12.3.1.5 Region or Contour Invariants, Signatures, Metrics for Matching

Chapter Contents (Back)
Matching, Regions. Contour Matching. Similarity Measures. Shape Signature. Matching, Invariants. Matching, Signature.

Suk, M.S.[Min-Soo], and Kang, H.[Hwanil],
New Measures of Similarity between Two Contours Based on Optimal Bivariate Transforms,
CVGIP(26), No. 2, May 1984, pp. 168-182.
Elsevier DOI Recognize Two-Dimensional Objects. Given two contours, generate the optimal bivariate transform to map between the two. Recognition is based on the match with the least error after the transform has been applied. BibRef 8405

Suk, M.S.[Min-Soo], Cho, T.H.,
An Object-Detection Algorithm Based on the Region-Adjacency Graph,
PIEEE(72), 1984, pp. 985-986. BibRef 8400

Chu, C.[Cecelia], Yang, M.C.K.[Mark C. K.],
Invariant quantities in regression-induced boundaries under a special linear transformation,
PR(20), No. 4, 1987, pp. 403-410.
Elsevier DOI 0309
Find boundaries of ships in radar. BibRef

Xu, J., and Yang, Y.H.,
Generalized Multidimensional Orthogonal Polynomials with Applications to Shape Analysis,
PAMI(12), No. 9, September 1990, pp. 906-913.
IEEE DOI Contour descriptions in terms of orthogonal polynomials (see e.g. Fourier), Occlusions? BibRef 9009

Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., and Mitchell, J.S.B.,
An Efficiently Computable Metric for Comparing Polygonal Shapes,
PAMI(13), No. 3, March 1991, pp. 209-216.
IEEE DOI Various global contour metrics and the effects of noise and variations. BibRef 9103

Stafford, R.L.[Robert L.],
A model building approach to property measurement in black and white pictures,
CGIP(2), No. 1, August 1973, pp. 39-59.
Elsevier DOI 0501
Binary image into a tree representing contours. BibRef

Blumenkrans, A.[Alejandro],
Two-Dimensional Object Recognition Using a Two-Dimensional Polar Transform,
PR(24), No. 9, 1991, pp. 879-890.
Elsevier DOI BibRef 9100

Pizlo, Z.[Zygmunt], Rosenfeld, A.[Azriel],
Recognition of Planar Shapes from Perspective Images Using Contour-Based Invariants,
CVGIP(56), No. 3, November 1992, pp. 330-350.
Elsevier DOI Invariants. BibRef 9211

Bruckstein, A.M., Katzir, N., Lindenbaum, M., and Proat, M.,
Similarity-Invariant Signatures for Partially Occluded Planar Shapes,
IJCV(7), No. 3, April 1992, pp. 271-285.
Springer DOI Generate signatures for matching -- locate an arbitrary number of points on a smooth curve, in a similarity invariant way. BibRef 9204

Bruckstein, A.M.[Alfred M.], Holt, R.J.[Robert J.], Netravali, A.N.[Arun N.], Richardson, T.J.[Thomas J.],
Invariant Signatures for Planar Shape Recognition under Partial Occlusion,
CVGIP(58), No. 1, July 1993, pp. 49-65.
DOI Link BibRef 9307
Earlier: ICPR92(I:108-112).
IEEE DOI Differential invariants.
See also Using Line Correspondences in Invariant Signatures for Curve Recognition. BibRef

Bruckstein, A.M.[Alfred M.],
Invariant Recognition and Processing of Planar Shapes,
VF01(3 ff.).
Springer DOI 0209
BibRef

Holt, R.J.[Robert J.], Netravali, A.N.[Arun N.],
Differential and Semi-differential Invariant Signature Functions for Space Curve Recognition,
IJIST(5), No. 3, Fall 1994, pp. 189-198. BibRef 9400

Holt, R.J.[Robert J.], Netravali, A.N.[Arun N.],
Using Line Correspondences in Invariant Signatures for Curve Recognition,
IVC(11), No. 7, September 1993, pp. 440-446.
Elsevier DOI Invariant signatures of curves.
See also Invariant Signatures for Planar Shape Recognition under Partial Occlusion. BibRef 9309

Bruckstein, A.M., Netravali, A.N.,
ORE Differential Invariants of Planar Curves and Recognizing Partially Occluded Planar Shapes,
AMAI(13), No. 3-4, 1995, pp. 227-250. BibRef 9500
Earlier:
Differential Invariants of Planar Curves and Recognizing Partially Occluded Shapes,
VF91(89-98). Invariants under perspective and affine transformations. BibRef

Parui, S.K., and Dutta Majumdar, D.,
A New Definition of Shape Similarity,
PRL(1), No. 1, 1982, pp. 37-42. BibRef 8200

Parui, S.K., and Dutta Majumdar, D.,
Shape Similarity Measures for Open Curves,
PRL(1), 1983, pp. 129-134. BibRef 8300

Parui, S.K., Sarma, S.E., and Dutta Majumdar, D.,
How to Discriminate Shapes Using the Shape Vector,
PRL(4), 1986, pp. 201-204. BibRef 8600

Schwartz, J.T., and Sharir, M.,
Identification of Partially Obscured Objects in Two and Three Dimensions by Matching Noisy Characteristic Curves,
IJRR(6), No. 2, 1987, pp. 29-44. Partial Curves. 2-D curves in a plane. BibRef 8700

Bastuscheck, C.M., Schonberg, E., Schwartz, J.T., Sharir, M.,
Object Recognition by Three-Dimensional Curve Matching,
IJIS(1), 1986, pp. 105-132. BibRef 8600

Kalvin, A., Schonberg, E., Schwartz, J.T., and Sharir, M.[Micha],
Two-Dimensional Model-Based, Boundary Matching Using Footprints,
IJRR(5), No. 4, Winter 1986, pp. 38-55. Matching based on curve segments. Works on partial curves. BibRef 8600

Barequet, G.[Gill], Sharir, M.[Micha],
Partial Surface and Volume Matching in Three Dimensions,
PAMI(19), No. 9, September 1997, pp. 929-948.
IEEE DOI 9710
BibRef
Earlier: ICPR94(B:610-614).
IEEE DOI Rotate one object (each represented as the set of points) and find the translation to find the best fit. BibRef

