Toga, A.W.[Arthur W.],
Arnicar, T.L.[Tamara L.],
Image Analysis of Brain Physiology,
IEEE_CGA(5), No. 12, December, 1985, pp. 20-25.
BibRef
8512
Sokolowska, E.,
Newell, J.A.,
Multi-Layered Image Representation:
Structure And Application in Recognition of Parts of Brain Anatomy,
PRL(4), 1986, pp. 223-230.
BibRef
8600
Schwartz, E.L.[Eric L.],
Merker, B.[Bjorn],
Wolfson, E.[Estarose],
Shaw, A.[Alan],
Applications of Computer Graphics and Image Processing to 2-D and 3-D
Modeling of the Functional Architecture of Visual Cortex,
IEEE_CGA(8), No. 4, July, 1988, pp. 13-23.
BibRef
8807
Gu, X.,
Wang, Y.,
Chan, T.F.,
Thompson, P.M.,
Yau, S.T.,
Genus Zero Surface Conformal Mapping and Its Application to Brain
Surface Mapping,
MedImg(23), No. 8, August 2004, pp. 949-958.
IEEE Abstract.
0409
BibRef
Fang, H.[Haian],
Nurre, J.H.,
Smoothing random noise from human head scan data,
MedImg(15), No. 1, February 1996, pp. 102-111.
IEEE Top Reference.
0203
BibRef
Murase, K.,
Kuwabara, H.,
Yasuhara, Y.,
Evans, A.C.,
Gjedde, A.,
Mapping of change in cerebral glucose utilization using fluorine-18
fluorodeoxyglucose double injection and the constrained
weighted-integration method,
MedImg(15), No. 6, December 1996, pp. 824-835.
IEEE Top Reference.
0203
BibRef
Charland, P.,
Peters, T.,
Optimal display conditions for quantitative analysis of stereoscopic
cerebral angiograms,
MedImg(15), No. 5, October 1996, pp. 648-656.
IEEE Top Reference.
0203
BibRef
Guimond, A.,
Roche, A.,
Ayache, N.J.,
Meunier, J.,
Three-dimensional multimodal brain warping using the Demons algorithm
and adaptive intensity corrections,
MedImg(20), No. 1, January 2001, pp. 58-69.
IEEE Top Reference.
0110
BibRef
Ollikainen, J.O.,
Vaukhonen, M.,
Karjalainen, P.A.,
Kaipio, J.P.,
A new computational approach for cortical imaging,
MedImg(20), No. 4, April 2001, pp. 325-332.
IEEE Top Reference.
0110
BibRef
Angenent, S.,
Haker, S.[Steven],
Tannenbaum, A.,
Kikinis, R.,
On the Laplace-Beltrami operator and brain surface flattening,
MedImg(18), No. 8, August 1999, pp. 700-711.
IEEE Top Reference.
0110
See also Nondistorting flattening maps and the 3-D visualization of colon CT images.
See also Flattening Maps for the Visualization of Multibranched Vessels.
BibRef
Shattuck, D.W.,
Leahy, R.M.,
Automated graph-based analysis and correction of cortical volume
topology,
MedImg(20), No. 11, November 2001, pp. 1167-1177.
IEEE Top Reference.
0111
BibRef
Falcão, A.X.,
da Fontoura Costa, L.[Luciano],
da Cunha, B.S.,
Multiscale skeletons by image foresting transform and its application
to neuromorphometry,
PR(35), No. 7, July 2002, pp. 1571-1582.
Elsevier DOI
0204
BibRef
And:
Erratum:
PR(36), No. 12, December 2003, pp. 3013.
Elsevier DOI
0310
BibRef
Tao, X.D.[Xiao-Dong],
Prince, J.L.,
Davatzikos, C.,
Using a statistical shape model to extract sulcal curves on the outer
cortex of the human brain,
MedImg(21), No. 5, May 2002, pp. 513-524.
IEEE Top Reference.
0206
BibRef
Toga, A.W.[Arthur W.],
The laboratory of neuro imaging:
What it is, why it is, and how it came to be,
MedImg(21), No. 11, November 2002, pp. 1333-1343.
IEEE Top Reference.
0301
BibRef
Cachia, A.,
Mangin, J.F.,
Riviere, D.,
Kherif, F.,
Boddaert, N.,
Andrade, A.,
Papadopoulos-Orfanos, D.,
Poline, J.B.,
Bloch, I.,
Zilbovicius, M.,
Sonigo, P.,
Brunelle, F.,
Regis, J.,
A primal sketch of the cortex mean curvature: a morphogenesis based
approach to study the variability of the folding patterns,
MedImg(22), No. 6, June 2003, pp. 754-765.
IEEE Abstract.
0308
BibRef
Mangin, J.F.,
Riviere, D.,
Cachia, A.,
Duchesnay, E.,
Cointepas, Y.,
Papadopoulos-Orfanos, D.,
Collins, D.L.,
Evans, A.C.,
Regis, J.,
Object-Based Morphometry of the Cerebral Cortex,
MedImg(23), No. 8, August 2004, pp. 968-982.
IEEE Abstract.
0409
BibRef
Studholme, C.[Colin],
Cardenas, V.[Valerie],
A template free approach to volumetric spatial normalization of brain
anatomy,
PRL(25), No. 10, 16 July 2004, pp. 1191-1202.
Elsevier DOI
0407
BibRef
Rousseau, F.,
Habas, P.A.,
Studholme, C.,
A Supervised Patch-Based Approach for Human Brain Labeling,
MedImg(30), No. 10, October 2011, pp. 1852-1862.
IEEE DOI
1110
BibRef
Hurdal, M.K., and
Stephenson, K.,
Cortical cartography using the discrete
conformal approach of circle packings,
NeuroImage(23), 2004, pp. 119-128.
BibRef
0400
Sinha, T.K.,
Dawant, B.M.,
Duay, V.,
Cash, D.M.,
Weil, R.J.,
Thompson, R.C.,
Weaver, K.D.,
Miga, M.I.,
A Method to Track Cortical Surface Deformations Using a Laser Range
Scanner,
MedImg(24), No. 6, June 2005, pp. 767-781.
IEEE Abstract.
0506
BibRef
Frosio, I.,
Ferrigno, G.,
Borghese, N.A.,
Enhancing Digital Cephalic Radiography With Mixture Models and Local
Gamma Correction,
MedImg(25), No. 1, January 2006, pp. 113-121.
IEEE DOI
0601
BibRef
Lucchese, M.[Mirko],
Frosio, I.[Iuri],
Borghese, N.A.[N. Alberto],
Optimal Choice of Regularization Parameter in Image Denoising,
CIAP11(I: 534-543).
Springer DOI
1109
BibRef
Lucchese, M.[Mirko],
Borghese, N.A.[N. Alberto],
Denoising of Digital Radiographic Images with Automatic Regularization
Based on Total Variation,
CIAP09(711-720).
Springer DOI
0909
BibRef
Frosio, I.,
Lucchese, M.,
Borghese, N.A.,
A new and reliable Poisson noise estimator for radiographic images,
CIAP07(725-730).
IEEE DOI
0709
BibRef
Frosio, I.,
Borghese, N.A.,
Statistical Based Impulsive Noise Removal in Digital Radiography,
MedImg(28), No. 1, January 2009, pp. 3-16.
IEEE DOI
0901
BibRef
Qiu, A.,
Bitouk, D.,
Miller, M.I.,
Smooth Functional and Structural Maps on the Neocortex Via Orthonormal
Bases of the Laplace-Beltrami Operator,
MedImg(25), No. 10, October 2006, pp. 1296-1306.
IEEE DOI
0609
BibRef
Aubert-Broche, B.,
Griffin, M.,
Pike, G.B.,
Evans, A.C.,
Collins, D.L.,
Twenty New Digital Brain Phantoms for Creation of Validation Image Data
Bases,
MedImg(25), No. 11, November 2006, pp. 1410-1416.
IEEE DOI
0611
BibRef
Camara, O.[Oscar],
Schweiger, M.,
Scahill, R.I.,
Crum, W.R.,
Sneller, B.I.,
Schnabel, J.A.,
Ridgway, G.R.,
Cash, D.M.,
Hill, D.L.G.,
Fox, N.C.,
Phenomenological Model of Diffuse Global and Regional Atrophy Using
Finite-Element Methods,
MedImg(25), No. 11, November 2006, pp. 1417-1430.
IEEE DOI
0611
See also Generalized Overlap Measures for Evaluation and Validation in Medical Image Analysis.
BibRef
Bansal, R.,
Staib, L.H.,
Xu, D.R.[Dong-Rong],
Zhu, H.,
Peterson, B.S.,
Statistical Analyses of Brain Surfaces Using Gaussian Random Fields on
2-D Manifolds,
MedImg(26), No. 1, January 2007, pp. 46-57.
IEEE DOI
0701
BibRef
Bansal, R.,
Staib, L.H.,
Xu, D.R.[Dong-Rong],
Laine, A.F.,
Royal, J.,
Peterson, B.S.,
Using Perturbation Theory to Compute the Morphological Similarity of
Diffusion Tensors,
MedImg(27), No. 5, May 2008, pp. 589-607.
IEEE DOI
0711
BibRef
Yu, P.[Peng],
Grant, P.E.[P. Ellen],
Qi, Y.[Yuan],
Han, X.[Xiao],
Segonne, F.[Florent],
Pienaar, R.[Rudolph],
Busa, E.[Evelina],
Pacheco, J.[Jenni],
Makris, N.[Nikos],
Buckner, R.L.[Randy L.],
Golland, P.[Polina],
Fischl, B.[Bruce],
Cortical Surface Shape Analysis Based on Spherical Wavelets,
MedImg(26), No. 4, April 2007, pp. 582-597.
IEEE DOI
0704
BibRef
Qiu, A.,
Brown, T.,
Fischl, B.,
Ma, J.,
Miller, M.I.,
Atlas Generation for Subcortical and Ventricular Structures With Its
Applications in Shape Analysis,
IP(19), No. 6, June 2010, pp. 1539-1547.
IEEE DOI
1006
BibRef
Yu, P.[Peng],
Han, X.[Xiao],
Ségonne, F.[Florent],
Pienaar, R.[Rudolph],
Buckner, R.L.[Randy L.],
Golland, P.[Polina],
Grant, P.E.[P. Ellen],
Fischl, B.[Bruce],
Cortical Surface Shape Analysis Based on Spherical Wavelet
Transformation,
MMBIA06(60).
IEEE DOI
0609
BibRef
Yu, P.[Peng],
Han, X.[Xiao],
Segonne, F.[Florent],
Liu, A.K.[Arthur K.],
Poldrack, R.A.[Russell A.],
Golland, P.[Polina],
Fischl, B.[Bruce],
Shape-based Discrimination and Classification of Cortical Surfaces,
ICPR06(III: 445-448).
IEEE DOI
0609
BibRef
Segonne, F.[Florent],
Pacheco, J.[Jenni],
Fischl, B.[Bruce],
Geometrically Accurate Topology-Correction of Cortical Surfaces Using
Nonseparating Loops,
MedImg(26), No. 4, April 2007, pp. 518-529.
IEEE DOI
0704
BibRef
Shi, Y.G.[Yong-Gang],
Thompson, P.M.,
Dinov, I.D.,
Toga, A.W.,
Hamilton-Jacobi Skeleton on Cortical Surfaces,
MedImg(27), No. 5, May 2008, pp. 664-673.
IEEE DOI
0711
See also Computational Model of Multidimensional Shape, A.
BibRef
Shi, Y.G.[Yong-Gang],
Lai, R.J.[Rong-Jie],
Morra, J.H.,
Dinov, I.D.,
Thompson, P.M.,
Toga, A.W.,
Robust Surface Reconstruction via Laplace-Beltrami Eigen-Projection and
Boundary Deformation,
MedImg(29), No. 12, December 2010, pp. 2009-2022.
