Bernardes, T.,
Moreira, M.,
Adami, M.,
Giarolla, A.,
Rudorff, B.,
Monitoring Biennial Bearing Effect on Coffee Yield Using MODIS Remote
Sensing Imagery,
RS(4), No. 9, September 2012, pp. 2492-2509.
DOI Link
1210
BibRef
Kelley, L.C.[Lisa C.],
Pitcher, L.[Lincoln],
Bacon, C.[Chris],
Using Google Earth Engine to Map Complex Shade-Grown Coffee
Landscapes in Northern Nicaragua,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Chemura, A.[Abel],
Mutanga, O.[Onisimo],
Odindi, J.[John],
Kutywayo, D.[Dumisani],
Mapping spatial variability of foliar nitrogen in coffee (Coffea
arabica L.) plantations with multispectral Sentinel-2 MSI data,
PandRS(138), 2018, pp. 1-11.
Elsevier DOI
1804
Nutrient management, Random forest, Canopy nitrogen, Precision agriculture
BibRef
Tang, Z.X.[Zi-Xia],
Li, M.M.[Meng-Meng],
Wang, X.Q.[Xiao-Qin],
Mapping Tea Plantations from VHR Images Using OBIA and Convolutional
Neural Networks,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Das, A.C.[Animesh Chandra],
Noguchi, R.[Ryozo],
Ahamed, T.[Tofael],
Integrating an Expert System, GIS, and Satellite Remote Sensing to
Evaluate Land Suitability for Sustainable Tea Production in
Bangladesh,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Hunt, D.A.[David A.],
Tabor, K.[Karyn],
Hewson, J.H.[Jennifer H.],
Wood, M.A.[Margot A.],
Reymondin, L.[Louis],
Koenig, K.[Kellee],
Schmitt-Harsh, M.[Mikaela],
Follett, F.[Forrest],
Review of Remote Sensing Methods to Map Coffee Production Systems,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
López, R.S.[Rolando Salas],
Fernández, D.G.[Darwin Gómez],
López, J.O.S.[Jhonsy O. Silva],
Briceño, N.B.R.[Nilton B. Rojas],
Oliva, M.[Manuel],
Murga, R.E.T.[Renzo E. Terrones],
Trigoso, D.I.[Daniel Iliquín],
Castillo, E.B.[Elgar Barboza],
Gurbillón, M.Á.B.[Miguel Ángel Barrena],
Land Suitability for Coffee (Coffea arabica) Growing in Amazonas,
Peru: Integrated Use of AHP, GIS and RS,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Tridawati, A.[Anggun],
Wikantika, K.[Ketut],
Susantoro, T.M.[Tri Muji],
Harto, A.B.[Agung Budi],
Darmawan, S.[Soni],
Yayusman, L.F.[Lissa Fajri],
Ghazali, M.F.[Mochamad Firman],
Mapping the Distribution of Coffee Plantations from Multi-Resolution,
Multi-Temporal, and Multi-Sensor Data Using a Random Forest Algorithm,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Rodríguez, J.P.[Jhonn Pablo],
Corrales, D.C.[David Camilo],
Aubertot, J.N.[Jean-Noël],
Corrales, J.C.[Juan Carlos],
A computer vision system for automatic cherry beans detection on
coffee trees,
PRL(136), 2020, pp. 142-153.