Barequet, G.[Gill],
Using geometric hashing to repair CAD objects,
CalSE(4), No. 4, October 1997, pp. 22-28. BibRef 9710

Das, M., Paulik, M.J., and Loh, N.K.,
A Bivariate Autoregressive Modeling Technique for Analysis and Classification of Planar Shapes,
PAMI(12), No. 1, January 1990, pp. 97-103.
IEEE DOI BibRef 9001

Rosin, P.L.[Paul L.],
Multiscale Representation and Matching of Curves Using Codons,
GMIP(55), No. 4, July 1993, pp. 286-yy. BibRef 9307

Åström, K.,
Fundamental Limitations On Projective Invariants Of Planar Curves,
PAMI(17), No. 1, January 1995, pp. 77-81.
IEEE DOI Evaluation, Invariants. All curves map arbitrarily close to a circle by projective transformations BibRef 9501

Moons, T., Pauwels, E.J., Van Gool, L.J., Oosterlinck, A.,
Foundations Of Semi-Differential Invariants,
IJCV(14), No. 1, January 1995, pp. 25-47.
Springer DOI
See also Recognition Of Planar Shapes Under Affine Distortion. BibRef 9501

Van Gool, L.J., Kempenaers, P., and Oosterlinck, A.,
Recognition and Semi-Differential Invariants,
CVPR91(454-460). Mostly 2-D shapes.
IEEE DOI BibRef 9100

Garcia, J.A., Fdez-Valdivia, J., Molina, R.,
A Method for Invariant Pattern-Recognition Using the Scale-Vector Representation of Planar Curves,
SP(43), No. 1, April 1995, pp. 39-53. BibRef 9504

Garcia, J.A., Fdez-Valdivia, J.,
Representing Planar Curves by Using a Scale Vector,
PRL(15), No. 9, September 1994, pp. 937-942. BibRef 9409

Garcia, J.A., Fdez-Valdivia, J., Garrido, A.,
A Scale-Vector Approach For Edge-Detection,
PRL(16), No. 6, June 1995, pp. 637-646. BibRef 9506

Fdez-Valdivia, J., Garcia, J.A., Molina, R., de la Blanca, N.P.[N. Perez],
A New Approach to 2D Shapes Characterization,
SCIA95(XX-YY). BibRef 9500

Hong, D.Z.[De-Zhong], Sarkodie-Gyan, T.[Thompson], Campbell, A.W.[Andrew W.], Yan, Y.[Yong],
A Prototype Indexing Approach to 2-D Object Description and Recognition,
PR(31), No. 6, June 1998, pp. 699-725.
Elsevier DOI 9806
BibRef

Heijmans, H.J.A.M.[Henk J.A.M.], Tuzikov, A.V.[Alexander V.],
Similarity and Symmetry Measures for Convex Shapes Using Minkowski Addition,
PAMI(20), No. 9, September 1998, pp. 980-993.
IEEE DOI 9809
BibRef
Earlier: A2, A1:
Comparing convex shapes using Minkowski addition,
CAIP97(138-145).
Springer DOI 9709
Use region based measures. Invariance under most viewing changes is possible. BibRef

Tuzikov, A.V.[Alexander V.], Roerdink, J.B.T.M.[Jos B.T.M.], Heijmans, H.J.A.M.[Henk J.A.M.],
Similarity measures for convex polyhedra based on Minkowski addition,
PR(33), No. 6, June 2000, pp. 979-995.
Elsevier DOI 0004
BibRef

Tarel, J.P.[Jean-Philippe], Cooper, D.B.[David B.],
The Complex Representation of Algebraic Curves and Its Simple Exploitation for Pose Estimation and Invariant Recognition,
PAMI(22), No. 7, July 2000, pp. 663-674.
IEEE DOI And Full paper:
HTML Version.
PS File. 0008
BibRef

Tarel, J.P.[Jean-Philippe], Cooper, D.B.[David B.],
A New Complex Basis for Implicit Polynomial Curves and its Simple Exploitation for Pose Estimation and Invariant Recognition,
CVPR98(111-117).
IEEE DOI
HTML Version. And:
PS File. BibRef 9800

Tarel, J.P.[Jean-Philippe], Wolovich, W.A.[William A.], Cooper, D.B.[David B.],
Covariant-Conics Decomposition of Quartics for 2D Shape Recognition and Alignment,
JMIV(19), No. 3, November 2003, pp. 255-273.
DOI Link 0310
BibRef
Earlier:
Covariant Conics Decomposition of Quartics for 2D Object Recognition and Affine Alignment,
ICIP98(II: 818-822).
IEEE DOI
HTML Version.
PS File. 9810
BibRef

Khalil, M.I.[Mahmoud I.], Bayoumi, M.M.[Mohamed M.],
A Dyadic Wavelet Affine Invariant Function for 2D Shape Recognition,
PAMI(23), No. 10, October 2001, pp. 1152-1164.
IEEE DOI 0110
First derive an invariant using 2 dyadic levels, use this to derive another with 6 dyadic levels. BibRef

Belongie, S.J.[Serge J.], Malik, J.[Jitendra], Puzicha, J.[Jan],
Shape Matching and Object Recognition Using Shape Contexts,
PAMI(24), No. 4, April 2002, pp. 509-522.
IEEE DOI 0204
BibRef
Earlier:
Matching Shapes,
ICCV01(I: 454-461).
IEEE DOI Or:
PDF File. 0106
Award, Helmholtz Prize. Based on description in Thompson (
See also On Growth and Form. ). Related to deformable templates. Landmark based matching of contours. BibRef

Belongie, S.J., Malik, J.,
Matching with shape contexts,
CBAIVL00(20-26).
PS File. 0008
BibRef

Mori, G.[Greg], Belongie, S.J.[Serge J.], Malik, J.[Jitendra],
Efficient Shape Matching Using Shape Contexts,
PAMI(27), No. 11, November 2005, pp. 1832-1837.
IEEE DOI 0510
BibRef
Earlier:
Shape Contexts Enable Efficient Retrieval of Similar Shapes,
CVPR01(I:723-730).
IEEE DOI Or:
PDF File. 0110
Prune search space for similar shapes. Retrieve shapes.
See also Recovering 3D Human Body Configurations Using Shape Contexts. BibRef