IEEE DOI
1101
BibRef
Duchesnay, E.[Edouard],
Cachia, A.[Arnaud],
Roche, A.[Alexis],
Riviere, D.[Denis],
Cointepas, Y.[Yann],
Papadopoulos-Orfanos, D.[Dimitri],
Zilbovicius, M.[Monica],
Martinot, J.L.[Jean-Luc],
Regis, J.[Jean],
Mangin, J.F.[Jean-Franois],
Classification Based on Cortical Folding Patterns,
MedImg(26), No. 4, April 2007, pp. 553-565.
IEEE DOI
0704
BibRef
Kao, C.Y.[Chiu-Yen],
Hofer, M.[Michael],
Sapiro, G.[Guillermo],
Stern, J.[Josh],
Rehm, K.[Kelly],
Rottenberg, D.A.[David A.],
A Geometric Method for Automatic Extraction of Sulcal Fundi,
MedImg(26), No. 4, April 2007, pp. 530-540.
IEEE DOI
0704
BibRef
Zhu, H.,
Ibrahim, J.G.,
Tang, N.,
Rowe, D.B.,
Hao, X.,
Bansal, R.,
Peterson, B.S.,
A Statistical Analysis of Brain Morphology Using Wild Bootstrapping,
MedImg(26), No. 7, July 2007, pp. 954-966.
IEEE DOI
0707
BibRef
Sun, H.[Hui],
Yushkevich, P.A.[Paul A.],
Zhang, H.[Hui],
Cook, P.A.,
Duda, J.T.,
Simon, T.J.[Tony J.],
Gee, J.C.[James C.],
Shape-Based Normalization of the Corpus Callosum for DTI Connectivity
Analysis,
MedImg(26), No. 9, September 2007, pp. 1166-1178.
IEEE DOI
0710
BibRef
Sun, H.[Hui],
Yushkevich, P.A.[Paul A.],
Zhang, H.[Hui],
Gee, J.C.[James C.],
Simon, T.J.[Tony J.],
Efficient Generation of Shape-Based Reference Frames for the Corpus
Callosum for DTI-based Connectivity Analysis,
MMBIA06(87).
IEEE DOI
0609
BibRef
Zhang, H.[Hui],
Yushkevich, P.A.[Paul A.],
Rueckert, D.[Daniel],
Gee, J.C.[James C.],
A Computational White Matter Atlas for Aging with Surface-Based
Representation of Fasciculi,
WBIR10(83-90).
Springer DOI
1007
BibRef
Wang, H.Z.[Hong-Zhi],
Suh, J.W.[Jung Wook],
Das, S.R.[Sandhitsu R.],
Pluta, J.B.[John B.],
Craige, C.,
Yushkevich, P.A.[Paul A.],
Multi-Atlas Segmentation with Joint Label Fusion,
PAMI(35), No. 3, March 2013, pp. 611-623.
IEEE DOI
1303
BibRef
Wang, H.Z.[Hong-Zhi],
Cao, Y.[Yu],
Syeda-Mahmood, T.[Tanveer],
Multi-atlas Segmentation with Learning-Based Label Fusion,
MLMI14(256-263).
Springer DOI
1410
BibRef
Wang, H.Z.[Hong-Zhi],
Suh, J.W.[Jung Wook],
Das, S.R.[Sandhitsu R.],
Pluta, J.B.[John B.],
Altinay, M.[Murat],
Yushkevich, P.A.[Paul A.],
Regression-based label fusion for multi-atlas segmentation,
CVPR11(1113-1120).
IEEE DOI
1106
BibRef
Hope, T.A.,
Gregson, P.H.,
Linney, N.C.,
Schmidt, M.H.,
Abdolell, M.,
Selecting and Assessing Quantitative Early Ultrasound Texture Measures
for Their Association With Cerebral Palsy,
MedImg(27), No. 2, February 2008, pp. 228-236.
IEEE DOI
0802
BibRef
Sanchez, D.[Danmary],
Adjouadi, M.[Malek],
Altman, N.R.[Nolan R.],
Sanchez, D.[Daniel],
Bernal, B.[Byron],
Comprehensive 3d Fiber Tracking As A New Visualization System In Brain
Studies,
IJIG(7), No. 4, October 2007, pp. 749-765.
0710
BibRef
Koh, W.,
McCormick, B.H.,
Topology-graph Directed Separating Boundary Surfaces Approximation of
Nonmanifold Neuroanatomical Structures: Application to Mouse Brain
Olfactory Bulb,
MedImg(28), No. 4, April 2009, pp. 555-563.
IEEE DOI
0904
BibRef
Zalesky, A.,
Fornito, A.,
A DTI-Derived Measure of Cortico-Cortical Connectivity,
MedImg(28), No. 7, July 2009, pp. 1023-1036.
IEEE DOI
0906
BibRef
Rocha, K.R.[Kelvin R.],
Sundaramoorthi, G.[Ganesh],
Yezzi, A.J.[Anthony J.],
Prince, J.L.[Jerry L.],
3D Topology Preserving Flows for Viewpoint-Based Cortical Unfolding,
IJCV(85), No. 3, December 2009, pp. xx-yy.
Springer DOI
0911
BibRef
Earlier: A1, A2, A3, Only:
MMBIA07(1-8).
IEEE DOI
0710
BibRef
He, L.[Lili],
Orten, B.,
Do, S.[Synho],
Karl, W.C.,
Kambadakone, A.,
Sahani, D.V.,
Pien, H.,
A Spatio-Temporal Deconvolution Method to Improve Perfusion CT
Quantification,
MedImg(29), No. 5, May 2010, pp. 1182-1191.
IEEE DOI
1006
BibRef
Pham, D.L.[Dzung L.],
Bazin, P.L.[Pierre-Louis],
Prince, J.L.[Jerry L.],
Digital Topology in Brain Imaging,
SPMag(27), No. 4, 2010, pp. 51-59.
IEEE DOI
1007
BibRef
Copeland, A.D.,
Mangoubi, R.S.,
Desai, M.N.,
Mitter, S.K.,
Malek, A.M.,
Spatio-Temporal Data Fusion for 3D+T Image Reconstruction in Cerebral
Angiography,
MedImg(29), No. 6, June 2010, pp. 1238-1251.
IEEE DOI
1007
BibRef
Caan, M.W.A.,
Khedoe, H.G.,
Poot, D.H.J.,
den Dekker, A.J.,
Olabarriaga, S.D.,
Grimbergen, C.A.,
van Vliet, L.J.,
Vos, F.M.,
Estimation of Diffusion Properties in Crossing Fiber Bundles,
MedImg(29), No. 8, August 2010, pp. 1504-1515.
IEEE DOI
1008
BibRef
Rmeily-Haddad, M.[Mireille],
Balédent, O.[Olivier],
Stoquart-El Sankari, S.[Souraya],
Sérot, J.M.[Jean-Marie],
Bailly, P.[Pascal],
Meyer, M.E.[Marc-Etienne],
The Kinetics Of 18f-Fluorodeoxyglucose Uptake In The Choroid Plexus,
IJIST(21), No. 1, 2011, pp. 107-114.
DOI Link FDG kinetics, choroid plexus, brain imaging
BibRef
1100
Lee, H.Y.[Hyek-Young],
Lee, D.S.[Dong Soo],
Kang, H.J.[Hye-Jin],
Kim, B.N.[Boong-Nyun],
Chung, M.K.[Moo K.],
Sparse Brain Network Recovery Under Compressed Sensing,
MedImg(30), No. 5, May 2011, pp. 1154-1165.
IEEE DOI
1105
BibRef
Lee, H.Y.[Hyek-Young],
Chung, M.K.[Moo K.],
Choi, H.Y.[Hong-Yoon],
Kang, H.J.[Hye-Jin],
Ha, S.G.[Seung-Gyun],
Kim, Y.K.[Yu Kyeong],
Lee, D.S.[Dong Soo],
Harmonic Holes as the Submodules of Brain Network and Network
Dissimilarity,
CTIC19(110-122).
Springer DOI
1901
BibRef
Lee, H.Y.[Hyek-Young],
Kang, H.J.[Hye-Jin],
Chung, M.K.[Moo K.],
Kim, B.N.[Boong-Nyun],
Lee, D.S.,
Persistent Brain Network Homology From the Perspective of Dendrogram,
MedImg(31), No. 12, December 2012, pp. 2267-2277.
IEEE DOI
1212
BibRef
Nirmala, S.,
Palanisamy, V.,
Clinical decision support system for early prediction of Down syndrome
fetus using sonogram images,
SIViP(5), No. 2, June 2011, pp. 245-255.
WWW Link.
1101
BibRef
Ho, H.P.,
Wang, F.,
Papademetris, X.,
Blumberg, H.P.,
Staib, L.H.,
Fasciculography: Robust Prior-Free Real-Time Normalized Volumetric
Neural Tract Parcellation,
MedImg(31), No. 2, February 2012, pp. 217-230.
IEEE DOI
1202
BibRef
Liang, X.Y.[Xiao-Yun],
Tournier, J.D.[Jacques-Donald],
Masterton, R.[Richard],
Connelly, A.[Alan],
Calamante, F.[Fernando],
A k-space sharing 3D GRASE pseudocontinuous ASL method for whole-brain
resting-state functional connectivity,
IJIST(22), No. 1, March 2012, pp. 37-43.
DOI Link
1202
BibRef
Ng, B.,
McKeown, M.J.,
Abugharbieh, R.,
Group Replicator Dynamics: A Novel Group-Wise Evolutionary Approach for
Sparse Brain Network Detection,
MedImg(31), No. 3, March 2012, pp. 576-585.
IEEE DOI
1203
BibRef
Wong, T.W.[Tsz Wai],
Lui, L.M.[Lok Ming],
Thompson, P.M.[Paul M.],
Chan, T.F.[Tony F.],
Intrinsic Feature Extraction on Hippocampal Surfaces and Its
Applications,
SIIMS(5), No. 1 2012, pp. 746-768.
DOI Link
1208
BibRef
Koch, L.M.,
Rajchl, M.,
Bai, W.,
Baumgartner, C.F.,
Tong, T.,
Passerat-Palmbach, J.,
Aljabar, P.,
Rueckert, D.,
Multi-Atlas Segmentation Using Partially Annotated Data:
Methods and Annotation Strategies,
PAMI(40), No. 7, July 2018, pp. 1683-1696.
IEEE DOI
1806
Biomedical imaging, Image segmentation, Labeling, Manuals,
Robustness, Sociology, Training, Markov Random Field,
unifying framework
BibRef
Honorio, J.,
Tomasi, D.,
Goldstein, R.Z.,
Leung, H.C.,
Samaras, D.,
Can a Single Brain Region Predict a Disorder?,
MedImg(31), No. 11, November 2012, pp. 2062-2072.
IEEE DOI
1211
BibRef
Mesejo, P.[Pablo],
Ugolotti, R.[Roberto],
di Cunto, F.[Ferdinando],
Giacobini, M.[Mario],
Cagnoni, S.[Stefano],
Automatic hippocampus localization in histological images using
Differential Evolution-based deformable models,
PRL(34), No. 3, 1 February 2013, pp. 299-307.
Elsevier DOI
1301
Hippocampus; Deformable models; Automatic localization; Histological
images; Global continuous optimization; Differential Evolution
BibRef
Durrleman, S.[Stanley],
Pennec, X.[Xavier],
Trouvé, A.[Alain],
Braga, J.[José],
Gerig, G.[Guido],
Ayache, N.J.[Nicholas J.],
Toward a Comprehensive Framework for the Spatiotemporal Statistical
Analysis of Longitudinal Shape Data,
IJCV(103), No. 1, May 2013, pp. 22-59.
Springer DOI
1305
Time based evaluation of subjects. (e.g. endocranium in chimpanzees)
BibRef
Gerig, G.,
Davis, B.,
Lorenzen, P.,
Xu, S.[Shun],
Jomier, M.,
Piven, J.,
Joshi, S.,
Computational Anatomy to Assess Longitudinal Trajectory of Brain Growth,
3DPVT06(1041-1047).
IEEE DOI
0606
BibRef
Han, J.W.[Jun-Wei],
Ji, X.[Xiang],
Hu, X.T.[Xin-Tao],
Zhu, D.J.[Da-Jiang],
Li, K.M.[Kai-Ming],
Jiang, X.[Xi],
Cui, G.B.[Guang-Bin],
Guo, L.[Lei],
Liu, T.M.[Tian-Ming],
Representing and Retrieving Video Shots in
Human-Centric Brain Imaging Space,
IP(22), No. 7, 2013, pp. 2723-2736.
