21.9.5.1 Brain Development Analysis, Infant Brain

Chapter Contents (Back)
Infant Brain. Brain Development.

Batchelor, P.G., Castellano-Smith, A.D., Hill, D.L.G., Hawkes, D.J., Cox, T.C.S., Dean, A.F.,
Measures of folding applied to the development of the human fetal brain,
MedImg(21), No. 8, August 2002, pp. 953-965.
IEEE Top Reference. 0301
BibRef

Thomaz, C.E., Boardman, J.P., Counsell, S., Hill, D.L.G., Hajnal, J.V., Edwards, A.D., Rutherford, M.A., Gillies, D.F., Rueckert, D.,
A multivariate statistical analysis of the developing human brain in preterm infants,
IVC(25), No. 6, 1 June 2007, pp. 981-994.
Elsevier DOI 0704
Multivariate statistics; Small sample size; Brain images; Preterm infants BibRef

Pienaar, R., Fischl, B., Caviness, V., Makris, N., Grant, P.E.,
A methodology for analyzing curvature in the developing brain from preterm to adult,
IJIST(18), No. 1, 2008, pp. 42-68.
DOI Link 0806
BibRef

Mutsvangwa, T.E.M., Smit, J., Hoyme, H.E., Kalberg, W., Viljoen, D.L., Meintjes, E.M., Douglas, T.S.,
Design, Construction, and Testing of a Stereo-Photogrammetric Tool for the Diagnosis of Fetal Alcohol Syndrome in Infants,
MedImg(28), No. 9, September 2009, pp. 1448-1458.
IEEE DOI 0909
BibRef

Douglas, T.S.[Tania S.], Martinez, F.[Fernando], Meintjes, E.M.[Ernesta M.], Vaughan, C.L.[Christopher L.], Viljoen, D.L.[Denis L.],
A Photogrammetric Method for the Assessment of Facial Morphology in Fetal Alcohol Syndrome Screening,
PCV02(B: 48). 0305
BibRef

Aljabar, P., Wolz, R., Srinivasan, L., Counsell, S.J., Rutherford, M.A., Edwards, A.D., Hajnal, J.V., Rueckert, D.,
A Combined Manifold Learning Analysis of Shape and Appearance to Characterize Neonatal Brain Development,
MedImg(30), No. 12, December 2011, pp. 2072-2086.
IEEE DOI 1112
BibRef

Zhu, H., Styner, M.[Martin], Tang, N., Liu, Z., Lin, W., Gilmore, J.H.[John H.],
FRATS: Functional Regression Analysis of DTI Tract Statistics,
MedImg(29), No. 4, April 2010, pp. 1039-1049.
IEEE DOI 1003
BibRef

Xu, S.[Shun], Styner, M.[Martin], Gilmore, J.H.[John H.], Piven, J.[Joseph], Gerig, G.[Guido],
Multivariate nonlinear mixed model to analyze longitudinal image data: MRI study of early brain development,
MMBIA08(1-8).
IEEE DOI 0806

See also Toward a Comprehensive Framework for the Spatiotemporal Statistical Analysis of Longitudinal Shape Data. BibRef

Serag, A., Kyriakopoulou, V., Rutherford, M.A., Edwards, A.D., Hajnal, J.V., Aljabar, P., Counsell, S.J., Boardman, J.P., Rueckert, D.,
A Multi-channel 4D Probabilistic Atlas of the Developing Brain: Application to Fetuses and Neonates,
BMVA(2012), No. 3, 2012, pp. 1-14.
PDF File. 1209
BibRef

Makropoulos, A., Gousias, I.S., Ledig, C., Aljabar, P., Serag, A., Hajnal, J.V., Edwards, A.D., Counsell, S.J., Rueckert, D.,
Automatic Whole Brain MRI Segmentation of the Developing Neonatal Brain,
MedImg(33), No. 9, September 2014, pp. 1818-1831.
IEEE DOI 1410
biomedical MRI BibRef

Zhang, Y., Shi, F., Wu, G., Wang, L., Yap, P.T., Shen, D.,
Consistent Spatial-Temporal Longitudinal Atlas Construction for Developing Infant Brains,
MedImg(35), No. 12, December 2016, pp. 2568-2577.
IEEE DOI 1612
Brain modeling BibRef