Sánchez, G.[Gemma], Lladós, J.[Josep], Tombre, K.[Karl],
A mean string algorithm to compute the average among a set of 2D shapes,
PRL(23), No. 1-3, January 2002, pp. 203-213.
Elsevier DOI 0201
BibRef

Tagare, H.D.[Hemant D.], O'Shea, D.[Donal], Groisser, D.[David],
Non-Rigid Shape Comparison of Plane Curves in Images,
JMIV(16), No. 1, January 2002, pp. 57-68.
DOI Link 0202
BibRef

Tagare, H.D.[Hemant D.], Groisser, D.[David], Skrinjar, O.[Oskar],
Symmetric Non-Rigid Registration: A Geometric Theory and Some Numerical Techniques,
JMIV(34), No. 1, May 2009, pp. xx-yy.
Springer DOI 0905
BibRef
Earlier:
A Geometric Theory of Symmetric Registration,
MMBIA06(73).
IEEE DOI 0609
BibRef

Tagare, H.D.[Hemant D.], O'Shea, D.[Don], Rangarajan, A.[Anand],
A Geometric Criterion for Shape-Based Non-Rigid Correspondence,
ICCV95(434-439).
IEEE DOI Match curves. BibRef 9500

Zheng, X.Q.[Xi-Qiang], Chen, Y.M.[Yun-Mei], Groisser, D.[David], Wilson, D.[David],
Some New Results on Non-rigid Correspondence and Classification of Curves,
EMMCVPR05(473-489).
Springer DOI 0601
BibRef

Borkowski, J., Matuszewski, B.J., Mroczka, J., Shark, L.K.,
Geometric matching of circular features by least squares fitting,
PRL(23), No. 7, May 2002, pp. 885-894.
Elsevier DOI 0203
BibRef

Mustafa, A.A.Y.[Adnan A.Y.],
Fuzzy shape matching with boundary signatures,
PRL(23), No. 12, October 2002, pp. 1473-1482.
Elsevier DOI 0206
BibRef
Earlier:
Matching Incomplete Objects Using Boundary Signatures,
VF01(563 ff.).
Springer DOI 0209
BibRef

Tsang, P.W.M.,
Enhancement of a genetic algorithm for affine invariant planar object shape matching using the migrant principle,
VISP(150), No. 2, April 2003, pp. 107-113.
IEEE Abstract. 0307
BibRef

da Fontoura Costa, L.[Luciano], dos Reis, S.F.[Sérgio F.], Arantes, R.A.T.[Renata A. T.], Alves, A.C.R.[Ana C. R.], Mutinari, G.[Gian_Carlo],
Biological shape analysis by digital curvature,
PR(37), No. 3, March 2004, pp. 515-524.
Elsevier DOI 0401
The digital curvature provides invariance to translations, rotations, local shape deformations, and is easily made tolerant to scaling. BibRef

Bicego, M.[Manuele], Murino, V.[Vittorio],
Investigating Hidden Markov Models Capabilities in 2D Shape Classification,
PAMI(26), No. 2, February 2004, pp. 281-286.
IEEE Abstract. 0402
BibRef
Earlier:
2D shape recognition by hidden Markov models,
CIAP01(20-24).
IEEE DOI 0210
HMM for classifing planar models.
See also sequential pruning strategy for the selection of the number of states in hidden Markov models, A. BibRef

Bicego, M.[Manuele], Trudda, A.[Alessandro],
2D Shape Classification Using Multifractional Brownian Motion,
SSPR08(906-916).
Springer DOI 0812
BibRef

Bicego, M.[Manuele], Torres Martins, A.F.[Andre Filipe], Murino, V.[Vittorio], Aguiar, P.M.Q.[Pedro M.Q.], Figueiredo, M.A.T.[Mario A.T.],
2D Shape Recognition Using Information Theoretic Kernels,
ICPR10(25-28).
IEEE DOI 1008
BibRef

Bicego, M.[Manuele], Lovato, P.[Pietro],
A bioinformatics approach to 2D shape classification,
CVIU(145), No. 1, 2016, pp. 59-69.
Elsevier DOI 1604
BibRef
Earlier:
2D shape recognition using biological sequence alignment tools,
ICPR12(1359-1362).
WWW Link. 1302
BibRef
And: A2, A1:
2D Shapes Classification Using BLAST,
SSSPR12(273-281).
Springer DOI 1211
2D shape classification BibRef

Zhu, Y., Colchester, A.C.F.,
Plane curve matching under affine transformations,
VISP(151), No. 1, February 2004, pp. 9-19.
IEEE Abstract. 0403
Approximate projective transforms by affine. Use curve invariants. Refine with ICP. BibRef

Ha, V.H.S., Moura, J.M.F.,
Affine-Permutation Invariance of 2-D Shapes,
IP(14), No. 11, November 2005, pp. 1687-1700.
IEEE DOI 0510
Invariant to affine and permutations of feature points along the contours. BibRef

Ghosh, A.[Anarta], Petkov, N.[Nicolai],
Robustness of Shape Descriptors to Incomplete Contour Representations,
PAMI(27), No. 11, November 2005, pp. 1793-1804.
IEEE DOI 0510
Use Shape Context and distance multiset.
See also Distance sets for shape filters and shape recognition. BibRef

Gavrila, D.M.[Dariu M.],
A Bayesian, Exemplar-Based Approach to Hierarchical Shape Matching,
PAMI(29), No. 8, August 2007, pp. 1408-1421.
IEEE DOI 0707
Pairwise measure between shapes. BibRef

Sohel, F.A.[Ferdous A.], Karmakar, G.C.[Gour C.], Dooley, L.S.[Laurence S.], Arkinstall, J.R.[John R.],
Quasi-Bezier curves integrating localised information,
PR(41), No. 2, February 2008, pp. 531-542.
Elsevier DOI 0711
Vertex-based shape coding; Image processing; Video processing; Bezier curve BibRef

Sohel, F.A.[Ferdous A.], Karmakar, G.C.[Gour C.], Dooley, L.S.[Laurence S.],
Dynamic Bezier curves for variable rate-distortion,
PR(41), No. 10, October 2008, pp. 3153-3165.
Elsevier DOI 0808
Vertex-based shape coding; Image processing; Video processing; Bezier curves BibRef