IEEE DOI video retrieval; video stimulus comprehension;
magnetic resonance imaging; video shot retrieval
1307
BibRef
Ji, X.[Xiang],
Han, J.W.[Jun-Wei],
Hu, X.T.[Xin-Tao],
Li, K.M.[Kai-Ming],
Deng, F.[Fan],
Fang, J.[Jun],
Guo, L.[Lei],
Liu, T.M.[Tian-Ming],
Retrieving video shots in semantic brain imaging space using
manifold-ranking,
ICIP11(3633-3636).
IEEE DOI
1201
BibRef
Iversen, D.H.,
Lindseth, F.,
Unsgaard, G.,
Torp, H.,
Lovstakken, L.,
Model-Based Correction of Velocity Measurements in Navigated 3-D
Ultrasound Imaging During Neurosurgical Interventions,
MedImg(32), No. 9, 2013, pp. 1622-1631.
IEEE DOI
1309
Blood vessels; brain; ultrasound; velocity estimation
BibRef
Rudek, M.[Marcelo],
Canciglieri, Jr., O.[Osiris],
Greboge, T.[Thiago],
A PSO Application in Skull Prosthesis Modelling by Superellipse,
ELCVIA(12), No. 2, 2013, pp. xx-yy.
DOI Link
1403
BibRef
Collard, A.[Anne],
Bonnabel, S.[Silvère],
Phillips, C.[Christophe],
Sepulchre, R.[Rodolphe],
Anisotropy Preserving DTI Processing,
IJCV(107), No. 1, March 2014, pp. 58-74.
Springer DOI
1403
BibRef
Yuan, Y.F.[Yong-Feng],
Wang, K.Q.[Kuan-Quan],
A Mixed Gauss and Directional Distance Filter for Fiber Direction
Tracking,
IJIG(14), No. 1-2, 2014, pp. 1450001.
DOI Link
1406
BibRef
Li, M.,
Liu, Y.,
Chen, F.,
Hu, D.,
Including Signal Intensity Increases the Performance of Blind Source
Separation on Brain Imaging Data,
MedImg(34), No. 2, February 2015, pp. 551-563.
IEEE DOI
1502
Algorithm design and analysis
BibRef
Wang, S.H.[Shui-Hua],
Zhang, Y.D.[Yu-Dong],
Dong, Z.C.[Zheng-Chao],
Du, S.[Sidan],
Ji, G.[Genlin],
Yan, J.[Jie],
Yang, J.Q.[Ji-Quan],
Wang, Q.[Qiong],
Feng, C.M.[Chun-Mei],
Phillips, P.[Preetha],
Feed-forward neural network optimized by hybridization of PSO and ABC
for abnormal brain detection,
IJIST(25), No. 2, 2015, pp. 153-164.
DOI Link
1506
particle swarm optimization
BibRef
Yan, Z.[Zheng],
Lin, X.H.[Xiao-Hong],
Lin, C.D.[Chao-Dong],
The study of brain networks driven by steady-state visual evoked
potentials,
IJIST(25), No. 2, 2015, pp. 165-171.
DOI Link
1506
brain network
BibRef
Liu, X.X.[Xiao-Xiao],
Niethammer, M.,
Kwitt, R.,
Singh, N.,
McCormick, M.,
Aylward, S.,
Low-Rank Atlas Image Analyses in the Presence of Pathologies,
MedImg(34), No. 12, December 2015, pp. 2583-2591.
IEEE DOI
1601
brain
BibRef
Schulz, J.[Jörn],
Pizer, S.M.[Stephen M.],
Marron, J.S.,
Godtliebsen, F.[Fred],
Non-linear Hypothesis Testing of Geometric Object Properties of Shapes
Applied to Hippocampi,
JMIV(54), No. 1, January 2016, pp. 15-34.
Springer DOI
1601
BibRef
Yoldemir, B.,
Ng, B.,
Abugharbieh, R.,
Stable Overlapping Replicator Dynamics for Brain Community Detection,
MedImg(35), No. 2, February 2016, pp. 529-538.
IEEE DOI
1602
Correlation. Brain structure understanding.
BibRef
Jeong, H.S.[Hyeonseok S.],
Chung, Y.A.[Yong-An],
Contribution of neuroimaging in the diagnosis of brain disorders:
Recent findings and future applications,
IJIST(26), No. 2, 2016, pp. 124-135.
DOI Link
1606
neuroimaging, diagnosis, biomarker, brain disorders
BibRef
Li, J.N.[Jun-Ning],
Shi, Y.G.[Yong-Gang],
Toga, A.W.[Arthur W.],
Transformation Invariant Control of Voxel-Wise False Discovery Rate,
MedImg(35), No. 10, October 2016, pp. 2243-2257.
IEEE DOI
1610
Aerospace electronics
BibRef
Fakhry, A.,
Zeng, T.,
Ji, S.,
Residual Deconvolutional Networks for Brain Electron Microscopy Image
Segmentation,
MedImg(36), No. 2, February 2017, pp. 447-456.
IEEE DOI
1702
Convolution
BibRef
Qiu, W.,
Chen, Y.,
Kishimoto, J.,
de Ribaupierre, S.,
Chiu, B.,
Fenster, A.,
Menon, B.K.,
Yuan, J.,
Longitudinal Analysis of Pre-Term Neonatal Cerebral Ventricles From
3D Ultrasound Images Using Spatial-Temporal Deformable Registration,
MedImg(36), No. 4, April 2017, pp. 1016-1026.
IEEE DOI
1704
Convex functions
BibRef
Sheng, J.H.[Jin-Hua],
Data modeling and method analysis for brain imaging genetics,
IJIST(27), No. 2, 2017, pp. 162-170.
DOI Link
1706
data synthesis, genotype, linear model, neuroimaging, phenotype,
sparse, canonical, correlation, analysis
BibRef
Hughes, N.J.,
Goodhill, G.J.,
Estimating Cortical Feature Maps with Dependent Gaussian Processes,
PAMI(39), No. 10, October 2017, pp. 1918-1928.
IEEE DOI
1709
Covariance matrices, Gaussian processes, Image reconstruction,
Imaging, Kernel, Noise measurement, Visualization,
Gaussian processes, multitask learning, neuroimaging,
visual cortical maps
BibRef
Huang, J.Y.,
Hughes, N.J.,
Goodhill, G.J.,
Segmenting Neuronal Growth Cones Using Deep Convolutional Neural
Networks,
DICTA16(1-7)
IEEE DOI
1701
Axons
BibRef
Lopes, P.,
Baudisch, P.,
Interactive Systems Based on Electrical Muscle Stimulation,
Computer(50), No. 10, 2017, pp. 28-35.
IEEE DOI
1710
electromyography, interactive systems, muscle, EMS,
electrical muscle stimulation, guided training,
immersive virtual experiences, information access,
interactive systems, mechanical actuation,
BibRef
Zeng, D.,
Xie, Q.,
Cao, W.,
Lin, J.,
Zhang, H.,
Zhang, S.,
Huang, J.,
Bian, Z.,
Meng, D.,
Xu, Z.,
Liang, Z.,
Chen, W.,
Ma, J.,
Low-Dose Dynamic Cerebral Perfusion Computed Tomography
Reconstruction via Kronecker-Basis-Representation Tensor Sparsity
Regularization,
MedImg(36), No. 12, December 2017, pp. 2546-2556.
IEEE DOI
1712
Biomedical imaging, Brain modeling, Computed tomography,
Correlation, Image reconstruction, Tensile stress,
tensor
BibRef
Li, S.[Sui],
Zeng, D.[Dong],
Peng, J.J.[Jiang-Jun],
Bian, Z.Y.[Zhao-Ying],
Zhang, H.[Hao],
Xie, Q.[Qi],
Wang, Y.B.[Yong-Bo],
Liao, Y.T.[Yu-Ting],
Zhang, S.L.[Shan-Li],
Huang, J.[Jing],
Meng, D.Y.[De-Yu],
Xu, Z.B.[Zong-Ben],
Ma, J.H.[Jian-Hua],
An Efficient Iterative Cerebral Perfusion CT Reconstruction via
Low-Rank Tensor Decomposition With Spatial-Temporal Total Variation
Regularization,
MedImg(38), No. 2, February 2019, pp. 360-370.
IEEE DOI
1902
Tensile stress, Image reconstruction, Hemodynamics,
Matrix decomposition, Numerical models, Computed tomography,
regularization
BibRef
Masood, S.[Saleha],
Sheng, B.[Bin],
Li, P.[Ping],
Shen, R.M.[Rui-Min],
Fang, R.G.[Ruo-Gu],
Wu, Q.A.[Qi-Ang],
Automatic choroid layer segmentation using normalized graph cut,
IET-IPR(12), No. 1, January 2018, pp. 53-59.
DOI Link
1712
BibRef
Li, L.L.[Liang-Liang],
Si, Y.J.[Yu-Juan],
Jia, Z.H.[Zhen-Hong],
A novel brain image enhancement method based on nonsubsampled
contourlet transform,
IJIST(28), No. 2, 2018, pp. 124-131.
WWW Link.
1806
BibRef
Chitra, S.,
Kumaratharan, N.,
Ramesh, S.,
Enhanced brain image retrieval using carrier frequency offset
compensated orthogonal frequency division multiplexing for telemedicine
applications,
IJIST(28), No. 3, September 2018, pp. 186-195.
WWW Link.
1808
BibRef
Mondal, P.[Prasenjit],
Bhowmick, P.[Partha],
Mukherjee, J.[Jayanta],
Sural, S.[Shamik],
Efficient computation of cross-sections from human brain model by
geometric processing,
RealTimeIP(15), No. 2, August 2018, pp. 421-434.
Springer DOI
1808
BibRef
Zhang, D.,
Huang, J.,
Jie, B.,
Du, J.,
Tu, L.,
Liu, M.,
Ordinal Pattern: A New Descriptor for Brain Connectivity Networks,
MedImg(37), No. 7, July 2018, pp. 1711-1722.
IEEE DOI
1808
biomedical MRI, brain, diseases, feature extraction,
image classification, learning (artificial intelligence),
regression
BibRef
Zia, R.[Razia],
Akhtar, P.[Pervez],
Aziz, A.[Arshad],
A new rectangular window based image cropping method for generalization
of brain neoplasm classification systems,
IJIST(28), No. 3, September 2018, pp. 153-162.
WWW Link.
1808
BibRef
Lyu, I.[Ilwoo],
Kim, S.H.[Sun Hyung],
Woodward, N.D.[Neil D.],
Styner, M.A.[Martin A.],
Landman, B.A.[Bennett A.],
TRACE: A Topological Graph Representation for Automatic Sulcal Curve
Extraction,
MedImg(37), No. 7, July 2018, pp. 1653-1663.
IEEE DOI
1808
Cortex.
data acquisition, feature extraction, image reconstruction,
image registration, medical image processing,
valley detection
BibRef
Ning, L.,
Rathi, Y.,
A Dynamic Regression Approach for Frequency-Domain Partial Coherence
and Causality Analysis of Functional Brain Networks,
MedImg(37), No. 9, September 2018, pp. 1957-1969.
IEEE DOI
1809
Correlation, Frequency-domain analysis, Time series analysis,
Entropy, Coherence, Standards, Causality, coherence, frequency,
simulation
BibRef
Hazarika, A.[Anil],
Dutta, L.[Lachit],
Boro, M.[Meenakshi],
Barthakur, M.[Mausumi],
Bhuyan, M.[Manabendra],
An automatic feature extraction and fusion model:
Application to electromyogram (EMG) signal classification,
MultInfoRetr(8), No. 3, September 2018, pp. 173-186.
Springer DOI
1809
BibRef
Zille, P.,
Calhoun, V.D.,
Wang, Y.,
Enforcing Co-Expression Within a Brain-Imaging Genomics Regression
Framework,
MedImg(37), No. 12, December 2018, pp. 2561-2571.
