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Jing, X.[Xia],
Li, B.[Bingyu],
Ye, Q.X.[Qi-Xing],
Zou, Q.[Qin],
Yan, J.[Jumei],
Du, K.Q.[Kai-Qi],
Integrate the Canopy SIF and Its Derived Structural and Physiological
Components for Wheat Stripe Rust Stress Monitoring,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Hong, Q.Q.[Qing-Qing],
Jiang, L.[Ling],
Zhang, Z.H.[Zheng-Hua],
Ji, S.[Shu],
Gu, C.[Chen],
Mao, W.[Wei],
Li, W.X.[Wen-Xi],
Liu, T.[Tao],
Li, B.[Bin],
Tan, C.W.[Chang-Wei],
A Lightweight Model for Wheat Ear Fusarium Head Blight Detection
Based on RGB Images,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Tang, Z.Q.[Zi-Qian],
Sun, Y.Q.[Ya-Qin],
Wan, G.T.[Guang-Tong],
Zhang, K.[Kefei],
Shi, H.T.[Hong-Tao],
Zhao, Y.[Yindi],
Chen, S.[Shuo],
Zhang, X.W.[Xue-Wei],
Winter Wheat Lodging Area Extraction Using Deep Learning with
GaoFen-2 Satellite Imagery,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Du, K.Q.[Kai-Qi],
Jing, X.[Xia],
Zeng, Y.[Yelu],
Ye, Q.X.[Qi-Xing],
Li, B.[Bingyu],
Huang, J.X.[Jian-Xi],
An Improved Approach to Monitoring Wheat Stripe Rust with Sun-Induced
Chlorophyll Fluorescence,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Wang, J.[Jian],
Shi, L.[Lei],
Fu, Y.Y.[Yuan-Yuan],
Si, H.P.[Hai-Ping],
Liu, Y.[Yi],
Qiao, H.B.[Hong-Bo],
Mapping Wheat Take-All Disease Levels from Airborne Hyperspectral
Images Using Radiative Transfer Models,
RS(15), No. 8, 2023, pp. 1960.
DOI Link
2305
BibRef
Huang, L.S.[Lin-Sheng],
Chen, X.Y.[Xin-Yu],
Dong, Y.Y.[Ying-Ying],
Huang, W.J.[Wen-Jiang],
Ma, H.Q.[Hui-Qin],
Zhang, H.[Hansu],
Xu, Y.L.[Yun-Lei],
Wang, J.[Jing],
Dynamic Analysis of Regional Wheat Stripe Rust Environmental
Suitability in China,
RS(15), No. 8, 2023, pp. 2021.
DOI Link
2305
BibRef
Feng, Z.H.[Zi-Heng],
Zhang, H.Y.[Hai-Yan],
Duan, J.Z.[Jian-Zhao],
He, L.[Li],
Yuan, X.[Xinru],
Gao, Y.Z.[Yue-Zhi],
Liu, W.[Wandai],
Li, X.[Xiao],
Feng, W.[Wei],
Improved Spectral Detection of Nitrogen Deficiency and Yellow Mosaic
Disease Stresses in Wheat Using a Soil Effect Removal Algorithm and
Machine Learning,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Liu, W.W.[Wei-Wei],
Chen, Y.Y.[Yuan-Yuan],
Sun, W.W.[Wei-Wei],
Huang, R.[Ran],
Huang, J.F.[Jing-Feng],
Mapping Waterlogging Damage to Winter Wheat Yield Using
Downscaling-Merging Satellite Daily Precipitation in the Middle and
Lower Reaches of the Yangtze River,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Yang, H.B.[Hai-Bo],
Li, Z.[Zenglan],
Du, Q.Y.[Qing-Ying],
Duan, Z.[Zheng],
Winter Wheat Drought Risk Assessment by Coupling Improved
Moisture-Sensitive Crop Model and Gridded Vulnerability Curve,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Zhou, K.[Ke],
Zhang, Z.Y.[Zheng-Yan],
Liu, L.[Le],
Miao, R.[Ru],
Yang, Y.[Yang],
Ren, T.C.[Tong-Can],
Yue, M.[Ming],
Research on SUnet Winter Wheat Identification Method Based on GF-2,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Nguyen, C.[Canh],
Sagan, V.[Vasit],
Skobalski, J.[Juan],
Severo, J.I.[Juan Ignacio],
Early Detection of Wheat Yellow Rust Disease and Its Impact on
Terminal Yield with Multi-Spectral UAV-Imagery,
RS(15), No. 13, 2023, pp. 3301.
