Suk, M.S.[Min-Soo], and
Kang, H.[Hwanil],
New Measures of Similarity between Two Contours Based on
Optimal Bivariate Transforms,
CVGIP(26), No. 2, May 1984, pp. 168-182.
Elsevier DOI
Recognize Two-Dimensional Objects. Given two contours, generate the optimal bivariate transform to map
between the two. Recognition is based on the match with the least
error after the transform has been applied.
BibRef
8405
Suk, M.S.[Min-Soo],
Cho, T.H.,
An Object-Detection Algorithm Based on the Region-Adjacency Graph,
PIEEE(72), 1984, pp. 985-986.
BibRef
8400
Chu, C.[Cecelia],
Yang, M.C.K.[Mark C. K.],
Invariant quantities in regression-induced boundaries under a special
linear transformation,
PR(20), No. 4, 1987, pp. 403-410.
Elsevier DOI
0309
Find boundaries of ships in radar.
BibRef
Xu, J., and
Yang, Y.H.,
Generalized Multidimensional
Orthogonal Polynomials with Applications to Shape Analysis,
PAMI(12), No. 9, September 1990, pp. 906-913.
IEEE DOI Contour descriptions in terms of orthogonal polynomials
(see e.g. Fourier), Occlusions?
BibRef
9009
Arkin, E.M.,
Chew, L.P.,
Huttenlocher, D.P.,
Kedem, K., and
Mitchell, J.S.B.,
An Efficiently Computable Metric for Comparing Polygonal Shapes,
PAMI(13), No. 3, March 1991, pp. 209-216.
IEEE DOI Various global contour metrics and the effects of noise and variations.
BibRef
9103
Stafford, R.L.[Robert L.],
A model building approach to property measurement in black and white
pictures,
CGIP(2), No. 1, August 1973, pp. 39-59.
Elsevier DOI
0501
Binary image into a tree representing contours.
BibRef
Blumenkrans, A.[Alejandro],
Two-Dimensional Object Recognition Using a
Two-Dimensional Polar Transform,
PR(24), No. 9, 1991, pp. 879-890.
Elsevier DOI
BibRef
9100
Pizlo, Z.[Zygmunt],
Rosenfeld, A.[Azriel],
Recognition of Planar Shapes
from Perspective Images Using Contour-Based Invariants,
CVGIP(56), No. 3, November 1992, pp. 330-350.
Elsevier DOI
Invariants.
BibRef
9211
Bruckstein, A.M.,
Katzir, N.,
Lindenbaum, M., and
Proat, M.,
Similarity-Invariant Signatures for Partially Occluded Planar Shapes,
IJCV(7), No. 3, April 1992, pp. 271-285.
Springer DOI Generate signatures for matching --
locate an arbitrary number of points on a smooth curve, in a
similarity invariant way.
BibRef
9204
Bruckstein, A.M.[Alfred M.],
Holt, R.J.[Robert J.],
Netravali, A.N.[Arun N.],
Richardson, T.J.[Thomas J.],
Invariant Signatures for Planar Shape Recognition under
Partial Occlusion,
CVGIP(58), No. 1, July 1993, pp. 49-65.
DOI Link
BibRef
9307
Earlier:
ICPR92(I:108-112).
IEEE DOI Differential invariants.
See also Using Line Correspondences in Invariant Signatures for Curve Recognition.
BibRef
Bruckstein, A.M.[Alfred M.],
Invariant Recognition and Processing of Planar Shapes,
VF01(3 ff.).
Springer DOI
0209
BibRef
Holt, R.J.[Robert J.],
Netravali, A.N.[Arun N.],
Differential and Semi-differential Invariant Signature Functions
for Space Curve Recognition,
IJIST(5), No. 3, Fall 1994, pp. 189-198.
BibRef
9400
Holt, R.J.[Robert J.],
Netravali, A.N.[Arun N.],
Using Line Correspondences in Invariant Signatures
for Curve Recognition,
IVC(11), No. 7, September 1993, pp. 440-446.