IEEE DOI
1812
Bioinformatics, Genomics, Imaging, Feature extraction, Correlation,
Data models, Data integration, biomedical signal processing,
signal representation
BibRef
Baselice, F.,
Sorriso, A.,
Rucco, R.,
Sorrentino, P.,
Phase Linearity Measurement:
A Novel Index for Brain Functional Connectivity,
MedImg(38), No. 4, April 2019, pp. 873-882.
IEEE DOI
1904
Phase measurement, Synchronization, Oscillators, Correlation,
Indexes, Brain, Brain functional connectivity, functional coupling,
volume conduction
BibRef
Ma, M.[Ming],
Wang, X.[Xu],
Duan, Y.[Ye],
Frey, S.H.[Scott H.],
Gu, X.F.[Xian-Feng],
Optimal mass transport based brain morphometry for patients with
congenital hand deformities,
VC(35), No. 9, September 2018, pp. 1311-1325.
WWW Link.
1908
BibRef
Pang, S.,
Lu, Z.,
Jiang, J.,
Zhao, L.,
Lin, L.,
Li, X.,
Lian, T.,
Huang, M.,
Yang, W.,
Feng, Q.,
Hippocampus Segmentation Based on Iterative Local Linear Mapping With
Representative and Local Structure-Preserved Feature Embedding,
MedImg(38), No. 10, October 2019, pp. 2271-2280.
IEEE DOI
1910
Manifolds, Image segmentation, Hippocampus, Dictionaries,
Image reconstruction, Diseases, Training, Deep learning,
manifold regularization
BibRef
Shen, L.,
Thompson, P.M.,
Brain Imaging Genomics: Integrated Analysis and Machine Learning,
PIEEE(108), No. 1, January 2020, pp. 125-162.
IEEE DOI
2001
Genomics, Bioinformatics, Brain modeling, Machine learning,
Biomedical imaging, Big data, brain imaging, genomics,
statistics
BibRef
Zhang, G.,
Cai, B.,
Zhang, A.,
Stephen, J.M.,
Wilson, T.W.,
Calhoun, V.D.,
Wang, Y.,
Estimating Dynamic Functional Brain Connectivity With a Sparse Hidden
Markov Model,
MedImg(39), No. 2, February 2020, pp. 488-498.
IEEE DOI
2002
Uniform resource locators, Bibliographies, Standards,
Documentation, Databases, Sorting, Memory management,
brain development
BibRef
Jose, S.[Shobha],
George, S.T.[S. Thomas],
Roopchand, P.S.,
DWT-based electromyogram signal classification using maximum
likelihood-estimated features for neurodiagnostic applications,
SIViP(14), No. 3, April 2020, pp. 601-608.
WWW Link.
2004
BibRef
Kaur, T.[Taranjit],
Gandhi, T.K.[Tapan Kumar],
Deep convolutional neural networks with transfer learning for automated
brain image classification,
MVA(31), No. 3, March 2020, pp. Article20.
Springer DOI
2004
BibRef
CHAN, H.L.[Hei Long],
YAM, T.C.[Tsz Chun],
LUI, L.M.[Lok Ming],
Automatic characteristic-calibrated registration (ACC-REG):
Hippocampal surface registration using eigen-graphs,
PR(103), 2020, pp. 107142.
Elsevier DOI
2005
Feature extraction, Feature correspondence,
Surface registration, Surface deformation, Eigen-graph
BibRef
Huang, S.,
Lyu, I.,
Qiu, A.,
Chung, M.K.,
Fast Polynomial Approximation of Heat Kernel Convolution on Manifolds
and Its Application to Brain Sulcal and Gyral Graph Pattern Analysis,
MedImg(39), No. 6, June 2020, pp. 2201-2212.
IEEE DOI
2006
Heat diffusion, Laplace-Beltrami operator,
brain cortical sulcal curves, diffusion wavelets, Chebyshev polynomials
BibRef
Tang, Z.,
Liu, X.,
Li, Y.,
Yap, P.,
Shen, D.,
Multi-Atlas Brain Parcellation Using Squeeze-and-Excitation Fully
Convolutional Networks,
IP(29), 2020, pp. 6864-6872.
IEEE DOI
2007
Brain, Generators, Artificial neural networks,
Generative adversarial networks,
brain atlas selection
BibRef
Agrawal, P.,
Whitaker, R.T.,
Elhabian, S.Y.,
An Optimal, Generative Model for Estimating Multi-Label Probabilistic
Maps,
MedImg(39), No. 7, July 2020, pp. 2316-2326.
IEEE DOI
2007
Probabilistic logic, Image segmentation, Shape, Brain modeling,
Imaging, Sociology, Statistics, Probabilistic label maps,
log ratio transformation
BibRef
Ray, S.[Soumi],
Kumar, V.[Vinod],
Information count and distribution matrix:
A contemporary approach for content-based brain image indexing,
IJIST(30), No. 3, 2020, pp. 779-793.
DOI Link
2008
classification, feature extraction,
image retrieval, indexing, pixel
BibRef
Ji, J.Z.[Jun-Zhong],
Xing, X.Y.[Xin-Ying],
Yao, Y.[Yao],
Li, J.W.[Jun-Wei],
Zhang, X.D.[Xiao-Dan],
Convolutional kernels with an element-wise weighting mechanism for
identifying abnormal brain connectivity patterns,
PR(109), 2021, pp. 107570.
Elsevier DOI
2009
Brain network classification, Convolutional kernels,
Element-wise weighting mechanism, Topological features,
Abnormal connectivity patterns
BibRef
Han, M.,
Özdenizci, O.,
Wang, Y.,
Koike-Akino, T.,
Erdogmus, D.,
Disentangled Adversarial Autoencoder for Subject-Invariant
Physiological Feature Extraction,
SPLetters(27), 2020, pp. 1565-1569.
IEEE DOI
2009
Feature extraction, Task analysis, Decoding, Stress, Training,
Physiology, Biomedical monitoring, Adversarial deep learning,
stress assessment
BibRef
Zhu, B.,
Sevick-Muraca, E.M.,
Nguyen, R.D.,
Shah, M.N.,
Cap-Based Transcranial Optical Tomography in an Awake Infant,
MedImg(39), No. 11, November 2020, pp. 3300-3308.
IEEE DOI
2011
Optical fiber couplers, Detectors, Optical imaging,
Optical fiber devices, Functional magnetic resonance imaging,
validation
BibRef
Wang, L.,
Sun, B.,
Robinson, J.,
Jing, T.,
Fu, Y.,
EV-Action: Electromyography-Vision Multi-Modal Action Dataset,
FG20(160-167)
IEEE DOI
2102
biomechanics, electromyography,
feature extraction, image motion analysis, image recognition,
EMG
BibRef
Saravanan, S.,
Karthigaivel, R.,
A fuzzy and spline based dynamic histogram equalization for contrast
enhancement of brain images,
IJIST(31), No. 2, 2021, pp. 802-827.
DOI Link
2105
brightness, contrast enhancement, fuzzy and gray level, histogram equalization
BibRef
Tang, Y.[Yunbo],
Chen, D.[Dan],
Li, X.L.[Xiao-Li],
Dimensionality Reduction Methods for Brain Imaging Data Analysis,
Surveys(54), No. 4, May 2021, pp. xx-yy.
DOI Link
2107
Survey, Brain Imaging. dimensionality reduction, factorization, feature learning,
statistical tensor analysis, Brain imaging data, big data
BibRef
Li, J.N.[Jian-Ning],
Pimentel, P.[Pedro],
Szengel, A.[Angelika],
Ehlke, M.[Moritz],
Lamecker, H.[Hans],
Zachow, S.[Stefan],
Estacio, L.[Laura],
Doenitz, C.[Christian],
Ramm, H.[Heiko],
Shi, H.C.[Hao-Chen],
Chen, X.J.[Xiao-Jun],
Matzkin, F.[Franco],
Newcombe, V.[Virginia],
Ferrante, E.[Enzo],
Jin, Y.[Yuan],
Ellis, D.G.[David G.],
Aizenberg, M.R.[Michele R.],
Kodym, O.[Oldrich],
Španel, M.[Michal],
Herout, A.[Adam],
Mainprize, J.G.[James G.],
Fishman, Z.[Zachary],
Hardisty, M.R.[Michael R.],
Bayat, A.[Amirhossein],
Shit, S.[Suprosanna],
Wang, B.M.[Bo-Min],
Liu, Z.[Zhi],
Eder, M.[Matthias],
Pepe, A.[Antonio],
Gsaxner, C.[Christina],
Alves, V.[Victor],
Zefferer, U.[Ulrike],
von Campe, G.[Gord],
Pistracher, K.[Karin],
Schäfer, U.[Ute],
Schmalstieg, D.[Dieter],
Menze, B.H.[Bjoern H.],
Glocker, B.[Ben],
Egger, J.[Jan],
AutoImplant 2020-First MICCAI Challenge on Automatic Cranial Implant
Design,
MedImg(40), No. 9, September 2021, pp. 2329-2342.
IEEE DOI
2109
Skull, Shape, Implants, Cranial,
Image reconstruction, Biomedical imaging,
cranioplasty
BibRef
Bai, P.L.[Pei-Liang],
Safikhani, A.[Abolfazl],
Michailidis, G.[George],
A Fast Detection Method of Break Points in Effective Connectivity
Networks,
MedImg(41), No. 5, May 2022, pp. 1017-1030.
IEEE DOI
2205
Reactive power, Covariance matrices, Brain modeling,
Hidden Markov models, Data models, Time series analysis,
tuning parameters
BibRef
Jiang, R.T.[Rong-Tao],
Woo, C.W.[Choong-Wan],
Qi, S.[Shile],
Wu, J.[Jing],
Sui, J.[Jing],
Interpreting Brain Biomarkers: Challenges and solutions in
interpreting machine learning-based predictive neuroimaging,
SPMag(39), No. 4, July 2022, pp. 107-118.
IEEE DOI
2207
Neuroimaging, Precision medicine, Predictive models, Biomarkers,
Brain modeling, Data models, Behavioral sciences
BibRef
Wilms, M.[Matthias],
Bannister, J.J.[Jordan J.],
Mouches, P.[Pauline],
MacDonald, M.E.[M. Ethan],
Rajashekar, D.[Deepthi],
Langner, S.[Sönke],
Forkert, N.D.[Nils D.],
Invertible Modeling of Bidirectional Relationships in Neuroimaging
With Normalizing Flows: Application to Brain Aging,
MedImg(41), No. 9, September 2022, pp. 2331-2347.
IEEE DOI
2209
Brain modeling, Morphology, Aging, Data models, Solid modeling,
Predictive models, Bidirectional modeling, normalizing flows,
brain aging
BibRef
Yang, D.[Defu],
Chen, J.Z.[Jia-Zhou],
Yan, C.G.[Cheng-Gang],
Kim, M.[Minjeong],
Laurienti, P.J.[Paul J.],
Styner, M.[Martin],
Wu, G.R.[Guo-Rong],
Group-Wise Hub Identification by Learning Common Graph Embeddings on
Grassmannian Manifold,
PAMI(44), No. 11, November 2022, pp. 8249-8260.
IEEE DOI
2210
Connectors, Manifolds, Neuroscience, Sociology, Diseases,
Replicability, Psychiatry, Graph embedding, optimization,
connector hub
BibRef
Ha, S.[Seungbo],
Lyu, I.[Ilwoo],
SPHARM-Net: Spherical Harmonics-Based Convolution for Cortical
Parcellation,
MedImg(41), No. 10, October 2022, pp. 2739-2751.
IEEE DOI
2210
Convolution, Harmonic analysis, Surface morphology, Transforms,
Task analysis, Semantics, Feature extraction,
spherical harmonics
BibRef
Zhang, J.J.[Jian-Jia],
Zhou, L.P.[Lu-Ping],
Wang, L.[Lei],
Liu, M.T.[Meng-Ting],
Shen, D.G.[Ding-Gang],
Diffusion Kernel Attention Network for Brain Disorder Classification,
MedImg(41), No. 10, October 2022, pp. 2814-2827.