Elsevier DOI
2008
Coffee production, Caturra, Bourbon, Castillo, Noise reduction,
Segmentation, Morphological transformations
BibRef
Chen, S.Y.[Shih-Yu],
Chang, C.Y.[Chuan-Yu],
Ou, C.S.[Cheng-Syue],
Lien, C.T.[Chou-Tien],
Detection of Insect Damage in Green Coffee Beans Using VIS-NIR
Hyperspectral Imaging,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Phan, P.[Phamchimai],
Chen, N.C.[Neng-Cheng],
Xu, L.[Lei],
Chen, Z.[Zeqiang],
Using Multi-Temporal MODIS NDVI Data to Monitor Tea Status and
Forecast Yield: A Case Study at Tanuyen, Laichau, Vietnam,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Das, A.C.[Animesh Chandra],
Noguchi, R.[Ryozo],
Ahamed, T.[Tofael],
An Assessment of Drought Stress in Tea Estates Using Optical and
Thermal Remote Sensing,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Wang, P.J.[Pei-Juan],
Ma, Y.P.[Yu-Ping],
Tang, J.X.[Jun-Xian],
Wu, D.R.[Ding-Rong],
Chen, H.[Hui],
Jin, Z.F.[Zhi-Feng],
Huo, Z.G.[Zhi-Guo],
Spring Frost Damage to Tea Plants Can Be Identified with Daily
Minimum Air Temperatures Estimated by MODIS Land Surface Temperature
Products,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Martins, R.N.[Rodrigo Nogueira],
de Carvalho Pinto, F.D.[Francisco De_Assis],
de Queiroz Marçal, D.[Daniel],
Valente, D.S.M.[Domingos Sárvio Magalhães],
Rosas, J.T.F.[Jorge Tadeu Fim],
A Novel Vegetation Index for Coffee Ripeness Monitoring Using Aerial
Imagery,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Marin, D.B.[Diego Bedin],
Araújo e Silva Ferraz, G.[Gabriel],
Guimarães, P.H.S.[Paulo Henrique Sales],
Schwerz, F.[Felipe],
Santana, L.S.[Lucas Santos],
Barbosa, B.D.S.[Brenon Dienevam Souza],
Barata, R.A.P.[Rafael Alexandre Pena],
de Oliveira Faria, R.[Rafael],
Dias, J.E.L.[Jessica Ellen Lima],
Conti, L.[Leonardo],
Rossi, G.[Giuseppe],
Remotely Piloted Aircraft and Random Forest in the Evaluation of the
Spatial Variability of Foliar Nitrogen in Coffee Crop,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Souza Barbosa, B.D.[Brenon Diennevam],
Araújo e Silva Ferraz, G.[Gabriel],
Mendes dos Santos, L.[Luana],
Santana, L.S.[Lucas Santos],
Marin, D.B.[Diego Bedin],
Rossi, G.[Giuseppe],
Conti, L.[Leonardo],
Application of RGB Images Obtained by UAV in Coffee Farming,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Wang, P.J.[Pei-Juan],
Tang, J.X.[Jun-Xian],
Ma, Y.P.[Yu-Ping],
Wu, D.R.[Ding-Rong],
Yang, J.Y.[Jian-Ying],
Jin, Z.F.[Zhi-Feng],
Huo, Z.G.[Zhi-Guo],
Mapping Threats of Spring Frost Damage to Tea Plants Using
Satellite-Based Minimum Temperature Estimation in China,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Jui, S.J.J.[S Janifer Jabin],
Ahmed, A.A.M.[A. A. Masrur],
Bose, A.[Aditi],
Raj, N.[Nawin],
Sharma, E.[Ekta],
Soar, J.[Jeffrey],
Chowdhury, M.W.I.[Md Wasique Islam],
Spatiotemporal Hybrid Random Forest Model for Tea Yield Prediction
Using Satellite-Derived Variables,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Tang, J.[Jie],
Jiang, F.[Fugen],
Long, Y.[Yi],
Fu, L.[Liyong],
Sun, H.[Hua],
Identification of the Yield of Camellia oleifera Based on Color Space
by the Optimized Mean Shift Clustering Algorithm Using Terrestrial
Laser Scanning,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Santana, L.S.[Lucas Santos],
Araújo e Silva Ferraz, G.[Gabriel],
Marin, D.B.[Diego Bedin],
de Oliveira Faria, R.[Rafael],
Santos Santana, M.[Mozarte],
Rossi, G.[Giuseppe],
Palchetti, E.[Enrico],
Digital Terrain Modelling by Remotely Piloted Aircraft: Optimization
and Geometric Uncertainties in Precision Coffee Growing Projects,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Zhang, Q.F.[Qing-Fan],
Hu, M.S.[Mao-Sheng],
Zhou, Y.S.[Yan-Song],
Wan, B.[Bo],
Jiang, L.[Le],
Zhang, Q.F.[Quan-Fa],
Wang, D.[Dezhi],
Effects of UAV-LiDAR and Photogrammetric Point Density on Tea
Plucking Area Identification,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Chen, P.P.[Pan-Pan],