Elsevier DOI Invariant signatures of curves.
See also Invariant Signatures for Planar Shape Recognition under Partial Occlusion.
BibRef
9309
Bruckstein, A.M.,
Netravali, A.N.,
ORE Differential Invariants of Planar Curves and
Recognizing Partially Occluded Planar Shapes,
AMAI(13), No. 3-4, 1995, pp. 227-250.
BibRef
9500
Earlier:
Differential Invariants of Planar Curves and Recognizing
Partially Occluded Shapes,
VF91(89-98).
Invariants under perspective and affine transformations.
BibRef
Parui, S.K., and
Dutta Majumdar, D.,
A New Definition of Shape Similarity,
PRL(1), No. 1, 1982, pp. 37-42.
BibRef
8200
Parui, S.K., and
Dutta Majumdar, D.,
Shape Similarity Measures for Open Curves,
PRL(1), 1983, pp. 129-134.
BibRef
8300
Parui, S.K.,
Sarma, S.E., and
Dutta Majumdar, D.,
How to Discriminate Shapes Using the Shape Vector,
PRL(4), 1986, pp. 201-204.
BibRef
8600
Schwartz, J.T., and
Sharir, M.,
Identification of Partially Obscured Objects in Two and Three Dimensions
by Matching Noisy Characteristic Curves,
IJRR(6), No. 2, 1987, pp. 29-44.
Partial Curves. 2-D curves in a plane.
BibRef
8700
Bastuscheck, C.M.,
Schonberg, E.,
Schwartz, J.T.,
Sharir, M.,
Object Recognition by Three-Dimensional Curve Matching,
IJIS(1), 1986, pp. 105-132.
BibRef
8600
Kalvin, A.,
Schonberg, E.,
Schwartz, J.T., and
Sharir, M.[Micha],
Two-Dimensional Model-Based, Boundary Matching Using Footprints,
IJRR(5), No. 4, Winter 1986, pp. 38-55.
Matching based on curve segments. Works on partial curves.
BibRef
8600
Barequet, G.[Gill],
Sharir, M.[Micha],
Partial Surface and Volume Matching in Three Dimensions,
PAMI(19), No. 9, September 1997, pp. 929-948.
IEEE DOI
9710
BibRef
Earlier:
ICPR94(B:610-614).
IEEE DOI Rotate one object (each represented as the set of points)
and find the translation to find the best fit.
BibRef
Barequet, G.[Gill],
Using geometric hashing to repair CAD objects,
CalSE(4), No. 4, October 1997, pp. 22-28.
BibRef
9710
Das, M.,
Paulik, M.J., and
Loh, N.K.,
A Bivariate Autoregressive Modeling Technique for Analysis
and Classification of Planar Shapes,
PAMI(12), No. 1, January 1990, pp. 97-103.
IEEE DOI
BibRef
9001
Rosin, P.L.[Paul L.],
Multiscale Representation and Matching of Curves Using Codons,
GMIP(55), No. 4, July 1993, pp. 286-yy.
BibRef
9307
Åström, K.,
Fundamental Limitations On Projective Invariants Of Planar Curves,
PAMI(17), No. 1, January 1995, pp. 77-81.
IEEE DOI
Evaluation, Invariants. All curves map arbitrarily close to a circle by projective
transformations
BibRef
9501
Moons, T.,
Pauwels, E.J.,
Van Gool, L.J.,
Oosterlinck, A.,
Foundations Of Semi-Differential Invariants,
IJCV(14), No. 1, January 1995, pp. 25-47.
Springer DOI
See also Recognition Of Planar Shapes Under Affine Distortion.
BibRef
9501
Van Gool, L.J.,
Kempenaers, P., and
Oosterlinck, A.,
Recognition and Semi-Differential Invariants,
CVPR91(454-460). Mostly 2-D shapes.