IEEE DOI
2210
Transformers, Kernel, Feature extraction, Brain modeling,
Task analysis, Time series analysis, Training, Attention network, transformer
BibRef
Wu, E.Q.[Edmond Q.],
Tang, Z.[Zhiri],
Yao, Y.X.[Yu-Xuan],
Qiu, X.Y.[Xu-Yi],
Deng, P.Y.[Ping-Yu],
Xiong, P.W.[Peng-Wen],
Song, A.[Aiguo],
Zhu, L.M.[Li-Min],
Zhou, M.C.[Meng-Chu],
Scalable Gamma-Driven Multilayer Network for Brain Workload Detection
Through Functional Near-Infrared Spectroscopy,
Cyber(52), No. 11, November 2022, pp. 12464-12478.
IEEE DOI
2211
Fatigue, Matrix decomposition, Nonhomogeneous media, Neurons,
Brain modeling, Gamma distribution, Blood, Brain workload,
Wigner-Ville distribution
BibRef
Zhu, Q.[Qi],
Xu, R.T.[Ru-Ting],
Wang, R.[Ran],
Xu, X.J.[Xi-Jia],
Zhang, Z.Q.[Zhi-Qiang],
Zhang, D.Q.[Dao-Qiang],
Stacked Topological Preserving Dynamic Brain Networks Representation
and Classification,
MedImg(41), No. 11, November 2022, pp. 3473-3484.
IEEE DOI
2211
Time-domain analysis, Feature extraction, Diseases, Epilepsy,
Correlation, Tensors, Sparse matrices, Dynamic brain networks,
computer-aided diagnosis
BibRef
Ma, K.[Kai],
Wen, X.[Xuyun],
Zhu, Q.[Qi],
Zhang, D.Q.[Dao-Qiang],
Ordinal Pattern Tree:
A New Representation Method for Brain Network Analysis,
MedImg(43), No. 4, April 2024, pp. 1526-1538.
IEEE DOI
2404
Kernel, Optimized production technology, Diseases, Graph theory,
Feature extraction, Task analysis, Medical diagnosis, classification
BibRef
Zhu, Q.[Qi],
Li, S.R.[Sheng-Rong],
Meng, X.S.[Xiang-Shui],
Xu, Q.[Qiang],
Zhang, Z.Q.[Zhi-Qiang],
Shao, W.[Wei],
Zhang, D.Q.[Dao-Qiang],
Spatio-Temporal Graph Hubness Propagation Model for Dynamic Brain
Network Classification,
MedImg(43), No. 6, June 2024, pp. 2381-2394.
IEEE DOI
2406
Feature extraction, Network topology, Topology, Brain modeling,
Functional magnetic resonance imaging, Medical diagnosis,
brain disease diagnosis
BibRef
Sun, L.[Liang],
Fu, Y.L.[Yan-Ling],
Zhao, J.Y.[Jun-Yong],
Shao, W.[Wei],
Zhu, Q.[Qi],
Zhang, D.Q.[Dao-Qiang],
MAS-CL: An End-to-End Multi-Atlas Supervised Contrastive Learning
Framework for Brain ROI Segmentation,
IP(33), 2024, pp. 4319-4333.
IEEE DOI
2408
Image segmentation, Contrastive learning, Task analysis, Labeling,
Deep learning, Data augmentation, Brain modeling, brain segmentation
BibRef
Wang, Y.J.[Yan-Jiang],
Ma, J.C.[Ji-Chao],
Chen, X.[Xue],
Liu, B.[Baodi],
Accurately Modeling the Resting Brain Functional Correlations Using
Wave Equation With Spatiotemporal Varying Hypergraph Laplacian,
MedImg(41), No. 12, December 2022, pp. 3787-3798.
IEEE DOI
2212
Brain modeling, Laplace equations, Correlation,
Mathematical models, Propagation, Predictive models, resonance
BibRef
Cui, H.[Hejie],
Dai, W.[Wei],
Zhu, Y.Q.[Yan-Qiao],
Kan, X.[Xuan],
Gu, A.A.C.[Antonio Aodong Chen],
Lukemire, J.[Joshua],
Zhan, L.[Liang],
He, L.F.[Li-Fang],
Guo, Y.[Ying],
Yang, C.[Carl],
BrainGB: A Benchmark for Brain Network Analysis With Graph Neural
Networks,
MedImg(42), No. 2, February 2023, pp. 493-506.
IEEE DOI
2302
Brain modeling, Network analyzers, Neuroimaging, Benchmark testing,
Functional magnetic resonance imaging, Pipelines, Neuroscience, benchmarks
BibRef
Song, X.[Xiao],
Zhang, X.D.[Xiao-Dan],
Ji, J.Z.[Jun-Zhong],
Liu, Y.[Ying],
Multi-scale Superpixel based Hierarchical Attention model for brain
CT classification,
JVCIR(91), 2023, pp. 103773.
Elsevier DOI
2303
Brian CT classification, Medical image processing,
Multi-scale superpixel, Hierarchical attention
BibRef
Gong, W.K.[Wei-Kang],
Bai, S.[Song],
Zheng, Y.Q.[Ying-Qiu],
Smith, S.M.[Stephen M.],
Beckmann, C.F.[Christian F.],
Supervised Phenotype Discovery From Multimodal Brain Imaging,
MedImg(42), No. 3, March 2023, pp. 834-849.
IEEE DOI
2303
Imaging, Task analysis, Magnetic resonance imaging,
Predictive models, Multitasking, Loading,
non-imaging derived phenotypes
BibRef
Zou, Y.X.[Yong-Xiang],
Cheng, L.[Long],
Han, L.J.[Li-Jun],
Li, Z.W.[Zheng-Wei],
Song, L.P.[Lu-Ping],
Decoding Electromyographic Signal With Multiple Labels for Hand
Gesture Recognition,
SPLetters(30), 2023, pp. 483-487.
IEEE DOI
2305
Feature extraction, Gesture recognition, Decoding, Aggregates,
Muscles, Hospitals, Graph neural networks, Electromyogram decoding,
multiple labels
BibRef
Anand, D.V.[D. Vijay],
Chung, M.K.[Moo K.],
Hodge Laplacian of Brain Networks,
MedImg(42), No. 5, May 2023, pp. 1563-1573.
IEEE DOI
WWW Link.
2305
Laplace equations, Brain modeling, Neuroimaging, Faces, Kernel,
Inference algorithms, Graph theory, Hodge Laplacian,
heat kernel smoothing
BibRef
Guo, W.Y.[Wei-Yu],
Jiang, N.[Ning],
Farina, D.[Dario],
Su, J.Y.[Jing-Yong],
Wang, Z.[Zheng],
Lin, C.[Chuang],
Xiong, H.[Hui],
Multi-Attention Feature Fusion Network for Accurate Estimation of
Finger Kinematics From Surface Electromyographic Signals,
HMS(53), No. 3, June 2023, pp. 512-519.
IEEE DOI
2306
Convolution, Smoothing methods, Long short term memory,
Logic gates, Feature extraction, Kinematics, Estimation,
surface EMG
BibRef
Gürler, Z.[Zeynep],
Rekik, I.[Islem],
Federated Brain Graph Evolution Prediction Using Decentralized
Connectivity Datasets With Temporally-Varying Acquisitions,
MedImg(42), No. 7, July 2023, pp. 2022-2031.
IEEE DOI
2307
Hospitals, Trajectory, Brain modeling, Predictive models, Training,
Training data, Task analysis, Federated GNN learning,
data with missing timepoints
BibRef
Vienneau, E.P.[Emelina P.],
Byram, B.C.[Brett C.],
A Coded Excitation Framework for High SNR Transcranial Ultrasound
Imaging,
MedImg(42), No. 10, October 2023, pp. 2886-2898.
IEEE DOI
2310
BibRef
Liu, J.W.[Jia-Wei],
Xing, F.[Fuyong],
Shaikh, A.[Abbas],
French, B.[Brooke],
Linguraru, M.G.[Marius George],
Porras, A.R.[Antonio R],
Joint Cranial Bone Labeling and Landmark Detection in Pediatric CT
Images Using Context Encoding,
MedImg(42), No. 10, October 2023, pp. 3117-3126.
IEEE DOI
2310
BibRef
Vindas, Y.[Yamil],
Roux, E.[Emmanuel],
Guépié, B.K.[Blaise Kévin],
Almar, M.[Marilys],
Delachartre, P.[Philippe],
Guided deep embedded clustering regularization for multifeature
medical signal classification,
PR(143), 2023, pp. 109812.
Elsevier DOI
2310
Multifeature learning, Deep regularization, Guided training,
Signal classification, Transcranial doppler
BibRef
Wang, S.B.[Shao-Bo],
Chen, Z.[Zaoqin],
Liu, Y.Y.[Yang-Yang],
Liu, Y.B.[Yu-Bing],
Qian, Z.[Zhiyu],
Meng, L.[Lin],
Relationship between reduced scattering coefficient and intracranial
pressure in clinical patients under different brain edema states,
IJIST(33), No. 6, 2023, pp. 2194-2202.
DOI Link
2311
brain edema, intracranial pressure, near infrared technology,
reduced scattering coefficient
BibRef
Wang, Z.F.[Ze-Feng],
Yao, J.F.[Jun-Feng],
Xu, M.[Meiyan],
Jiang, M.[Min],
Su, J.S.[Jin-Song],
Transformer-based network with temporal depthwise convolutions for
sEMG recognition,
PR(145), 2024, pp. 109967.
Elsevier DOI
2311
Surface electromyography, Feature learning,
Gesture recognition, Transformer, Self-attention,
Temporal depthwise convolution
BibRef
Liu, J.Y.[Jing-Yu],
Cui, W.G.[Wei-Gang],
Chen, Y.P.[Yi-Peng],
Ma, Y.L.[Yu-Lan],
Dong, Q.[Qunxi],
Cai, R.[Ran],
Li, Y.[Yang],
Hu, B.[Bin],
Deep Fusion of Multi-Template Using Spatio-Temporal Weighted
Multi-Hypergraph Convolutional Networks for Brain Disease Analysis,
MedImg(43), No. 2, February 2024, pp. 860-873.
IEEE DOI
2402
Diseases, Time series analysis, Neurological diseases, Fuses,
Correlation, Brain modeling, multi-template
BibRef
Du, L.[Lei],
Zhao, Y.[Ying],
Zhang, J.T.[Jian-Ting],
Shang, M.[Muheng],
Zhang, J.[Jin],
Han, J.W.[Jun-Wei],
Identification of Genetic Risk Factors Based on Disease Progression
Derived From Longitudinal Brain Imaging Phenotypes,
MedImg(43), No. 3, March 2024, pp. 928-939.
IEEE DOI
2403
Genetics, Diseases, Imaging, Brain modeling, Neuroimaging, Trajectory,
Data models, Brain imaging genetics, disease progression,
sparse multi-task mixed-effects model
BibRef
Liang, Q.M.[Quan-Min],
Ma, J.J.[Jun-Ji],
Chen, X.T.[Xi-Tian],
Lin, Q.X.[Qi-Xiang],
Shu, N.[Ni],
Dai, Z.J.[Zheng-Jia],
Lin, Y.[Ying],
A Hybrid Routing Pattern in Human Brain Structural Network Revealed
By Evolutionary Computation,
MedImg(43), No. 5, May 2024, pp. 1895-1909.
IEEE DOI
2405
Routing, Head, Brain modeling, Navigation, Magnetic heads,
Knowledge engineering, Image segmentation, Brain connectome,
evolutionary computation
BibRef
Liu, M.J.[Meng-Jun],
Zhang, H.F.[Hui-Feng],
Liu, M.X.[Mian-Xin],
Chen, D.D.[Dong-Dong],
Zhuang, Z.X.[Zi-Xu],
Wang, X.[Xin],
Zhang, L.C.[Li-Chi],
Peng, D.H.[Dai-Hui],
Wang, Q.[Qian],
Randomizing Human Brain Function Representation for Brain Disease
Diagnosis,
MedImg(43), No. 7, July 2024, pp. 2537-2546.
IEEE DOI Code:
WWW Link.