Li, C.[Cunjun],
Chen, S.L.[Shi-Lin],
Li, Z.Y.[Zi-Yang],
Zhang, H.Y.[Han-Yue],
Zhao, C.J.[Chun-Jiang],
Tea Cultivation Suitability Evaluation and Driving Force Analysis
Based on AHP and Geodetector Results: A Case Study of Yingde in
Guangdong, China,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Thao, N.T.T.[Nguyen Thi Thanh],
Khoi, D.N.[Dao Nguyen],
Denis, A.[Antoine],
Viet, L.V.[Luong Van],
Wellens, J.[Joost],
Tychon, B.[Bernard],
Early Prediction of Coffee Yield in the Central Highlands of Vietnam
Using a Statistical Approach and Satellite Remote Sensing Vegetation
Biophysical Variables,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Escobar-López, A.[Agustín],
Castillo-Santiago, M.Á.[Miguel Ángel],
Hernández-Stefanoni, J.L.[José Luis],
Mas, J.F.[Jean François],
López-Martínez, J.O.[Jorge Omar],
Identifying Coffee Agroforestry System Types Using Multitemporal
Sentinel-2 Data and Auxiliary Information,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Sonobe, R.[Rei],
Hirono, Y.[Yuhei],
Applying Variable Selection Methods and Preprocessing Techniques to
Hyperspectral Reflectance Data to Estimate Tea Cultivar Chlorophyll
Content,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Bolaños, J.[Julian],
Corrales, J.C.[Juan Carlos],
Campo, L.V.[Liseth Viviana],
Feasibility of Early Yield Prediction per Coffee Tree Based on
Multispectral Aerial Imagery: Case of Arabica Coffee Crops in
Cauca-Colombia,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Wang, C.Y.[Chun-Yi],
Zhao, M.Y.[Ming-Yue],
Xu, Y.L.[Yin-Long],
Zhao, Y.C.[Yun-Cheng],
Zhang, X.[Xiao],
Ecosystem Service Synergies Promote Ecological Tea Gardens:
A Case Study in Fuzhou, China,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
He, Z.[Zongtai],
Wu, K.[Kaihua],
Wang, F.M.[Fu-Min],
Jin, L.[Lisong],
Zhang, R.[Rongxu],
Tian, S.[Shoupeng],
Wu, W.Z.[Wei-Zhi],
He, Y.D.[Ya-Dong],
Huang, R.[Ran],
Yuan, L.[Lin],
Zhang, Y.[Yao],
Fresh Yield Estimation of Spring Tea via Spectral Differences in UAV
Hyperspectral Images from Unpicked and Picked Canopies,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Duan, D.D.[Dan-Dan],
Chen, L.[Longyue],
Zhao, C.J.[Chun-Jiang],
Wang, F.[Fan],
Cao, Q.[Qiong],
Multi-Angle Detection of Spatial Differences in Tea Physiological
Parameters,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Sonobe, R.[Rei],
Hirono, Y.[Yuhei],
Carotenoid Content Estimation in Tea Leaves Using Noisy Reflectance
Data,
RS(15), No. 17, 2023, pp. 4303.
DOI Link
2310
BibRef
dos Santos, L.M.[Luana Mendes],
Araújo e Silva Ferraz, G.[Gabriel],
Lopes Bento, N.[Nicole],
Marin, D.B.[Diego Bedin],
Rossi, G.[Giuseppe],
Bambi, G.[Gianluca],
Conti, L.[Leonardo],
Use of Images Obtained by Remotely Piloted Aircraft and Random Forest
for the Detection of Leaf Miner (Leucoptera coffeella) in Newly
Planted Coffee Trees,
RS(16), No. 4, 2024, pp. 728.
DOI Link
2402
BibRef
Okada, T.[Takuhiro],
Huang, Y.[Yuantian],
Hao, G.Q.[Guo-Qing],
Iizuka, S.[Satoshi],
Fukui, K.[Kazuhiro],
Low-Level Feature Aggregation Networks for Disease Severity
Estimation of Coffee Leaves,
MVA23(1-5)
DOI Link
2403
Image color analysis, Computational modeling, Machine vision,
Memory management, Estimation, Production, Feature extraction
BibRef
Wang, P.J.[Pei-Juan],
Li, X.[Xin],
Tang, J.X.[Jun-Xian],
Wu, D.R.[Ding-Rong],
Pang, L.F.[Li-Feng],
Zhang, Y.[Yuanda],
Critical Threshold-Based Heat Damage Evolution Monitoring to Tea
Plants with Remotely Sensed LST over Mainland China,
RS(16), No. 10, 2024, pp. 1784.
DOI Link
2405
BibRef
Santana, L.S.[Lucas Santos],
Araújo-e-Silva Ferraz, G.[Gabriel],
Santana, M.S.[Mozarte Santos],
Bento, N.L.[Nicole Lopes],
da Silva, J.M.[Josiane Maria],
de Oliveira-Faria, R.[Rafael],
Residual Ash Mapping and Coffee Plant Development Based on
Multispectral RPA Images,
RS(16), No. 11, 2024, pp. 1917.