Zuliani, M., Bertelli, L., Kenney, C.S., Chandrasekaran, S., Manjunath, B.S.,
Drums, curve descriptors and affine invariant region matching,
IVC(26), No. 3, 3 March 2008, pp. 347-360.
Elsevier DOI 0801
Curve descriptors; Curve matching; Helmoholtz equation; Affine invariance BibRef

Bertelli, L.[Luca], Zuliani, M.[Marco], Manjunath, B.S.,
Pairwise Similarities across Images for Multiple View Rigid/Non-Rigid Segmentation and Registration,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Zuliani, M., Kenney, C.S., Bhagavathy, S., Manjunath, B.S.,
Drums and Curve Descriptors,
BMVC04(xx-yy).
HTML Version. 0508
based on the solution of Helmholtz's equation. Satisfies MPEG7 constraints. BibRef

Schindler, K.[Konrad], Suter, D.[David],
Object detection by global contour shape,
PR(41), No. 12, December 2008, pp. 3736-3748.
Elsevier DOI 0810
Object category detection; Contour matching; Probabilistic shape distance; Region grouping BibRef

Xu, C.J.[Chun-Jing], Liu, J.Z.[Jian-Zhuang], Tang, X.[Xiaoou],
2D Shape Matching by Contour Flexibility,
PAMI(31), No. 1, January 2009, pp. 180-186.
IEEE DOI 0812
Contour flexibility as a descriptor. Deformable potential at each point. BibRef

Zhou, L., Hartley, R., Wang, L., Lieby, P.[Paulette], Barnes, N.M.[Nick M.],
Identifying Anatomical Shape Difference by Regularized Discriminative Direction,
MedImg(28), No. 6, June 2009, pp. 937-950.
IEEE DOI 0906
BibRef

Xiao, P.D.[Peng-Dong], Barnes, N.M.[Nick M.], Caetano, T.S.[Tiberio S.],
3-D Shape Matching and Non-Rigid Correspondence for Hippocampi Based on Markov Random Fields,
IP(27), No. 3, March 2018, pp. 1271-1281.
IEEE DOI 1801
Belief propagation, Clamps, Markov random fields, Minimization, Shape, Standards, 3D shape matching, sparse update BibRef

Xiao, P.D.[Peng-Dong], Barnes, N.M.[Nick M.], Caetano, T.S.[Tiberio S.], Lieby, P.[Paulette],
An MRF and Gaussian Curvature Based Shape Representation for Shape Matching,
MultiView07(1-7).
IEEE DOI 0706
BibRef

Shaw, D.[David], Barnes, N.M.[Nick M.],
Perspective Invariant Angle Ordering,
DICTA09(256-263).
IEEE DOI 0912
BibRef

Musso, E.[Emilio], Nicolodi, L.[Lorenzo],
Invariant Signatures of Closed Planar Curves,
JMIV(35), No. 1, September 2009, pp. xx-yy.
Springer DOI 0907
BibRef

Liu, X.W.[Xiu-Wen], Shi, Y.G.[Yong-Gang], Dinov, I.D.[Ivo D.], Mio, W.[Washington],
A Computational Model of Multidimensional Shape,
IJCV(89), No. 1, August 2010, pp. xx-yy.
Springer DOI 1004
extend Riemannina models of curves for general topology. Use in brain mapping.
See also Hamilton-Jacobi Skeleton on Cortical Surfaces. BibRef

Dong, B.[Bin], Mao, Y.[Yu], Dinov, I.D.[Ivo D.], Tu, Z.W.[Zhuo-Wen], Shi, Y.G.[Yong-Gang], Wang, Y.L.[Ya-Lin], Toga, A.W.[Arthur W.],
Wavelet-Based Representation of Biological Shapes,
ISVC09(I: 955-964).
Springer DOI 0911
BibRef

Larabi, S.[Slimane],
Textual description of shapes,
JVCIR(20), No. 8, November 2009, pp. 563-584.
Elsevier DOI 0911
Shape; Outline shape; Part; Description; XML language; Similarity; Shape retrieval; Image coding BibRef

Larabi, S.[Slimane], Bouagar, S.[Saliha], Trespaderne, F.M.[Felix M.], Lopez de la Fuente, E.[Eusebio],
LWDOS: Language for Writing Descriptors of Outline Shapes,
SCIA03(1014-1021).
Springer DOI 0310
BibRef

Aouat, S.[Saliha], Larabi, S.[Slimane],
Matching Descriptors Of Noisy Outline Shapes,
IJIG(10), No. 3, July 2010, pp. 299-325.
DOI Link 1003
BibRef

Aouat, S.[Saliha], Larabi, S.[Slimane],
Matching Noisy Outline Contours Using a Descriptor Reduction Approach,
ICISP12(370-379).
Springer DOI 1208
BibRef

Aouat, S.[Saliha], Larabi, S.[Slimane],
Shape matching using coarse descriptors,
IJCVR(1), No. 2, 2010, pp. 169-193.
DOI Link 1011
BibRef

Bellili, A.[Asma], Larabi, S.[Slimane],
Image Segmentation by Image Analogies,
CompIMAGE14(143-151).
Springer DOI 1407
BibRef

Bellili, A.[Asma], Larabi, S.[Slimane], Robertson, N.M.[Neil M.],
Outlines of Objects Detection by Analogy,
CAIP13(385-392).
Springer DOI 1308
BibRef
Earlier: A2, A3, Only:
Contour Detection by Image Analogies,
ISVC12(II: 430-439).
Springer DOI 1209
BibRef

Bouagar, S.[Saliha], Larabi, S.[Slimane],
Discriminative outlines parts for shape retrieval,
JVCIR(33), No. 1, 2015, pp. 149-164.
Elsevier DOI 1512
Discriminative BibRef

Shu, X.[Xin], Wu, X.J.[Xiao-Jun],
A novel contour descriptor for 2D shape matching and its application to image retrieval,
IVC(29), No. 4, March 2011, pp. 286-294.
Elsevier DOI 1102
Shape matching; Shape retrieval; Contour points distribution histogram (CPDH); Earth mover's distance (EMD) BibRef

Wang, Z.Z.[Zhao-Zhong], Liang, M.[Min], Li, Y.F.,
Using diagonals of orthogonal projection matrices for affine invariant contour matching,
IVC(29), No. 10, September 2011, pp. 681-692.
Elsevier DOI 1110
Affine invariance; Contour matching; Shape descriptor; Orthogonal projection matrix; Perturbation analysis; Polar decomposition BibRef