2407
Brain, Diseases, Medical diagnosis,
Functional magnetic resonance imaging, Transformers,
brain disease diagnosis
BibRef
Costa, L.[Lilia],
Anacleto, O.[Osvaldo],
Nascimento, D.C.[Diego C.],
Smith, J.Q.[James Q.],
Queen, C.M.[Catriona M.],
Louzada, F.[Francisco],
Nichols, T.[Thomas],
Evaluating brain group structure methods using hierarchical dynamic
models,
PR(155), 2024, pp. 110687.
Elsevier DOI
2408
Multiregression dynamic model, Bayesian network,
Group analysis, Cluster analysis, Hierarchical models
BibRef
De, A.[Arijit],
Tiwari, M.[Mona],
Chowdhury, A.S.[Ananda S.],
3D Hippocampus Segmentation Using a Hog Based Loss Function with
Majority Pooling,
ICIP23(2260-2264)
IEEE DOI
2312
BibRef
Zhdanov, M.[Maksim],
Steinmann, S.[Saskia],
Hoffmann, N.[Nico],
Investigating Brain Connectivity with Graph Neural Networks and
GNNExplainer,
ICPR22(5155-5161)
IEEE DOI
2212
Deep learning, Pathology, Neuroscience, Mental disorders,
Electroencephalography, Graph neural networks, Recording
BibRef
Bohi, A.[Amine],
Auzias, G.[Guillaume],
Noûs, C.[Camille],
Lefèvre, J.[Julien],
Comparing Vector Fields Across Surfaces:
Interest for Characterizing the Orientations of Cortical Folds,
ICIP22(391-395)
IEEE DOI
2211
Geometry, Neuroimaging, Surface reconstruction, Task analysis,
Surface treatment, Kidney, Image reconstruction, Vector field,
Differential geometry
BibRef
Huang, Y.W.[Ya-Wen],
Zheng, F.[Feng],
Sun, X.[Xu],
Li, Y.X.[Yue-Xiang],
Shao, L.[Ling],
Zheng, Y.F.[Ye-Feng],
Generalized Brain Image Synthesis with Transferable Convolutional
Sparse Coding Networks,
ECCV22(XXXIV:183-199).
Springer DOI
2211
BibRef
Zhang, K.[Ke],
Wu, F.[Fei],
Sun, J.X.[Jun-Xiao],
Yang, G.Y.[Guan-Yu],
Shu, H.Z.[Hua-Zhong],
Kong, Y.Y.[You-Yong],
Iterative Seeded Region Growing for Brain Tissue Segmentation,
ICIP22(886-890)
IEEE DOI
2211
Training, Deep learning, Image segmentation, Brain,
Magnetic resonance imaging, Iterative methods, Task analysis,
supervoxel matching
BibRef
Ranem, A.[Amin],
González, C.[Camila],
Mukhopadhyay, A.[Anirban],
Continual Hippocampus Segmentation with Transformers,
CLVision22(3710-3719)
IEEE DOI
2210
Image segmentation, Semantics, Sociology, Computer architecture,
Artificial neural networks, Transformers, Task analysis
BibRef
Zhang, M.[Min],
Guo, Y.[Yang],
Lei, N.[Na],
Zhao, Z.[Zhou],
Wu, J.F.[Jian-Feng],
Xu, X.Y.[Xiao-Yin],
Wang, Y.L.[Ya-Lin],
Gu, X.F.[Xian-Feng],
Cortical Surface Shape Analysis Based on Alexandrov Polyhedra,
ICCV21(14224-14232)
IEEE DOI
2203
Geometry, Visualization, Shape, Prognostics and health management,
Alzheimer's disease, Diseases, Biometrics, Segmentation, grouping and shape
BibRef
Zhou, H.[Haiyu],
Zhang, D.Q.[Dao-Qiang],
Graph-In-Graph Convolutional Networks for Brain Disease Diagnosis,
ICIP21(111-115)
IEEE DOI
2201
Correlation, Convolution, Image processing, Sociology,
Data structures, Medical diagnosis, Graph convolutional network,
brain disease diagnosis
BibRef
Cheng, K.[Kellen],
Atchaneeyasakul, K.[Kunakorn],
Barakat, Z.[Zeid],
Liebeskind, D.S.[David S.],
Scalzo, F.[Fabien],
CT Perfusion Imaging of the Brain with Machine Learning,
ISVC21(II:41-52).
Springer DOI
2112
BibRef
Torbati, M.E.[Mahbaneh Eshaghzadeh],
Tudorascu, D.L.[Dana L.],
Minhas, D.S.[Davneet S.],
Maillard, P.[Pauline],
DeCarli, C.S.[Charles S.],
Hwang, S.J.[Seong Jae],
Multi-scanner Harmonization of Paired Neuroimaging Data via Structure
Preserving Embedding Learning,
CVAMD21(3277-3286)
IEEE DOI
2112
Neuroimaging, Measurement, Brain
BibRef
Nguyen, N.P.[Nguyen P.],
Yoo, Y.[Youngjin],
Chekkoury, A.[Andrei],
Eibenberger, E.[Eva],
Re, T.J.[Thomas J.],
Das, J.[Jyotipriya],
Balachandran, A.[Abishek],
Lui, Y.W.[Yvonne W.],
Sanelli, P.C.[Pina C.],
Schroeppel, T.J.[Thomas J.],
Bodanapally, U.[Uttam],
Nicolaou, S.[Savvas],
White, T.A.[Tommi A.],
Bunyak, F.[Filiz],
Comaniciu, D.[Dorin],
Gibson, E.[Eli],
Brain midline shift detection and quantification by a cascaded deep
network pipeline on non-contrast computed tomography scans,
MIA-COVID19D21(487-495)
IEEE DOI
2112
Location awareness, Heating systems,
Head, Computed tomography, Pipelines, Radiology
BibRef
Cruz, R.S.[Rodrigo Santa],
Lebrat, L.[Leo],
Bourgeat, P.[Pierrick],
Fookes, C.[Clinton],
Fripp, J.[Jurgen],
Salvado, O.[Olivier],
DeepCSR: A 3D Deep Learning Approach for Cortical Surface
Reconstruction,
WACV21(806-815)
IEEE DOI
2106
Deep learning, Surface reconstruction, Image resolution, Feature extraction
BibRef
Gribel, D.[Daniel],
Vidal, T.[Thibaut],
Gendreau, M.[Michel],
Assortative-Constrained Stochastic Block Models,
ICPR21(6212-6218)
IEEE DOI
2105
networks for cerebral-cortex activity regions.
Maximum likelihood detection, Cats, Image edge detection,
Stochastic processes, Brain modeling, Partitioning algorithms
BibRef
Murabito, F.,
Palazzo, S.,
Salanitri, F.P.[F. Proietto],
Rundo, F.,
Bagci, U.,
Giordano, D.,
Leonardi, R.,
Spampinato, C.,
Deep Recurrent-Convolutional Model for Automated Segmentation of
Craniomaxillofacial CT Scans,
ICPR21(9062-9067)
IEEE DOI
2105
Convolutional codes, Image segmentation, Shape,
Computed tomography, Atmospheric modeling, Semantics, Imaging,
Pharyngeal airways
BibRef
Barile, B.[Beradino],
Marzullo, A.[Aldo],
Stamile, C.[Claudio],
Durand-Dubief, F.[Francoise],
Sappey-Marinier, D.[Dominique],
Tensor Factorization of Brain Structural Graph for Unsupervised
Classification in Multiple Sclerosis,
ICPR21(5052-5059)
IEEE DOI
2105
Tensors, Multiple sclerosis, Pathological processes,
Brain modeling, Data models, Classification algorithms, Pattern recognition
BibRef
Rojas, A.[Andrés],
Kroupi, E.[Eleni],
Martens, G.[Géraldine],
Thibaut, A.[Aurore],
Barra, A.[Alice],
Laureys, S.[Steven],
Ruffini, G.[Giulio],
Soria-Frisch, A.[Aureli],
Prediction of Minimally Conscious State Responder Patients to
Non-invasive Brain Stimulation Using Machine Learning Algorithms,
AIHA20(515-525).
Springer DOI
2103
Transcranial Electrical Stimulation (tES) therapy.
BibRef
Rahali, R.,
Ben Salem, Y.,
Dridi, N.,
Dahman, H.,
B-Spline Level Set For Drosophila Image Segmentation,
ICIP20(413-417)
IEEE DOI
2011
Level set, Image segmentation, Splines (mathematics), Biology,
Noise measurement, Clustering algorithms, Smoothing methods,
DICE
BibRef
Wen, C.F.[Cheng-Feng],
Lei, N.[Na],
Ma, M.[Ming],
Qi, X.[Xin],
Zhang, W.[Wen],
Wang, Y.L.[Ya-Lin],
Gu, X.F.[Xian-Feng],
Surface Foliation Based Brain Morphometry Analysis,
MFCA19(186-195).
Springer DOI
1912
BibRef
Tward, D.[Daniel],
Li, X.[Xu],
Huo, B.X.[Bing-Xing],
Lee, B.[Brian],
Mitra, P.[Partha],
Miller, M.[Michael],
3d Mapping of Serial Histology Sections with Anomalies Using a Novel
Robust Deformable Registration Algorithm,
MFCA19(162-173).
Springer DOI
1912
BibRef
Marinescu, R.V.[Razvan V.],
Eshaghi, A.[Arman],
Alexander, D.C.[Daniel C.],
Golland, P.[Polina],
Brainpainter: A Software for the Visualisation of Brain Structures,
Biomarkers and Associated Pathological Processes,
MBIA19(112-120).
Springer DOI
1912
BibRef
Sagindykov, T.B.,
Brazhe, A.R.,
Sorokin, D.V.,
Preprocessing and Registration of Miniscope-based Calcium Imaging Of
The Rodent Brain,
PTVSBB19(185-188).
DOI Link
1912
BibRef
Rashed, E.A.,
Gomez-Tames, J.,
Hirata, A.,
Generation of Head Models for Brain Stimulation Using Deep
Convolution Networks,
ICIP19(2621-2625)
IEEE DOI
1910
Transcranial magnetic stimulation, image segmentation,
deep learning, convolution neural networks
BibRef
Yang, C.,
Lo, C.,
Wang, H.,
Chou, J.,
FrankWang, Y.,
Weakly-Supervised Learning for Attention-Guided Skull Fracture
Classification In Computed Tomography Imaging,
ICIP19(1337-1341)
IEEE DOI
1910
Medical imaging, image attention, weakly-supervised learning,
deep learning, convolutional neural networks
BibRef
Sarbazvatan, S.,
Ventura, R.,
Esteves, F.F.,
Lima, S.Q.,
Sanches, J.M.,
A Novel Graph-Based Approach for Seriation of Mouse Brain Cross-Section
from Images,
IbPRIA19(I:461-471).
Springer DOI
1910
BibRef
Mohanty, K.[Kaustav],
Yousefian, O.[Omid],
Karbalaeisadegh, Y.[Yasamin],
Ulrich, M.[Micah],
Muller, M.[Marie],
Predicting Structural Properties of Cortical Bone by Combining
Ultrasonic Attenuation and an Artificial Neural Network (ANN): 2-D FDTD
Study,
ICIAR19(I:407-417).
Springer DOI
1909
BibRef
Fonal, K.,
Zdunek, R.,
Wolczowski, A.,
Feature-Fusion HALS-based Algorithm for Linked CP Decomposition Model
in Application to Joint EMG/MMG Signal Classification,
ICPR18(928-933)
IEEE DOI
1812
Tensile stress, Feature extraction, Electromyography,
Brain modeling, Pattern recognition, Numerical models,
EMG/MMG signal classification
BibRef
Guo, Y.L.[Yi-Luan],
Nejati, H.[Hossein],
Cheung, N.M.[Ngai-Man],
Deep neural networks on graph signals for brain imaging analysis,
ICIP17(3295-3299)
IEEE DOI
1803
Biological neural networks, Brain modeling, Convolution,
Feature extraction, Imaging, Sensors, Brain imaging, autoencoder,
graph signal processing
BibRef
Robles, F.A.B.[Felipe-Andrés Bello],
Panerai, R.B.[Ronney B.],
Pacheco, M.C.[Max Chacón],
Linear Modelling of Cerebral Autoregulation System Using Genetic
Algorithms,
CIARP17(94-101).