IEEE DOI
BibRef
9100
Garcia, J.A.,
Fdez-Valdivia, J.,
Molina, R.,
A Method for Invariant Pattern-Recognition Using the
Scale-Vector Representation of Planar Curves,
SP(43), No. 1, April 1995, pp. 39-53.
BibRef
9504
Garcia, J.A.,
Fdez-Valdivia, J.,
Representing Planar Curves by Using a Scale Vector,
PRL(15), No. 9, September 1994, pp. 937-942.
BibRef
9409
Garcia, J.A.,
Fdez-Valdivia, J.,
Garrido, A.,
A Scale-Vector Approach For Edge-Detection,
PRL(16), No. 6, June 1995, pp. 637-646.
BibRef
9506
Fdez-Valdivia, J.,
Garcia, J.A.,
Molina, R.,
de la Blanca, N.P.[N. Perez],
A New Approach to 2D Shapes Characterization,
SCIA95(XX-YY).
BibRef
9500
Hong, D.Z.[De-Zhong],
Sarkodie-Gyan, T.[Thompson],
Campbell, A.W.[Andrew W.],
Yan, Y.[Yong],
A Prototype Indexing Approach to 2-D Object Description and Recognition,
PR(31), No. 6, June 1998, pp. 699-725.
Elsevier DOI
9806
BibRef
Heijmans, H.J.A.M.[Henk J.A.M.],
Tuzikov, A.V.[Alexander V.],
Similarity and Symmetry Measures for Convex Shapes
Using Minkowski Addition,
PAMI(20), No. 9, September 1998, pp. 980-993.
IEEE DOI
9809
BibRef
Earlier: A2, A1:
Comparing convex shapes using Minkowski addition,
CAIP97(138-145).
Springer DOI
9709
Use region based measures. Invariance under most viewing
changes is possible.
BibRef
Tuzikov, A.V.[Alexander V.],
Roerdink, J.B.T.M.[Jos B.T.M.],
Heijmans, H.J.A.M.[Henk J.A.M.],
Similarity measures for convex polyhedra based on Minkowski addition,
PR(33), No. 6, June 2000, pp. 979-995.
Elsevier DOI
0004
BibRef
Tarel, J.P.[Jean-Philippe],
Cooper, D.B.[David B.],
The Complex Representation of Algebraic Curves and Its Simple
Exploitation for Pose Estimation and Invariant Recognition,
PAMI(22), No. 7, July 2000, pp. 663-674.
IEEE DOI And Full paper:
HTML Version.
PS File.
0008
BibRef
Tarel, J.P.[Jean-Philippe],
Cooper, D.B.[David B.],
A New Complex Basis for Implicit Polynomial Curves and its
Simple Exploitation for Pose Estimation and Invariant Recognition,
CVPR98(111-117).
IEEE DOI
HTML Version. And:
PS File.
BibRef
9800
Tarel, J.P.[Jean-Philippe],
Wolovich, W.A.[William A.],
Cooper, D.B.[David B.],
Covariant-Conics Decomposition of Quartics for 2D Shape Recognition and
Alignment,
JMIV(19), No. 3, November 2003, pp. 255-273.
DOI Link
0310
BibRef
Earlier:
Covariant Conics Decomposition of Quartics for 2D Object
Recognition and Affine Alignment,
ICIP98(II: 818-822).
IEEE DOI
HTML Version.
PS File.
9810
BibRef
Khalil, M.I.[Mahmoud I.],
Bayoumi, M.M.[Mohamed M.],
A Dyadic Wavelet Affine Invariant Function for 2D Shape Recognition,
PAMI(23), No. 10, October 2001, pp. 1152-1164.
IEEE DOI
0110
First derive an invariant using 2 dyadic levels, use this to derive
another with 6 dyadic levels.