Hickman, M.S.[Mark S.],
Euclidean Signature Curves,
JMIV(43), No. 3, July 2012, pp. 206-213.
WWW Link. 1204
Two planar curves that are related by a Euclidean transformation possess the same signature curve.
See also Invariant Signatures of Closed Planar Curves. BibRef

Zhao, Y.J.[Yan-Jun], Belkasim, S.,
Multiresolution Fourier Descriptors for Multiresolution Shape Analysis,
SPLetters(19), No. 10, October 2012, pp. 692-695.
IEEE DOI 1209
BibRef

Brooks, E.B., Thomas, V.A., Wynne, R.H., Coulston, J.W.,
Fitting the Multitemporal Curve: A Fourier Series Approach to the Missing Data Problem in Remote Sensing Analysis,
GeoRS(50), No. 9, September 2012, pp. 3340-3353.
IEEE DOI 1209
BibRef

Calder, J.[Jeff], Esedoglu, S.[Selim],
On the Circular Area Signature for Graphs,
SIIMS(5), No. 4, 2012, pp. 1355-1379.
DOI Link 1211
curve representations. Integral invariant signatures. BibRef

Gual-Arnau, X., Herold-García, S., Simó, A.,
Shape description from generalized support functions,
PRL(34), No. 6, 15 April 2013, pp. 619-626.
Elsevier DOI 1303
Contour set functions; Integral geometry; Shape description; Support function; Shape retrieval BibRef

Fu, H.J.[Hui-Jing], Tian, Z.[Zheng], Ran, M.H.[Mao-Hua], Fan, M.[Ming],
Novel affine-invariant curve descriptor for curve matching and occluded object recognition,
IET-CV(7), No. 4, 2013, pp. 279-292.
DOI Link 1307
Curve description signature. BibRef

Zheng, D.C.[Dan-Chen], Han, M.[Min],
Shape retrieval and recognition based on fuzzy histogram,
JVCIR(24), No. 7, 2013, pp. 1009-1019.
Elsevier DOI 1309
Shape matching BibRef

Li, Y.L.[Yue-Long], Feng, J.F.[Ju-Fu], Meng, L.[Li], Wu, J.G.[Ji-Gang],
Sparse Representation Shape Models,
JMIV(48), No. 1, January 2014, pp. 83-91.
Springer DOI 1402
BibRef
And: Erratum: JMIV(48), No. 1, January 2014, pp. 92.
WWW Link.
Springer DOI 1402
Deformable shape model, Sparse Representation Shape Models (SRSM). For faces. BibRef

Abdel-Kader, R.F.[Rehab F.], Ramadan, R.M.[Rabab M.], Zaki, F.W.[Fayez W.], El-Sayed, E.[Emad],
A boundary-based approach to shape orientability using particle swarm optimization,
SIViP(8), No. 4, May 2014, pp. 779-788.
Springer DOI 1404
BibRef

Duan, H.B.[Hai-Bin], Gan, L.[Lu],
Elitist Chemical Reaction Optimization for Contour-Based Target Recognition in Aerial Images,
GeoRS(53), No. 5, May 2015, pp. 2845-2859.
IEEE DOI 1502
Contour matching. artificial satellites BibRef

Janan, F.[Faraz], Brady, M.[Michael],
Shape Description and Matching Using Integral Invariants on Eccentricity Transformed Images,
IJCV(113), No. 2, June 2015, pp. 92-112.
Springer DOI 1506
Occluded and noisy shapes. Boundary signature and global shape measures. BibRef

Hu, D.[Dameng], Huang, W.G.[Wei-Guo], Yang, J.Y.[Jian-Yu], Shang, L.[Li], Zhu, Z.[Zhongkui],
Shape matching and object recognition using common base triangle area,
IET-CV(9), No. 5, 2015, pp. 769-778.
DOI Link 1511
computer vision BibRef

Zhu, Z.J.[Zhong-Jie], Wang, Y.E.[Yu-Er], Jiang, G.Y.[Gang-Yi],
Highly efficient contour-based predictive shape coding,
PRL(65), No. 1, 2015, pp. 131-136.
Elsevier DOI 1511
Image coding BibRef

Jia, Q.[Qi], Fan, X.[Xin], Liu, Y.[Yu], Li, H.J.[Hao-Jie], Luo, Z.X.[Zhong-Xuan], Guo, H.[He],
Hierarchical projective invariant contexts for shape recognition,
PR(52), No. 1, 2016, pp. 358-374.
Elsevier DOI 1601
Shape descriptor BibRef

Huang, W.[Wen], Gallivan, K.A.[Kyle A.], Srivastava, A.[Anuj], Absil, P.A.[Pierre-Antoine],
Riemannian Optimization for Registration of Curves in Elastic Shape Analysis,
JMIV(54), No. 3, March 2016, pp. 320-343.
Springer DOI 1604
BibRef

Huang, W.[Wen], You, Y.Q.[Ya-Qing], Gallivan, K.A.[Kyle A.], Absil, P.A.[Pierre-Antoine],
Karcher Mean in Elastic Shape Analysis,
DIFF-CV15(xx-yy).
DOI Link 1601
BibRef

Yang, J.Y.[Jian-Yu], Wang, H.X.[Hong-Xing], Yuan, J.S.[Jun-Song], Li, Y.F.[You-Fu], Liu, J.Y.[Jian-Yang],
Invariant multi-scale descriptor for shape representation, matching and retrieval,
CVIU(145), No. 1, 2016, pp. 43-58.
Elsevier DOI 1604
Invariant descriptor BibRef

Xu, H.R.[Hao-Ran], Yang, J.Y.[Jian-Yu], Yuan, J.S.[Jun-Song],
Invariant multi-scale shape descriptor for object matching and recognition,
ICIP16(644-648)
IEEE DOI 1610
Decision support systems BibRef

Wu, G.[Gang], Zhang, Y.C.[Yan-Chun],
A Novel Fractional Implicit Polynomial Approach for Stable Representation of Complex Shapes,
JMIV(55), No. 1, May 2016, pp. 89-104.
Springer DOI 1604
BibRef

Roussillon, P.[Pierre], Glaunès, J.A.[Joan Alexis],
Kernel Metrics on Normal Cycles and Application to Curve Matching,
SIIMS(9), No. 4, 2016, pp. 1991-2038.
DOI Link 1612
Related to:
See also Varifold Representation of Nonoriented Shapes for Diffeomorphic Registration, The. BibRef