Springer DOI
1802
BibRef
Xie, S.D.[Shu-Dong],
Leow, W.K.[Wee Kheng],
Lim, T.C.[Thiam Chye],
Laplacian Deformation with Symmetry Constraints for Reconstruction of
Defective Skulls,
CAIP17(II: 24-35).
Springer DOI
1708
BibRef
Ghaemmaghami, P.,
Nabi, M.,
Yan, Y.,
Sebe, N.,
Sparse-coded cross-domain adaptation from the visual to the brain
domain,
ICPR16(4214-4219)
IEEE DOI
1705
Adaptation models, Brain, Decoding, Dictionaries,
Machine learning algorithms, Neuroimaging, Visualization
BibRef
Gordon, J.,
Lerner, B.,
Exposing and modeling underlying mechanisms in ALS with machine
learning,
ICPR16(2168-2173)
IEEE DOI
1705
Clinical trials, Databases, Diseases, Prediction algorithms,
Predictive models, Radio frequency, Vegetation
BibRef
Turgut, U.O.[Umut Orcun],
Gokcay, D.[Didem],
Shape Preservation Based on Gaussian Radial Basis Function
Interpolation on Human Corpus Callosum,
SeSAME16(118-132).
Springer DOI
1703
BibRef
Liu, Y.,
Zhang, M.,
Yang, W.,
Lu, Z.,
Feng, Q.,
Hippocampus Segmentation Based on Orientation-Scale Descriptor and
Sparse Coding,
DICTA16(1-8)
IEEE DOI
1701
Deformable models
BibRef
Robinson, E.C.,
Glocker, B.,
Rajchl, M.,
Rueckert, D.,
Discrete Optimisation for Group-Wise Cortical Surface Atlasing,
WBIR16(442-448)
IEEE DOI
1612
BibRef
Hafri, M.,
Jennane, R.,
Lespessailles, E.,
Toumi, H.,
Dual active contours model for HR-pQCT cortical bone segmentation,
ICPR16(2270-2275)
IEEE DOI
1705
Active contours, Bones, Computed tomography, Cortical bone,
Image segmentation, Nonhomogeneous media,
HR-pQCT, Segmentation, active contours,
cortical bone, local, energy
BibRef
Hafri, M.,
Toumi, H.,
Boutroy, S.,
Chapurlat, R.D.,
Lespessailles, E.,
Jennane, R.,
Fuzzy energy based active contours model for HR-PQCT cortical bone
segmentation,
ICIP16(4334-4338)
IEEE DOI
1610
Active contours
BibRef
Pei, Y.,
Kou, L.,
Zha, H.,
Anatomical structure similarity estimation by random forest,
ICIP16(2941-2945)
IEEE DOI
1610
Anatomical structure
BibRef
Pei, Y.,
Dai, F.,
Xu, T.,
Zha, H.,
Ma, G.,
Volumetric reconstruction of craniofacial structures from 2D lateral
cephalograms by regression forest,
ICIP16(4052-4056)
IEEE DOI
1610
Image reconstruction
BibRef
Moshobane, M.C.,
de Bruyn, P.J.N.,
Bester, M.N.,
Assessing 3d Photogrammetry Techniques In Craniometrics,
ISPRS16(B6: 267-273).
DOI Link
1610
BibRef
Jovic, A.,
Kukolja, D.,
Jozic, K.,
Horvat, M.,
A web platform for analysis of multivariate heterogeneous biomedical
time-series: A preliminary report,
WSSIP16(1-4)
IEEE DOI
1608
BibRef
And:
WSSIP16(1-4)
IEEE DOI
1608
Brain modeling
Internet
BibRef
Liu, S.D.[Si-Dong],
Cai, W.D.[Wei-Dong],
Liu, S.Q.[Si-Qi],
Pujol, S.[Sonia],
Kikinis, R.[Ron],
Feng, D.D.[David Dagan],
Subject-centered multi-view feature fusion for neuroimaging retrieval
and classification,
ICIP15(2505-2509)
IEEE DOI
1512
classification; multi-view; neuroimaging; retrieval
BibRef
Nava, R.[Rodrigo],
Kybic, J.[Jan],
Supertexton-based segmentation in early Drosophila oogenesis,
ICIP15(2656-2659)
IEEE DOI
1512
Drosophila
BibRef
Hou, M.[Ming],
Chaib-draa, B.[Brahim],
Hierarchical tucker tensor regression:
Application to brain imaging data analysis,
ICIP15(1344-1348)
IEEE DOI
1512
Brain Imaging
BibRef
Kim, J.Y.[Jin-Young],
Duchin, Y.[Yuval],
Sapiro, G.[Guillermo],
Vitek, J.[Jerrold],
Harel, N.[Noam],
Clinical deep brain stimulation region prediction using regression
forests from high-field MRI,
ICIP15(2480-2484)
IEEE DOI
1512
Deep brain stimulation
BibRef
Zheng, L.G.[Li-Gang],
Kim, H.W.J.[Hyun-Woo J.],
Adluru, N.[Nagesh],
Newton, M.A.[Michael A.],
Singh, V.[Vikas],
Riemannian Variance Filtering: An Independent Filtering Scheme for
Statistical Tests on Manifold-Valued Data,
Diff-CVML17(699-708)
IEEE DOI
1709
Brain, Diseases, Imaging, Manifolds, Statistical analysis,
Tensile stress, Testing
BibRef
Kim, W.H.[Won Hwa],
Bendlin, B.B.[Barbara B.],
Chung, M.K.[Moo K.],
Johnson, S.C.[Sterling C.],
Singh, V.[Vikas],
Statistical inference models for image datasets with systematic
variations,
CVPR15(4795-4803)
IEEE DOI
1510
BibRef
Kowalik-Urbaniak, I.A.[Ilona A.],
Castelli, J.[Jane],
Hemmati, N.[Nasim],
Koff, D.[David],
Smolarski-Koff, N.[Nadine],
Vrscay, E.R.[Edward R.],
Wang, J.[Jiheng],
Wang, Z.[Zhou],
Modelling of Subjective Radiological Assessments with Objective Image
Quality Measures of Brain and Body CT Images,
ICIAR15(3-13).
Springer DOI
1507
BibRef
Thomas, R.M.,
Yatawatta, S.,
Keysers, C.,
Sparse coding with a global connectivity constraint,
ICIP14(4087-4091)
IEEE DOI
1502
Brain modeling
BibRef
Yang, Z.[Zhen],
Zhong, S.H.[Sheng-Hua],
Carass, A.[Aaron],
Ying, S.H.[Sarah H.],
Prince, J.L.[Jerry L.],
Deep Learning for Cerebellar Ataxia Classification and Functional Score
Regression,
MLMI14(68-76).
Springer DOI
1410
BibRef
Yaqub, M.[Mohammad],
Kopuri, A.[Anil],
Rueda, S.[Sylvia],
Sullivan, P.B.[Peter B.],
McCormick, K.[Kenneth],
Noble, J.A.[J. Alison],
A Constrained Regression Forests Solution to 3D Fetal Ultrasound Plane
Localization for Longitudinal Analysis of Brain Growth and Maturation,
MLMI14(109-116).
Springer DOI
1410
BibRef
Rudek, M.[Marcelo],
Canciglieri, O.[Osiris],
Jahnen, A.[Andreas],
Bichinho, G.L.[Gerson Linck],
CT slice retrieval by shape ellipses descriptors for skull repairing,
ICIP13(761-764)
IEEE DOI
1402
Biomedical imaging
BibRef
Li, C.[Cheng],
Jin, D.[Dakai],
Burns, T.L.[Trudy L.],
A New Algorithm for Cortical Bone Segmentation with Its Validation and
Applications to In Vivo Imaging,
CIAP13(II:349-358).
Springer DOI
1309
BibRef
Lyu, I.[Ilwoo],
Li, G.[Gang],
Kim, M.J.[Min-Jeong],
Shen, D.G.[Ding-Gang],
Multiple Atlases-Based Joint Labeling of Human Cortical Sulcal Curves,
MCVM12(124-132).
Springer DOI
1305
BibRef
Portman, N.[Nataliya],
Evans, A.[Alan],
Novel Vector-Valued Approach to Automatic Brain Tissue Classification,
MCVM12(70-81).
Springer DOI
1305
BibRef
Smitha, C.K.,
Narayanan, N.K.,
Study of brain dynamics under mobile phone radiation using various
fractal dimension methods,
ICSIPR13(288-292).
IEEE DOI
1304
BibRef
Feng, M.L.[Meng-Ling],
Loy, L.Y.[Liang Yu],
Sim, K.[Kelvin],
Phua, C.[Clifton],
Zhang, F.[Feng],
Guan, C.T.[Cun-Tai],
Artifact correction with robust statistics for non-stationary
intracranial pressure signal monitoring,
ICPR12(557-560).
WWW Link.
1302
BibRef
Zhang, F.[Feng],
Feng, M.L.[Meng-Ling],
Loy, L.Y.[Liang Yu],
Zhang, Z.[Zhuo],
Guan, C.T.[Cun-Tai],
Online ICP forecast for patients with traumatic brain injury,
ICPR12(37-40).
WWW Link.
1302
BibRef
Ulas, A.[Aydin],
Gönen, M.[Mehmet],
Castellani, U.[Umberto],
Murino, V.[Vittorio],
Bellani, M.[Marcella],
Tansella, M.[Michele],
Brambilla, P.[Paolo],
A Localized MKL Method for Brain Classification with Known Intra-class
Variability,
MLMI12(152-159).
Springer DOI
1211
BibRef
Liao, S.[Shu],
Zhang, D.Q.[Dao-Qiang],
Yap, P.T.[Pew-Thian],
Wu, G.R.[Guo-Rong],
Shen, D.G.[Ding-Gang],
Group Sparsity Constrained Automatic Brain Label Propagation,
MLMI12(45-53).
Springer DOI
1211
BibRef
Cheng, Y.[Yuan],
Leow, W.K.[Wee Kheng],
Lim, T.C.[Thiam Chye],
Automatic identification of Frankfurt plane and mid-sagittal plane of
skull,
WACV12(233-238).
IEEE DOI
1203
human skull features. Surgery, forensics. Deals with know asymmetries.
BibRef
Berkels, B.[Benjamin],
Kotowski, M.[Marc],
Rumpf, M.[Martin],
Schaller, C.[Carlo],
Sulci Detection in Photos of the Human Cortex Based on Learned
Discriminative Dictionaries,
SSVM11(326-337).
Springer DOI
1201
BibRef
Aloui, K.,
Nait-Ali, A.,
Naceur, M.S.,
New biometric approach based on geometrical humain brain patterns
recognition: Some preliminary results,
EUVIP11(258-263).
IEEE DOI
1110
BibRef
Fang, S.F.[Shiao-Fen],
Liu, Y.[Ying],
Vinci-Booher, S.[Sophia],
Anthony, B.[Bruce],
Zhou, F.[Feng],
Surface Analysis from Video Volumes for Fetal Alcohol Syndrome
Classification,
DICTA10(22-26).
IEEE DOI
1012
BibRef
Elnakib, A.[Ahmed],
El-Baz, A.[Ayman],
Casanova, M.F.[Manuel F.],
Switala, A.E.[Andrew E.],
Dyslexia Diagnostics by Centerline-Based Shape Analysis of the Corpus
Callosum,
ICPR10(261-264).
IEEE DOI
1008
BibRef
Sona, D.[Diego],
Avesani, P.[Paolo],
Multivariate Brain Mapping by Random Subspaces,
ICPR10(2576-2579).
IEEE DOI
1008
BibRef
Moreira, M.[Miguel],
Dias, P.[Paulo],
Cordeiro, M.[Miguel],
Santos, G.[Gustavo],
Fernandes, J.M.[José Maria],
A Framework for Cerebral CT Perfusion Imaging Methods Comparison,
ICIAR10(II: 141-150).