BibRef
Belongie, S.J.[Serge J.],
Malik, J.[Jitendra],
Puzicha, J.[Jan],
Shape Matching and Object Recognition Using Shape Contexts,
PAMI(24), No. 4, April 2002, pp. 509-522.
IEEE DOI
0204
BibRef
Earlier:
Matching Shapes,
ICCV01(I: 454-461).
IEEE DOI Or:
PDF File.
0106
Award, Helmholtz Prize. Based on description in Thompson (
See also On Growth and Form. ).
Related to deformable templates.
Landmark based matching of contours.
BibRef
Belongie, S.J.,
Malik, J.,
Matching with shape contexts,
CBAIVL00(20-26).
PS File.
0008
BibRef
Mori, G.[Greg],
Belongie, S.J.[Serge J.],
Malik, J.[Jitendra],
Efficient Shape Matching Using Shape Contexts,
PAMI(27), No. 11, November 2005, pp. 1832-1837.
IEEE DOI
0510
BibRef
Earlier:
Shape Contexts Enable Efficient Retrieval of Similar Shapes,
CVPR01(I:723-730).
IEEE DOI Or:
PDF File.
0110
Prune search space for similar shapes.
Retrieve shapes.
See also Recovering 3D Human Body Configurations Using Shape Contexts.
BibRef
Sánchez, G.[Gemma],
Lladós, J.[Josep],
Tombre, K.[Karl],
A mean string algorithm to compute the average among a set of 2D shapes,
PRL(23), No. 1-3, January 2002, pp. 203-213.
Elsevier DOI
0201
BibRef
Tagare, H.D.[Hemant D.],
O'Shea, D.[Donal],
Groisser, D.[David],
Non-Rigid Shape Comparison of Plane Curves in Images,
JMIV(16), No. 1, January 2002, pp. 57-68.
DOI Link
0202
BibRef
Tagare, H.D.[Hemant D.],
Groisser, D.[David],
Skrinjar, O.[Oskar],
Symmetric Non-Rigid Registration:
A Geometric Theory and Some Numerical Techniques,
JMIV(34), No. 1, May 2009, pp. xx-yy.
Springer DOI
0905
BibRef
Earlier:
A Geometric Theory of Symmetric Registration,
MMBIA06(73).
IEEE DOI
0609
BibRef
Tagare, H.D.[Hemant D.],
O'Shea, D.[Don],
Rangarajan, A.[Anand],
A Geometric Criterion for Shape-Based Non-Rigid Correspondence,
ICCV95(434-439).
IEEE DOI Match curves.
BibRef
9500
Zheng, X.Q.[Xi-Qiang],
Chen, Y.M.[Yun-Mei],
Groisser, D.[David],
Wilson, D.[David],
Some New Results on Non-rigid Correspondence and Classification of
Curves,
EMMCVPR05(473-489).
Springer DOI
0601
BibRef
Borkowski, J.,
Matuszewski, B.J.,
Mroczka, J.,
Shark, L.K.,
Geometric matching of circular features by least squares fitting,
PRL(23), No. 7, May 2002, pp. 885-894.
Elsevier DOI
0203
BibRef
Mustafa, A.A.Y.[Adnan A.Y.],
Fuzzy shape matching with boundary signatures,
PRL(23), No. 12, October 2002, pp. 1473-1482.
Elsevier DOI
0206
BibRef
Earlier:
Matching Incomplete Objects Using Boundary Signatures,
VF01(563 ff.).
Springer DOI
0209
BibRef
Tsang, P.W.M.,
Enhancement of a genetic algorithm for affine invariant planar object
shape matching using the migrant principle,
VISP(150), No. 2, April 2003, pp. 107-113.
IEEE Abstract.
0307
BibRef
da Fontoura Costa, L.[Luciano],
dos Reis, S.F.[Sérgio F.],
Arantes, R.A.T.[Renata A. T.],
Alves, A.C.R.[Ana C. R.],
Mutinari, G.[Gian_Carlo],
Biological shape analysis by digital curvature,
PR(37), No. 3, March 2004, pp. 515-524.