Bauer, M.[Martin], Bruveris, M.[Martins], Harms, P.[Philipp], Møller-Andersen, J.[Jakob],
A Numerical Framework for Sobolev Metrics on the Space of Curves,
SIIMS(10), No. 1, 2017, pp. 47-73.
DOI Link 1704
BibRef
Earlier:
Second Order Elastic Metrics on the Shape Space of Curves,
DIFF-CV15(xx-yy).
DOI Link 1601

See also Elastic Shape Analysis of Surfaces with Second-Order Sobolev Metrics: A Comprehensive Numerical Framework. BibRef

Bauer, M.[Martin], Charon, N.[Nicolas], Harms, P.[Philipp], Hsieh, H.W.[Hsi-Wei],
A Numerical Framework for Elastic Surface Matching, Comparison, and Interpolation,
IJCV(129), No. 8, August 2021, pp. 2425-2444.
Springer DOI 2108
BibRef

Liu, H.M.[Hong-Min], Chen, L.[Lulu], Wang, Z.H.[Zhi-Heng], Huo, Z.Q.[Zhan-Qiang],
GOCD: Gradient Order Curve Descriptor,
IEICE(E100-D), No. 12, December 2017, pp. 2973-2983.
WWW Link. 1712
Global and local contour descriptors. BibRef

Chen, Z.L.[Zhan-Long], Zhu, R.R.[Rong-Rong], Xie, Z.[Zhong], Wu, L.[Liang],
Hierarchical Model for the Similarity Measurement of a Complex Holed-Region Entity Scene,
IJGI(6), No. 12, 2017, pp. xx-yy.
DOI Link 1801
sets of random region with holes in GIS. BibRef

Giangreco-Maidana, A.J.[Alejandro J.], Legal-Ayala, H.[Horacio], Schaerer, C.E.[Christian E.], Villamayor-Venialbo, W.[Waldemar],
Contour-Point Signature Shape Descriptor for Point Correspondence,
IJIG(18), No. 02, 2018, pp. 1850007.
DOI Link 1804
points selected from the outer contours of two arbitrary shapes. BibRef

Chen, Z.L.[Zhan-Long], Ma, X.C.[Xiao-Chuan], Wu, L.[Liang], Xie, Z.[Zhong],
An Intuitionistic Fuzzy Similarity Approach for Clustering Analysis of Polygons,
IJGI(8), No. 2, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Wang, H.K.[Hong-Kui], Yu, L.[Li], Yin, H.B.[Hai-Bing], Li, T.S.[Tian-Song], Wang, S.W.[Sheng-Wei],
An improved DCT-based JND estimation model considering multiple masking effects,
JVCIR(71), 2020, pp. 102850.
Elsevier DOI 2009
Contour. DCT-based JND estimation model, Contrast masking, Disorderly concealment effect BibRef

Elghoul, S.[Sinda], Ghorbel, F.[Faouzi],
Fast global SA(2,R) shape registration based on invertible invariant descriptor,
SP:IC(90), 2021, pp. 116058.
Elsevier DOI 2012
Affine invariant registration, Reconstruction, An invertible set of invariant, Shape retrieval BibRef

Ghorbel, E.[Emna], Ghorbel, F.[Faouzi], Sakly, I.[Ines], M'Hiri, S.[Slim],
Fast blending of planar shapes based on invariant invertible and stable descriptors,
ICPR21(10259-10265)
IEEE DOI 2105
Interpolation, Shape, Databases, Computational modeling, Discrete Fourier transforms, Topology, Planning, Shapes blending, Shape morphing BibRef

Faidi, T.[Taha], Chaieb, F.[Faten], Ghorbel, F.[Faouzi],
A New Multi-resolution Affine Invariant Planar Contour Descriptor,
CIAP15(II:494-505).
Springer DOI 1511
BibRef

Paramarthalingam, A.[Arjun], Thankanadar, M.[Mirnalinee],
Extraction of compact boundary normalisation based geometric descriptors for affine invariant shape retrieval,
IET-IPR(15), No. 5, 2021, pp. 1093-1104.
DOI Link 2106
BibRef

Blandon, J.S., Orozco-Gutierrez, A.A., Alvarez-Meza, A.M.,
An enhanced and interpretable feature representation approach to support shape classification from binary images,
PRL(151), 2021, pp. 348-354.
Elsevier DOI 2110
Shape recognition, Binary images, Bag of contour fragments, Relief, Kernel alignment BibRef

Song, C.X.[Chuan-Xin], Wu, H.[Hanbo], Ma, X.[Xin], Li, Y.[Yibin],
Semantic-embedded similarity prototype for scene recognition,
PR(155), 2024, pp. 110725.
Elsevier DOI Code:
WWW Link. 2408
Scene recognition, Similarity prototype, Semantic knowledge, Label softening, Contrastive loss BibRef


Park, W.[Wonhui], Jin, D.[Dongkwon], Kim, C.S.[Chang-Su],
Eigencontours: Novel Contour Descriptors Based on Low-Rank Approximation,
CVPR22(2657-2665)
IEEE DOI 2210
Training, Approximation algorithms, Pattern recognition, Matrix decomposition, Segmentation, grouping and shape analysis, retrieval BibRef

Liu, Y.[Ying], Rong, Y.[Yi], Gao, Y.S.[Yong-Sheng], Guo, J.S.[Ji-Shan], Xiong, S.W.[Sheng-Wu],
Multi-Scale Piecewise Line Integral Strategy for Structure Integral Transform,
ICIP18(1373-1377)
IEEE DOI 1809
Invariant shape recognition. Shape, Gray-scale, Transforms, Radon, Tools, butterfly identification BibRef

Blandon, J.S., Valencia, C.K., Alvarez, A., Echeverry, J., Alvarez, M.A., Orozco, A.,
Shape Classification Using Hilbert Space Embeddings and Kernel Adaptive Filtering,
ICIAR18(245-251).
Springer DOI 1807
BibRef