Hong, Y., Kim, J., Chen, G., Lin, W., Yap, P., Shen, D.,
Longitudinal Prediction of Infant Diffusion MRI Data via Graph Convolutional Adversarial Networks,
MedImg(38), No. 12, December 2019, pp. 2717-2725.
IEEE DOI 1912
Convolution, Magnetic resonance imaging, Laplace equations, Chebyshev approximation, Training, Generators, Loss measurement, early brain development BibRef

Zille, P., Calhoun, V.D., Stephen, J.M., Wilson, T.W., Wang, Y.,
Fused Estimation of Sparse Connectivity Patterns From Rest fMRI: Application to Comparison of Children and Adult Brains,
MedImg(37), No. 10, October 2018, pp. 2165-2175.
IEEE DOI 1810
Correlation, Sparse matrices, Estimation, Matrix decomposition, Brain, Data mining, Time series analysis, Sparse models, brain development BibRef

Zhang, C., Adeli, E., Wu, Z., Li, G., Lin, W., Shen, D.,
Infant Brain Development Prediction With Latent Partial Multi-View Representation Learning,
MedImg(38), No. 4, April 2019, pp. 909-918.
IEEE DOI 1904
Data models, Brain modeling, Pediatrics, Predictive models, Task analysis, Magnetic resonance imaging, multi-view learning BibRef

Zhang, A., Cai, B., Hu, W., Jia, B., Liang, F., Wilson, T.W., Stephen, J.M., Calhoun, V.D., Wang, Y.,
Joint Bayesian-Incorporating Estimation of Multiple Gaussian Graphical Models to Study Brain Connectivity Development in Adolescence,
MedImg(39), No. 2, February 2020, pp. 357-365.
IEEE DOI 2002
Aldolescence, fMRI, brain development, brain functional connectivity, joint estimation BibRef

Içer, S.[Semra],
Functional connectivity differences in brain networks from childhood to youth,
IJIST(30), No. 1, 2020, pp. 75-91.
DOI Link 2002
age-related brain maturation, healthy childhood development, resting-state networks BibRef

Pasban, S.[Sadegh], Mohamadzadeh, S.[Sajad], Zeraatkar-Moghaddam, J.[Javad], Shafiei, A.K.[Amir Keivan],
Infant brain segmentation based on a combination of VGG-16 and U-Net deep neural networks,
IET-IPR(14), No. 17, 24 December 2020, pp. 4756-4765.
DOI Link 2104
BibRef

Cheng, J.[Jiale], Zhang, X.[Xin], Ni, H.[Hao], Li, C.Y.[Chen-Yang], Xu, X.M.[Xiang-Min], Wu, Z.W.[Zheng-Wang], Wang, L.[Li], Lin, W.[Weili], Li, G.[Gang],
Path Signature Neural Network of Cortical Features for Prediction of Infant Cognitive Scores,
MedImg(41), No. 7, July 2022, pp. 1665-1676.
IEEE DOI 2207
Feature extraction, Machine learning, Data models, Cognition, Brain modeling, Biological neural networks, Pediatrics, path signature features BibRef

Li, Y.[Yu], Zhang, X.[Xin], Nie, J.X.[Jing-Xin], Zhang, G.W.[Guo-Wei], Fang, R.Y.[Rui-Yan], Xu, X.M.[Xiang-Min], Wu, Z.W.[Zheng-Wang], Hu, D.[Dan], Wang, L.[Li], Zhang, H.[Han], Lin, W.[Weili], Li, G.[Gang],
Brain Connectivity Based Graph Convolutional Networks and Its Application to Infant Age Prediction,
MedImg(41), No. 10, October 2022, pp. 2764-2776.
IEEE DOI 2210
Brain modeling, Feature extraction, Predictive models, Convolution, Task analysis, Deep learning, Data models, Age prediction, rs-fMRI BibRef

Zhang, X.[Xuzhe], He, X.Z.[Xin-Zi], Guo, J.[Jia], Ettehadi, N.[Nabil], Aw, N.[Natalie], Semanek, D.[David], Posner, J.[Jonathan], Laine, A.[Andrew], Wang, Y.[Yun],
PTNet3D: A 3D High-Resolution Longitudinal Infant Brain MRI Synthesizer Based on Transformers,
MedImg(41), No. 10, October 2022, pp. 2925-2940.
IEEE DOI 2210
6G mobile communication, Licenses, Hafnium, Kernel, Infant brain MRI, MRI synthesis, neural network, performer, transformer BibRef