Elsevier DOI
0401
The digital curvature provides invariance to translations, rotations,
local shape deformations, and is easily made tolerant to scaling.
BibRef
Bicego, M.[Manuele],
Murino, V.[Vittorio],
Investigating Hidden Markov Models Capabilities in
2D Shape Classification,
PAMI(26), No. 2, February 2004, pp. 281-286.
IEEE Abstract.
0402
BibRef
Earlier:
2D shape recognition by hidden Markov models,
CIAP01(20-24).
IEEE DOI
0210
HMM for classifing planar models.
See also sequential pruning strategy for the selection of the number of states in hidden Markov models, A.
BibRef
Bicego, M.[Manuele],
Trudda, A.[Alessandro],
2D Shape Classification Using Multifractional Brownian Motion,
SSPR08(906-916).
Springer DOI
0812
BibRef
Bicego, M.[Manuele],
Torres Martins, A.F.[Andre Filipe],
Murino, V.[Vittorio],
Aguiar, P.M.Q.[Pedro M.Q.],
Figueiredo, M.A.T.[Mario A.T.],
2D Shape Recognition Using Information Theoretic Kernels,
ICPR10(25-28).
IEEE DOI
1008
BibRef
Bicego, M.[Manuele],
Lovato, P.[Pietro],
A bioinformatics approach to 2D shape classification,
CVIU(145), No. 1, 2016, pp. 59-69.
Elsevier DOI
1604
BibRef
Earlier:
2D shape recognition using biological sequence alignment tools,
ICPR12(1359-1362).
WWW Link.
1302
BibRef
And: A2, A1:
2D Shapes Classification Using BLAST,
SSSPR12(273-281).
Springer DOI
1211
2D shape classification
BibRef
Zhu, Y.,
Colchester, A.C.F.,
Plane curve matching under affine transformations,
VISP(151), No. 1, February 2004, pp. 9-19.
IEEE Abstract.
0403
Approximate projective transforms by affine. Use curve invariants. Refine
with ICP.
BibRef
Ha, V.H.S.,
Moura, J.M.F.,
Affine-Permutation Invariance of 2-D Shapes,
IP(14), No. 11, November 2005, pp. 1687-1700.
IEEE DOI
0510
Invariant to affine and permutations of feature points along the contours.
BibRef
Ghosh, A.[Anarta],
Petkov, N.[Nicolai],
Robustness of Shape Descriptors to Incomplete Contour Representations,
PAMI(27), No. 11, November 2005, pp. 1793-1804.
IEEE DOI
0510
Use Shape Context and distance multiset.
See also Distance sets for shape filters and shape recognition.
BibRef
Gavrila, D.M.[Dariu M.],
A Bayesian, Exemplar-Based Approach to Hierarchical Shape Matching,
PAMI(29), No. 8, August 2007, pp. 1408-1421.
IEEE DOI
0707
Pairwise measure between shapes.
BibRef
Sohel, F.A.[Ferdous A.],
Karmakar, G.C.[Gour C.],
Dooley, L.S.[Laurence S.],
Arkinstall, J.R.[John R.],
Quasi-Bezier curves integrating localised information,
PR(41), No. 2, February 2008, pp. 531-542.
Elsevier DOI
0711
Vertex-based shape coding; Image processing; Video processing; Bezier curve
BibRef
Sohel, F.A.[Ferdous A.],
Karmakar, G.C.[Gour C.],
Dooley, L.S.[Laurence S.],
Dynamic Bezier curves for variable rate-distortion,
PR(41), No. 10, October 2008, pp. 3153-3165.
Elsevier DOI
0808
Vertex-based shape coding; Image processing; Video processing; Bezier curves
BibRef
Zuliani, M.,
Bertelli, L.,
Kenney, C.S.,
Chandrasekaran, S.,
Manjunath, B.S.,
Drums, curve descriptors and affine invariant region matching,
IVC(26), No. 3, 3 March 2008, pp. 347-360.