Springer DOI
1006
BibRef
Chen, Y.J.[Yun-Jie],
Zhang, J.W.[Jian-Wei],
Wang, S.F.[Shun-Feng],
A New Fast Chinese Visible Human Brain Skull Stripping Method,
CISP09(1-5).
IEEE DOI
0910
BibRef
Su, Z.Y.[Zheng-Yu],
Zeng, W.[Wei],
Shi, R.[Rui],
Wang, Y.L.[Ya-Lin],
Sun, J.[Jian],
Gu, X.F.[Xian-Feng],
Area Preserving Brain Mapping,
CVPR13(2235-2242)
IEEE DOI
1309
BibRef
Quachtran, B.,
Hamilton, R.,
Scalzo, F.,
Detection of Intracranial Hypertension using Deep Learning,
ICPR16(2491-2496)
IEEE DOI
1705
Convolution, Convolutional codes, Hypertension,
Iterative closest point algorithm, Machine learning,
Neural networks, Training
BibRef
Scalzo, F.[Fabien],
Xu, P.[Peng],
Bergsneider, M.[Marvin],
Hu, X.[Xiao],
Random Subwindows for Robust Peak Recognition in Intracranial Pressure
Signals,
ISVC08(I: 370-380).
Springer DOI
0812
BibRef
Przybyszewski, A.W.[Andrzej W.],
Rough Set Theory of Pattern Classification in the Brain,
PReMI07(295-303).
Springer DOI
0712
BibRef
Ponce, E.[Ernesto],
Ponce, D.[Daniel],
FEM 2D Analysis of Mild Traumatic Brain Injury on a Child,
PReMI07(186-191).
Springer DOI
0712
BibRef
Yang, F.[Faguo],
Kruggel, F.[Frithjof],
Optimization Algorithms for Labeling Brain Sulci Based on Graph
Matching,
MMBIA07(1-7).
IEEE DOI
0710
BibRef
Kruggel, F.,
Automatical Adaptation of Anatomical Masks to the Neocortex,
CVRMed95(XX-YY)
BibRef
9500
Favreau, J.M.[Jean-Marie],
Hemm, S.[Simone],
Nuti, C.[Christophe],
Coste, J.[Jerome],
Barra, V.[Vincent],
Lemaire, J.J.[Jean-Jacques],
A Tool for Topographic Analysis of Electrode Contacts in Human Cortical
Stimulation,
MMBIA07(1-6).
IEEE DOI
0710
BibRef
Vázquez, F.[Fernando],
Gómez, P.[Pilar],
Automatic Construction of Fuzzy Rules for Modelling and Prediction of
the Central Nervous System,
IbPRIA07(I: 443-450).
Springer DOI
0706
BibRef
Ólafsdóttir, H.[Hildur],
Hansen, M.S.[Michael Sass],
Sjöstrand, K.[Karl],
Darvann, T.A.[Tron A.],
Hermann, N.V.[Nuno V.],
Oubel, E.[Estanislao],
Ersbøll, B.K.[Bjarne K.],
Larsen, R.[Rasmus],
Frangi, A.F.[Alejandro F.],
Larsen, P.[Per],
Perlyn, C.A.[Chad A.],
Morriss-Kay, G.M.[Gillian M.],
Kreiborg, S.[Sven],
Sparse Statistical Deformation Model for the Analysis of Craniofacial
Malformations in the Crouzon Mouse,
SCIA07(112-121).
Springer DOI
0706
BibRef
Hansen, M.S.[Michael S.],
Hansen, M.F.[Mads F.],
Larsen, R.[Rasmus],
Diffeomorphic Statistical Deformation Models,
NRTL07(1-8).
IEEE DOI
0710
BibRef
Battiato, S.[Sebastiano],
Farinella, G.M.[Giovanni M.],
Impoco, G.[Gaetano],
Garretto, O.[Orazio],
Privitera, C.[Carmelo],
Cortical Bone Classification by Local Context Analysis,
MIRAGE07(567-578).
Springer DOI
0703
BibRef
Avants, B.B.[Brian B.],
Hurt, H.,
Giannetta, J.,
Epstein, C.L.,
Shera, D.,
Wang, J.,
Gee, J.C.,
Analyzing Effects of Intra-Uterine Cocaine Exposure on Adolescent Brain
Structure with Symmetric Diffeomorphisms,
MMBIA06(94).
IEEE DOI
0609
BibRef
Cathier, P.[Pascal],
Mangin, J.F.[Jean-Francois],
Registration of Cortical Connectivity Matrices,
MMBIA06(66).
IEEE DOI
0609
BibRef
Mei, L.[Lin],
Figl, M.[Michael],
Rueckert, D.[Daniel],
Darzi, A.[Ara],
Edwards, P.[Philip],
Statistical shape modelling: How many modes should be retained?,
MMBIA08(1-8).
IEEE DOI
0806
BibRef
Rao, A.[Anil],
Cootes, T.F.[Tim F.],
Rueckert, D.[Daniel],
Hierarchical Statistical Shape Analysis and Prediction of Sub-Cortical
Brain Structures,
MMBIA06(75).
IEEE DOI
0609
BibRef
d'Haese, P.F.[Pierre-François],
Pallavaram, S.[Srivatsan],
Yu, H.[Hong],
Spooner, J.[John],
Konrad, P.E.[Peter E.],
Dawant, B.M.[Benoit M.],
Deformable Physiological Atlas-Based Programming of Deep Brain
Stimulators: A Feasibility Study,
WBIR06(144-150).
Springer DOI
0607
BibRef
He, Y.[Ying],
Li, X.[Xin],
Gu, X.F.[Xian-Feng],
Qin, H.[Hong],
Brain Image Analysis Using Spherical Splines,
EMMCVPR05(633-644).
Springer DOI
0601
BibRef
Lin, H.J.[H. Jill],
Ruiz-Correa, S.[Salvador],
Sze, R.W.[Raymond W.],
Cunningham, M.L.[Michael L.],
Speltz, M.L.[Matthew L.],
Hing, A.V.[Anne V.],
Shapiro, L.G.[Linda G.],
Efficient Symbolic Signatures for Classifying Craniosynostosis Skull
Deformities,
CVBIA05(302-313).
Springer DOI
0601
BibRef
Yue, W.N.[Wei-Ning],
Yin, D.[Dali],
Li, C.J.[Cheng-Jun],
Wang, G.P.[Guo-Ping],
Xu, T.M.[Tian-Min],
Locating Large-Scale Craniofacial Feature Points on X-ray Images for
Automated Cephalometric Analysis,
ICIP05(II: 1246-1249).
IEEE DOI
0512
BibRef
Takeda, T.,
Wu, J.[Jin],
Lwin, T.T.[Thet-Thet],
Sunaguchi, N.,
Yuasa, T.,
Hyodo, K.,
Dilmanian, F.A.,
Minami, M.,
Akatsuka, T.,
Cerebral Perfusion Imaging of Live Mice by Fluorescent X-Ray CT,
ICIP05(III: 593-596).
IEEE DOI
0512
BibRef
Snoussi, H.,
Calhoun, V.D.,
Bayesian Blind Source Separation for Brain Imaging,
ICIP05(III: 581-584).
IEEE DOI
0512
BibRef
Kovalev, V.A.,
A new method for quantification of age-related brain changes,
ICPR04(III: 770-773).
IEEE DOI
0409
BibRef
Chung, M.K.,
Worsley, K.J.,
Robbins, S.,
Evans, A.C.,
Tensor-based brain surface modeling and analysis,
CVPR03(I: 467-473).
IEEE DOI
0307
BibRef
Wu, C.C.[Cheng-Chi],
Chen, C.Y.[Chao-Yu],
Chang, H.M.[Hsiu-Ming],
Chiang, A.S.[Ann-Shyn],
Chen, Y.C.[Yung-Chang],
Improved Two-Level Model Averaging Techniques in Drosophila Brain
Modeling,
PSIVT09(921-931).
Springer DOI
0901
BibRef
Chen, Y.C.[Ying-Cheng],
Chen, Y.C.[Yung-Chang],
Chiang, A.S.[Ann-Shyn],
Two-level model averaging techniques in drosophila brain imaging,
ICIP02(II: 941-944).
IEEE DOI
0210
BibRef
Pielot, R.,
Scholz, M.,
Obermayer, K.,
Gundelfinger, E.D.,
Hess, A.,
Performance of 3D landmark detection methods for point-based warping in
autoradiographic brain imaging,
Southwest02(269-273).
IEEE Top Reference.
0208
BibRef
Hult, R.[Roger],
Bengtsson, E.[Ewert],
Combined Visualisation of Functional and Anatomical Brain Images,
SCIA01(P-W3A).
0206
BibRef
Gerig, G.,
Styner, M.,
Jones, D.,
Weinberger, D.,
Lieberman, J.,
Shape Analysis of Brain Ventricles Using SPHARM,
MMBIA01(xx-yy).
0110
BibRef
Pielot, R.,
Scholz, M.,
Obermayer, K.,
Gundelfinger, E.,
Hess, A.,
3D Edge Detection to Define Landmarks for Point-based Warping in Brain
Imaging,
ICIP01(II: 343-346).
IEEE DOI
0108
BibRef
Pavlidis, I.[Ioannis],
Levine, J.[James],
Baukol, P.[Paulette],
Thermal Image Analysis for Anxiety Detection,
ICIP01(II: 315-318).
IEEE DOI
0108
BibRef
Earlier:
Thermal Imaging for Anxiety Detection,
CVBVS00(104).
IEEE DOI
0006
BibRef
Renault, C.,
Desvignes, M.,
Revenu, M.,
3d Curves Tracking and Its Application to Cortical Sulci Detection,
ICIP00(Vol II: 491-494).
IEEE DOI
0008
BibRef
Gorodnitsky, I.,
Hershey, J.,
A Low-level Cortical Perception Model with Applications to Image
Analysis,
ICIP00(Vol III: 308-311).
IEEE DOI
0008
BibRef
Lundqvist, R.,
Thurfjell, L.,
Pagani, M.,
Jacobsson, H.,
Jonsson, C.,
Larsson, S.,
Wägner, A.,
Bengtsson, E.,
Classification of Functional Patterns in SPECT Brain Scans Based on
Partial Least Squares Analysis,
SCIA99(Biological Applications I).
BibRef
9900
Poxton, D.,
Graham, J.,
Deakin, J.F.W.,
Detecting Asymmetries in Hippocampal Shape and Receptor Distribution using
Statistical Appearance Models and Linear Discriminant Analysis,
BMVC98(xx-yy).
BibRef
9800
Slater, R.,
Healey, G.,
Sheu, P.,
Cotman, C.W.,
Su, J.,
Wasserman, A., and
Shankle, R.,
A Machine Vision System for the Automated Classification and Counting of
Neurons in 3-D Brain Tissue Samples,
WACV96(224-229).
IEEE DOI
9609
Abstract:
HTML Version.
BibRef
Hermosillo, G.[Gerardo],
Faugeras, O.D.[Olivier D.],
Gomes, J.[Jose],
Unfolding the Cerebral Cortex Using Level Set Methods,
ScaleSpace99(58-69).
BibRef
9900
Caunce, A., and
Taylor, C.J.,
3D Point Distribution Models of the Cortical Sulci,
ICCV98(402-407).
IEEE DOI
BibRef
9800
Earlier:
BMVC97(xx-yy).
HTML Version.
0209
BibRef
Nowinski, W.L.,
Fang, A.,
Nguyen, B.T.,
Raghavan, R.,
Bryan, R.N.,
Miller, J.,
Talairach-Tournoux / Schaltenbrand-Wahren Based Electronic Brain Atlas
System,
CVRMed95(XX-YY)
BibRef
9500
Lee, T.S.[Tai Sing],
Representational strategy in the visual cortex,
ICIP94(II: 590-594).
IEEE DOI
9411
BibRef
Schwartz, E.L.,
Rojer, A.S.,
Cortical hypercolumns and the topology of random orientation maps,
ICPR94(B:150-155).
IEEE DOI
9410
BibRef
Davis, D.N.,
Taylor, C.J.,
An intelligent visual task system for lateral skull X-ray images,
BMVC90(xx-yy).
PDF File.
9009
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain Tumors, Cortex, Cancer .