Sun, L.[Liang], Shao, W.[Wei], Zhu, Q.[Qi], Wang, M.L.[Mei-Ling], Li, G.[Gang], Zhang, D.Q.[Dao-Qiang],
Multi-scale multi-hierarchy attention convolutional neural network for fetal brain extraction,
PR(133), 2023, pp. 109029.
Elsevier DOI 2210
Fetal brain extraction, In utero MR images, Multi-scale, Multi-hierarchy, 3D convolutional neural network BibRef


Zhang, Z.[Zigeng], O'Reilly, C.[Christian], Plamondon, R.[Réjean],
Comparing Symbolic and Connectionist Algorithms for Correlating the Age of Healthy Children with Sigma-Lognormal Neuromuscular Parameters,
ICPR22(4385-4391)
IEEE DOI 2212
Support vector machines, Motor drives, Pediatrics, Neuromuscular, Neural networks, Linear regression, Medical services BibRef

O'Reilly, C.[Christian], Plamondon, R.[Réjean], Faci, N.[Nadir],
The Lognometer: A New Normalized and Computerized Device for Assessing the Neurodevelopment of Fine Motor Control in Children,
ICPR22(952-958)
IEEE DOI 2212
Motor drives, Pediatrics, Sensitivity, Parameter estimation, Sociology, Trajectory, Neuromotor development, Parameter Extraction BibRef

Gao, Y.[Yuan], Lee, L.[Lokhin], Droste, R.[Richard], Craik, R.[Rachel], Beriwal, S.[Sridevi], Papageorghiou, A.[Aris], Noble, A.[Alison],
A Dual Adversarial Calibration Framework for Automatic Fetal Brain Biometry,
CVAMD21(3239-3247)
IEEE DOI 2112
Adaptation models, Ultrasonic imaging, Head, Biological system modeling, Perturbation methods, Point of care BibRef

Rampun, A.[Andrik], Jarvis, D.[Deborah], Griffiths, P.[Paul], Armitage, P.[Paul],
Fetal Brain Segmentation Using Convolutional Neural Networks with Fusion Strategies,
ISVC20(II:113-124).
Springer DOI 2103
BibRef

Fishbaugh, J.[James], Styner, M.[Martin], Grewen, K.[Karen], Gilmore, J.[John], Gerig, G.[Guido],
Spatiotemporal Modeling for Image Time Series with Appearance Change: Application to Early Brain Development,
MFCA19(174-185).
Springer DOI 1912
BibRef

Meng, Y.[Yu], Li, G.[Gang], Gao, Y.Z.[Yao-Zong], Gilmore, J.H.[John H.], Lin, W.[Weili], Shen, D.G.[Ding-Gang],
Subject-Specific Estimation of Missing Cortical Thickness Maps in Developing Infant Brains,
MCV15(83-92).
Springer DOI 1608
BibRef

Alansary, A., Soliman, A., Nitzken, M., Khalifa, F., Elnakib, A., Mostapha, M., Casanova, M.F., El-Baz, A.,
An integrated geometrical and stochastic approach for accurate infant brain extraction,
ICIP14(3542-3546)
IEEE DOI 1502
Brain modeling BibRef

Lanche, S.[Stéphanie], Darvann, T.A.[Tron A.], Ólafsdóttir, H.[Hildur], Hermann, N.V.[Nuno V.], van Pelt, A.E.[Andrea E.], Govier, D.[Daniel], Tenenbaum, M.J.[Marissa J.], Naidoo, S.[Sybill], Larsen, P.[Per], Kreiborg, S.[Sven], Larsen, R.[Rasmus], Kane, A.A.[Alex A.],
A Statistical Model of Head Asymmetry in Infants with Deformational Plagiocephaly,
SCIA07(898-907).
Springer DOI 0706
BibRef

Yu, P.[Peng], Yeo, B.T.T.[Boon Thye Thomas], Grant, P.E.[P. Ellen], Fischl, B.[Bruce], Golland, P.[Polina],
Cortical Folding Development Study based on Over-Complete Spherical Wavelets,
MMBIA07(1-8).
IEEE DOI 0710
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain, Cortex, General Segmentation Issues .


Last update:Nov 26, 2024 at 16:40:19