Elsevier DOI
0801
Curve descriptors; Curve matching; Helmoholtz equation; Affine invariance
BibRef
Bertelli, L.[Luca],
Zuliani, M.[Marco],
Manjunath, B.S.,
Pairwise Similarities across Images for Multiple View Rigid/Non-Rigid
Segmentation and Registration,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Zuliani, M.,
Kenney, C.S.,
Bhagavathy, S.,
Manjunath, B.S.,
Drums and Curve Descriptors,
BMVC04(xx-yy).
HTML Version.
0508
based on the solution of Helmholtz's equation.
Satisfies MPEG7 constraints.
BibRef
Schindler, K.[Konrad],
Suter, D.[David],
Object detection by global contour shape,
PR(41), No. 12, December 2008, pp. 3736-3748.
Elsevier DOI
0810
Object category detection; Contour matching; Probabilistic shape
distance; Region grouping
BibRef
Xu, C.J.[Chun-Jing],
Liu, J.Z.[Jian-Zhuang],
Tang, X.[Xiaoou],
2D Shape Matching by Contour Flexibility,
PAMI(31), No. 1, January 2009, pp. 180-186.
IEEE DOI
0812
Contour flexibility as a descriptor.
Deformable potential at each point.
BibRef
Zhou, L.,
Hartley, R.,
Wang, L.,
Lieby, P.[Paulette],
Barnes, N.M.[Nick M.],
Identifying Anatomical Shape Difference by Regularized Discriminative
Direction,
MedImg(28), No. 6, June 2009, pp. 937-950.
IEEE DOI
0906
BibRef
Xiao, P.D.[Peng-Dong],
Barnes, N.M.[Nick M.],
Caetano, T.S.[Tiberio S.],
3-D Shape Matching and Non-Rigid Correspondence for Hippocampi Based
on Markov Random Fields,
IP(27), No. 3, March 2018, pp. 1271-1281.
IEEE DOI
1801
Belief propagation, Clamps, Markov random fields, Minimization,
Shape, Standards, 3D shape matching,
sparse update
BibRef
Xiao, P.D.[Peng-Dong],
Barnes, N.M.[Nick M.],
Caetano, T.S.[Tiberio S.],
Lieby, P.[Paulette],
An MRF and Gaussian Curvature Based Shape Representation for Shape
Matching,
MultiView07(1-7).
IEEE DOI
0706
BibRef
Shaw, D.[David],
Barnes, N.M.[Nick M.],
Perspective Invariant Angle Ordering,
DICTA09(256-263).
IEEE DOI
0912
BibRef
Musso, E.[Emilio],
Nicolodi, L.[Lorenzo],
Invariant Signatures of Closed Planar Curves,
JMIV(35), No. 1, September 2009, pp. xx-yy.
Springer DOI
0907
BibRef
Liu, X.W.[Xiu-Wen],
Shi, Y.G.[Yong-Gang],
Dinov, I.D.[Ivo D.],
Mio, W.[Washington],
A Computational Model of Multidimensional Shape,
IJCV(89), No. 1, August 2010, pp. xx-yy.
Springer DOI
1004
extend Riemannina models of curves for general topology. Use in brain mapping.
See also Hamilton-Jacobi Skeleton on Cortical Surfaces.
BibRef
Dong, B.[Bin],
Mao, Y.[Yu],
Dinov, I.D.[Ivo D.],
Tu, Z.W.[Zhuo-Wen],
Shi, Y.G.[Yong-Gang],
Wang, Y.L.[Ya-Lin],
Toga, A.W.[Arthur W.],
Wavelet-Based Representation of Biological Shapes,
ISVC09(I: 955-964).
Springer DOI
0911
BibRef
Larabi, S.[Slimane],
Textual description of shapes,
JVCIR(20), No. 8, November 2009, pp. 563-584.