DOI Link
2307
BibRef
Hussain, S.[Sarfraz],
Mustafa, G.[Ghulam],
Khan, I.H.[Imran Haider],
Liu, J.Y.[Jia-Yuan],
Chen, C.[Cheng],
Hu, B.[Bingtao],
Chen, M.[Min],
Ali, I.[Iftikhar],
Liu, Y.H.[Yu-Hong],
Global Trends and Future Directions in Agricultural Remote Sensing
for Wheat Scab Detection: Insights from a Bibliometric Analysis,
RS(15), No. 13, 2023, pp. 3431.
DOI Link
2307
BibRef
Zhang, K.[Kai],
Zhang, R.D.[Run-Dong],
Yang, Z.Q.[Zi-Qian],
Deng, J.[Jie],
Abdullah, A.[Ahsan],
Zhou, C.Y.[Cong-Ying],
Lv, X.[Xuan],
Wang, R.[Rui],
Ma, Z.H.[Zhan-Hong],
Efficient Wheat Lodging Detection Using UAV Remote Sensing Images and
an Innovative Multi-Branch Classification Framework,
RS(15), No. 18, 2023, pp. 4572.
DOI Link
2310
BibRef
Zhao, M.X.[Ming-Xian],
Dong, Y.Y.[Ying-Ying],
Huang, W.J.[Wen-Jiang],
Ruan, C.[Chao],
Guo, J.[Jing],
Regional-Scale Monitoring of Wheat Stripe Rust Using Remote Sensing
and Geographical Detectors,
RS(15), No. 18, 2023, pp. 4631.
DOI Link
2310
BibRef
Yin, N.[Ning],
Bao, W.X.[Wen-Xia],
Yang, R.[Rongchao],
Wang, N.[Nian],
Liu, W.Q.[Wen-Qiang],
LWSDNet: A Lightweight Wheat Scab Detection Network Based on UAV
Remote Sensing Images,
RS(16), No. 15, 2024, pp. 2820.
DOI Link
2408
BibRef
Ermatinger, L.S.[Lochlin S.],
Powell, S.L.[Scott L.],
Peterson, R.K.D.[Robert K. D.],
Weaver, D.K.[David K.],
Multitemporal Hyperspectral Characterization of Wheat Infested by
Wheat Stem Sawfly, Cephus cinctus Norton,
RS(16), No. 18, 2024, pp. 3505.
DOI Link
2410
BibRef
Pryzant, R.,
Ermon, S.,
Lobell, D.,
Monitoring Ethiopian Wheat Fungus with Satellite Imagery and Deep
Feature Learning,
EarthVision17(1524-1532)
IEEE DOI
1709
Agriculture, Diseases, Monitoring, Remote sensing,
Satellites, Spatial, resolution
BibRef
Siricharoen, P.[Punnarai],
Scotney, B.[Bryan],
Morrow, P.[Philip],
Parr, G.[Gerard],
Automated Wheat Disease Classification Under Controlled and
Uncontrolled Image Acquisition,
ICIAR15(456-464).
Springer DOI
1507
BibRef
Pande, A.[Arun],
Jagyasi, B.G.[Bhushan G.],
Choudhuri, R.[Ravidutta],
Late Blight Forecast Using Mobile Phone Based Agro Advisory System,
PReMI09(609-614).
Springer DOI
0912
BibRef
Cataltepe, Z.,
Cetin, E.,
Pearson, T.,
Identification of insect damaged wheat kernels using transmittance
images,
ICIP04(V: 2917-2920).
IEEE DOI
0505
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Barley .