Pal, S.[Susovan], Woods, R.P.[Roger P.], Panjiyar, S.[Suchit], Sowell, E.[Elizabeth], Narr, K.L.[Katherine L.], Joshi, S.H.[Shantanu H.],
A Riemannian Framework for Linear and Quadratic Discriminant Analysis on the Tangent Space of Shapes,
Diff-CVML17(726-734)
IEEE DOI 1709
Biology, Measurement, Orbits, Random variables, Shape, Sociology, Space vehicles BibRef

Su, Z.[Zhe], Klassen, E.[Eric], Bauer, M.[Martin],
The Square Root Velocity Framework for Curves in a Homogeneous Space,
Diff-CVML17(680-689)
IEEE DOI 1709
Distortion, Extraterrestrial measurements, Manifolds, Shape, Transforms BibRef

Rolston, L.A.[Laura A.], Cahill, N.D.[Nathan D.],
Interior and Exterior Shape Representations Using the Screened Poisson Equation,
CompIMAGE16(118-131).
Springer DOI 1704
Apply to natural silhouettes and handwritten numerals. BibRef

Hinterstoisser, S.[Stefan], Lepetit, V.[Vincent], Rajkumar, N.[Naresh], Konolige, K.[Kurt],
Going Further with Point Pair Features,
ECCV16(III: 834-848).
Springer DOI 1611
detect 3D objects in point clouds. BibRef

Ilic, V.[Vladimir], Lindblad, J.[Joakim], Sladoje, N.[Nataša],
Signature of a Shape Based on Its Pixel Coverage Representation,
DGCI16(181-193).
WWW Link. 1606
BibRef

Bao, R.[Ruihan], Higa, K.[Kyota], Iwamoto, K.[Kota],
Local Feature Based Multiple Object Instance Identification Using Scale and Rotation Invariant Implicit Shape Model,
RoLoD14(600-614).
Springer DOI 1504
BibRef

Tuzel, O.[Oncel], Liu, M.Y.[Ming-Yu], Taguchi, Y.[Yuichi], Raghunathan, A.[Arvind],
Learning to Rank 3D Features,
ECCV14(I: 520-535).
Springer DOI 1408
oriented point pair features for pose. BibRef

Banerjee, J., Ray, R., Vadali, S.R.K., Layek, R.K., Shome, S.N.,
Shape recognition based on shape-signature identification and condensibility: Application to underwater imagery,
NCVPRIPG13(1-4)
IEEE DOI 1408
computational geometry BibRef

Liu, Y.[Yu], Jia, Q.[Qi], Guo, H.[He], Fan, X.[Xin],
A shape matching framework using metric partition constraint,
ICIP13(3494-3498)
IEEE DOI 1402
Contour; Metric partition constraint; Shape descriptor; Shape matching BibRef

Ding, N.[Ning], Qian, H.H.[Hui-Huan], Xu, Y.S.[Yang-Sheng],
A finite element contour approach to affine invariant shape representation,
ICIP13(1451-1455)
IEEE DOI 1402
Affine normalization BibRef

Wong, C.Y.[Chin Yeow], Lin, S.C.F.[Stephen Ching-Feng], Jiang, G.N.[Guan-Nan], Kwok, N.M.[Ngai Ming],
Basic Shape Classification Using Spatially Normalised Fourier Shape Signature,
ISVC13(II:435-445).
Springer DOI 1311
BibRef

Mohideen, F.[Farlin], Rodrigo, R.[Ranga],
Curvature Based Robust Descriptors,
BMVC12(41).
DOI Link 1301
BibRef

Xu, Y.[Yong], Quan, Y.H.[Yu-Hui], Zhang, Z.M.[Zhu-Ming], Ji, H.[Hui], Fermuller, C.[Cornelia], Nishigaki, M.[Morimichi], DeMenthon, D.F.[Daniel F.],
Contour-based recognition,
CVPR12(3402-3409).
IEEE DOI 1208
contour patch detector for interesting features on the contour. BibRef

Tepper, M.[Mariano], Gómez, F.[Francisco], Musé, P.[Pablo], Almansa, A.[Andrés], Mejail, M.[Marta],
Morphological Shape Context: Semi-locality and Robust Matching in Shape Recognition,
CIARP09(129-136).
Springer DOI 0911
BibRef

Sánchez-Cruz, H.[Hermilo], Rodríguez-Díaz, M.A.[Mario A.],
Coding Long Contour Shapes of Binary Objects,
CIARP09(45-52).
Springer DOI 0911
BibRef

Wang, Z.Z.[Zhao-Zhong], Wang, L.[Lei],
Wide-Baseline Correspondence from Locally Affine Invariant Contour Matching,
ICIAR11(I: 242-252).
Springer DOI 1106
BibRef

Wang, Z.Z.[Zhao-Zhong], Xiao, H.[Han],
Dimension-free affine shape matching through subspace invariance,
CVPR09(2482-2487).
IEEE DOI 0906
configuration matrices of landmarks as the signature. 1D, 2D and 3D data. BibRef

Chen, C.[Cheng], Zhuang, Y.T.[Yue-Ting], Xiao, J.[Jun], Wu, F.[Fei],
Adaptive and compact shape descriptor by progressive feature combination and selection with boosting,
CVPR08(1-8).
IEEE DOI 0806
2-D shape descriptors. BibRef

Gosciewska, K.[Katarzyna], Frejlichowski, D.[Dariusz],
Silhouette-Based Action Recognition Using Simple Shape Descriptors,
ICCVG18(413-424).
Springer DOI 1810
BibRef

Gosciewska, K.[Katarzyna], Frejlichowski, D.[Dariusz], Hofman, R.[Radoslaw],
Application of the General Shape Analysis in Determining the Class of Binary Object Silhouettes in the Video Surveillance System,
ICIAR15(473-480).
Springer DOI 1507
BibRef
Earlier: A2, A1, Only:
Application of 2D Fourier Descriptors and Similarity Measures to the General Shape Analysis Problem,
ICCVG12(371-378).
Springer DOI 1210
BibRef

Frejlichowski, D.[Dariusz],
Three-Dimensional Object Representation Based on 2D UNL-Fourier Shape Descriptor,
ICIAR13(389-396).
Springer DOI 1307
BibRef
Earlier:
A New Algorithm for 3D Shape Recognition by Means of the 2D Point Distance Histogram,
CAIP11(II: 229-236).
Springer DOI 1109
BibRef
And:
A Three-Dimensional Shape Description Algorithm Based on Polar-Fourier Transform for 3D Model Retrieval,
SCIA11(457-466).
Springer DOI 1105
BibRef
Earlier:
Analysis of Four Polar Shape Descriptors Properties in an Exemplary Application,
ICCVG10(I: 376-383).
Springer DOI 1009
BibRef
Earlier:
An Algorithm for Binary Contour Objects Representation and Recognition,
ICIAR08(xx-yy).
Springer DOI 0806
Polar transform contour representation. BibRef