DOI Link
2406
BibRef
Valente, G.F.[Gislayne Farias],
Araújo e Silva-Ferraz, G.[Gabriel],
Schwerz, F.[Felipe],
de Oliveira-Faria, R.[Rafael],
Fernandes, F.A.[Felipe Augusto],
Marin, D.B.[Diego Bedin],
Remotely Piloted Aircraft for Evaluating the Impact of Frost in
Coffee Plants: Interactions between Plant Age and Topography,
RS(16), No. 18, 2024, pp. 3467.
DOI Link
2410
BibRef
Wang, X.R.[Xiao-Rui],
Zhang, C.[Chao],
Qiang, Z.[Zhenping],
Liu, C.[Chang],
Wei, X.J.[Xiao-Jun],
Cheng, F.Y.[Feng-Yun],
A Coffee Plant Counting Method Based on Dual-Channel NMS and YOLOv9
Leveraging UAV Multispectral Imaging,
RS(16), No. 20, 2024, pp. 3810.
DOI Link
2411
BibRef
Manoel, M.C.[Maria Cecilia],
Rosa, M.R.[Marcos Reis],
Pereira-de Queiroz, A.[Alfredo],
Analysis of the Biennial Productivity of Arabica Coffee with Google
Earth Engine in the Northeast Region of São Paulo, Brazil,
RS(16), No. 20, 2024, pp. 3833.
DOI Link
2411
BibRef
Arriola-Valverde, S.[Sergio],
Rimolo-Donadio, R.[Renato],
Villagra-Mendoza, K.[Karolina],
Chacón-Rodriguez, A.[Alfonso],
García-Ramirez, R.[Ronny],
Somarriba-Chavez, E.[Eduardo],
A Comparative Study of Deep Learning Frameworks Applied to Coffee
Plant Detection from Close-Range UAS-RGB Imagery in Costa Rica,
RS(16), No. 24, 2024, pp. 4617.
DOI Link
2501
BibRef
Xiao, P.N.[Peng-Nan],
Qian, J.P.[Jian-Ping],
Yu, Q.Y.[Qiang-Yi],
Lin, X.[Xintao],
Xu, J.[Jie],
Liu, Y.J.[Yu-Jie],
Identify Tea Plantations Using Multidimensional Features Based on
Multisource Remote Sensing Data: A Case Study of the Northwest
Mountainous Area of Hubei Province,
RS(17), No. 5, 2025, pp. 908.
DOI Link
2503
BibRef
Alves, H.M.R.,
Vieira, T.G.C.,
Volpato, M.M.L.,
Lacerda, M.P.C.,
Borém, F.M.,
Geotechnologies For The Characterization Of Specialty Coffee
Environments Of Mantiqueira De Minas In Brazil,
ISPRS16(B8: 797-799).
DOI Link
1610
BibRef
Alves, H.M.R.,
Volpato, M.M.L.,
Vieira, T.G.C.,
Maciel, D.A.,
Gonçalves, T.G.,
Dantas, M.F.,
Characterization And Spectral Monitoring Of Coffee Lands In Brazil,
ISPRS16(B8: 801-803).
DOI Link
1610
BibRef
Nogueira, K.[Keiller],
Schwartz, W.R.[William Robson],
dos Santos, J.A.[Jefersson A.],
Coffee Crop Recognition Using Multi-scale Convolutional Neural Networks,
CIARP15(67-74).
Springer DOI
1511
BibRef
Bian, M.,
Skidmore, A.K.,
Schlerf, M.,
Liu, Y.,
Wang, T.,
Estimating Biochemical Parameters Of Tea (camellia Sinensis (l.)) Using
Hyperspectral Techniques,
ISPRS12(XXXIX-B8:237-241).
DOI Link
1209
BibRef
Alves, H.M.R.,
Vieira, T.G.C.,
Souza, V.C.O.,
Bertoldo, M.A.,
Lacerda, M.P.C.,
Andrade, H.,
Bernardes, N.,
Monitoring the Relationships between Environment and Coffee Production
in Agroecosytems of the State of Minas Gerais in Brazil,
IfromI06(xx-yy).
PDF File.
0607
BibRef
Vieira, T.G.C.,
Alves, H.M.R.,
Souza, V.C.O.,
Bernardes, T.,
Lacerda, M.P.C.,
Assessing and Mapping Changes, in Space and Time, of Coffee Lands of
the State of Minas Gerais in Brazil,
IfromI06(xx-yy).
PDF File.
0607
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Bamboo Analysis, Biomass, Bamboo Forest .