Frejlichowski, D.[Dariusz],
An Experimental Evaluation of the Polar-Fourier Greyscale Descriptor in the Recognition of Objects with Similar Silhouettes,
ICCVG12(363-370).
Springer DOI 1210
BibRef
Earlier:
An Experimental Comparison of Seven Shape Descriptors in the General Shape Analysis Problem,
ICIAR10(I: 294-305).
Springer DOI 1006
BibRef

Frejlichowski, D.[Dariusz],
Identification of Erythrocyte Types in Greyscale MGG Images for Computer-Assisted Diagnosis,
IbPRIA11(636-643).
Springer DOI 1106
BibRef
Earlier:
Pre-processing, Extraction and Recognition of Binary Erythrocyte Shapes for Computer-Assisted Diagnosis Based on MGG Images,
ICCVG10(I: 368-375).
Springer DOI 1009
BibRef

Liu, Y.J.[Yong-Jin], Chen, T.[Tao], Chen, X.Y.[Xiao-Yu], Chang, T.K.[Terry K.], Yuen, M.M.F.[Matthew M. F.],
Planar Shape Matching and Feature Extraction Using Shape Profile,
GMP08(xx-yy).
Springer DOI 0804
BibRef

Giannarou, S.[Stamatia], Stathaki, T.[Tania],
Shape Signature Matching for Object Identification Invariant to Image Transformations and Occlusion,
CAIP07(710-717).
Springer DOI 0708
BibRef

Rusiñol, M.[Marçal], Dosch, P.[Philippe], Lladós, J.[Josep],
Boundary Shape Recognition Using Accumulated Length and Angle Information,
IbPRIA07(II: 210-217).
Springer DOI 0706
BibRef

Lee, S.M.[Sang-Mook], Abbott, A.L.[A. Lynn], Clark, N.A.[Neil A.], Araman, P.A.[Philip A.],
A Shape Representation for Planar Curves by Shape Signature Harmonic Embedding,
CVPR06(II: 1940-1947).
IEEE DOI 0606
BibRef

Shah, R.[Ronak], Mishra, A.[Anima], Rakshit, S.[Subrata],
Robust Occluded Shape Recognition,
ACCV06(I:847-857).
Springer DOI 0601
BibRef

Bhalerao, A.H.[Abhir H.], Wilson, R.G.[Roland G.],
Local Shape Modelling Using Warplets,
SCIA05(439-448).
Springer DOI 0506
BibRef

Loss, L.A.[Leandro A.], Tozzi, C.L.[Clésio L.],
Discrimination of Natural Contours by Means of Time-Scale-Frequency Decompositions,
ISVC05(684-689).
Springer DOI 0512
BibRef

Thakoor, N.[Ninad], Gao, J.[Jean],
Shape Classifer Based on Generalized Probabilistic Descent Method with Hidden Markov Descriptor,
ICCV05(I: 495-502).
IEEE DOI 0510
BibRef

Sun, K.B.[Kang B.], Super, B.J.[Boaz J.],
Classification of Contour Shapes Using Class Segment Sets,
CVPR05(II: 727-733).
IEEE DOI 0507
BibRef

Dionisio, C.R.P., Kim, H.Y.[Hae Yong],
New features for affine-invariant shape classification,
ICIP04(IV: 2135-2138).
IEEE DOI 0505
BibRef

Yu, L.Y.[Liang-Yin], Dyer, C.R.[Charles R.],
Perception-Based 2D Shape Modeling by Curvature Shaping,
VF01(272 ff.).
Springer DOI 0209
BibRef

Kyrki, V., Kamarainen, J.K., Kalviainen, H.,
Invariant Shape Recognition using Global Gabor Features,
SCIA01(O-Tu2). 0206
BibRef

Lazebnik, S.[Svetlana], Sethi, A.[Amit], Schmid, C.[Cordelia], Kriegman, D.J.[David J.], Ponce, J.[Jean], Hebert, M.[Martial],
On Pencils of Tangent Planes and the Recognition of Smooth 3D Shapes from Silhouettes,
ECCV02(III: 651 ff.).
Springer DOI
PS File. 0205
Define a signature. BibRef

Ramakrishnan, S., Forte, P.,
MDL based Structural Interpretation of Images under Partial Occlusion,
BMVC01(Poster Session 2. and Demonstrations).
HTML Version. Kingston University 0110
BibRef

Ma, J.B.[Jian-Bo], Ahuja, N.[Narendra],
Region Correspondence by Global Configuration Matching and Progressive Delaunay Triangulation,
CVPR00(II: 637-642).
IEEE DOI 0005
BibRef

Krumm, J.[John],
Eigenfeatures for Planar Pose Measurement of Partially Occluded Objects,
CVPR96(55-60).
IEEE DOI Use extracted features of the contour. BibRef 9600

Xia, F.,
Invariant property of contour: VPIUD with arbitrary neighbourhood,
ICIP95(II: 651-654).
IEEE DOI 9510
BibRef

Legrand, L., Khalil, K., Dipanda, A.,
Representing plane closed curves with Hartley descriptors,
ICIP95(III: 344-347).
IEEE DOI 9510
BibRef

Hanmandlu, M., Shantaram, V.,
Signature Based Recognition Of 2-D Occluded Objects,
ICPR92(I:595-598).
IEEE DOI BibRef 9200

Al-Mohamad, H.A.,
3D shape classification using the R-transform,
ICPR90(I: 749-754).
IEEE DOI 9006
BibRef

Eom, K.B., Park, J.,
Recognition of shapes by statistical modeling of centroidal profile,
ICPR90(I: 860-864).
IEEE DOI 9006
BibRef

Hong, J., Wolfson, H.J.,
An Improved Model-Based Matching Method Using Footprints,
ICPR88(I: 72-78).
IEEE DOI BibRef 8800

Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
2-D Contour Matching, Indexing or Hashing Techniques .


Last update:Sep 28, 2024 at 17:47:54