Elsevier DOI
0911
Shape; Outline shape; Part; Description; XML language; Similarity;
Shape retrieval; Image coding
BibRef
Larabi, S.[Slimane],
Bouagar, S.[Saliha],
Trespaderne, F.M.[Felix M.],
Lopez de la Fuente, E.[Eusebio],
LWDOS: Language for Writing Descriptors of Outline Shapes,
SCIA03(1014-1021).
Springer DOI
0310
BibRef
Aouat, S.[Saliha],
Larabi, S.[Slimane],
Matching Descriptors Of Noisy Outline Shapes,
IJIG(10), No. 3, July 2010, pp. 299-325.
DOI Link
1003
BibRef
Aouat, S.[Saliha],
Larabi, S.[Slimane],
Matching Noisy Outline Contours Using a Descriptor Reduction Approach,
ICISP12(370-379).
Springer DOI
1208
BibRef
Aouat, S.[Saliha],
Larabi, S.[Slimane],
Shape matching using coarse descriptors,
IJCVR(1), No. 2, 2010, pp. 169-193.
DOI Link
1011
BibRef
Bellili, A.[Asma],
Larabi, S.[Slimane],
Image Segmentation by Image Analogies,
CompIMAGE14(143-151).
Springer DOI
1407
BibRef
Bellili, A.[Asma],
Larabi, S.[Slimane],
Robertson, N.M.[Neil M.],
Outlines of Objects Detection by Analogy,
CAIP13(385-392).
Springer DOI
1308
BibRef
Earlier: A2, A3, Only:
Contour Detection by Image Analogies,
ISVC12(II: 430-439).
Springer DOI
1209
BibRef
Bouagar, S.[Saliha],
Larabi, S.[Slimane],
Discriminative outlines parts for shape retrieval,
JVCIR(33), No. 1, 2015, pp. 149-164.
Elsevier DOI
1512
Discriminative
BibRef
Shu, X.[Xin],
Wu, X.J.[Xiao-Jun],
A novel contour descriptor for 2D shape matching and its application to
image retrieval,
IVC(29), No. 4, March 2011, pp. 286-294.
Elsevier DOI
1102
Shape matching; Shape retrieval; Contour points distribution histogram
(CPDH); Earth mover's distance (EMD)
BibRef
Wang, Z.Z.[Zhao-Zhong],
Liang, M.[Min],
Li, Y.F.,
Using diagonals of orthogonal projection matrices for affine invariant
contour matching,
IVC(29), No. 10, September 2011, pp. 681-692.
Elsevier DOI
1110
Affine invariance; Contour matching; Shape descriptor; Orthogonal
projection matrix; Perturbation analysis; Polar decomposition
BibRef
Hickman, M.S.[Mark S.],
Euclidean Signature Curves,
JMIV(43), No. 3, July 2012, pp. 206-213.
WWW Link.
1204
Two planar curves that are related by a Euclidean transformation
possess the same signature curve.
See also Invariant Signatures of Closed Planar Curves.
BibRef
Zhao, Y.J.[Yan-Jun],
Belkasim, S.,
Multiresolution Fourier Descriptors for Multiresolution Shape Analysis,
SPLetters(19), No. 10, October 2012, pp. 692-695.
IEEE DOI
1209
BibRef
Brooks, E.B.,
Thomas, V.A.,
Wynne, R.H.,
Coulston, J.W.,
Fitting the Multitemporal Curve: A Fourier Series Approach to the
Missing Data Problem in Remote Sensing Analysis,
GeoRS(50), No. 9, September 2012, pp. 3340-3353.
IEEE DOI
1209
BibRef
Calder, J.[Jeff],
Esedoglu, S.[Selim],
On the Circular Area Signature for Graphs,
SIIMS(5), No. 4, 2012, pp. 1355-1379.
DOI Link
1211
curve representations. Integral invariant signatures.
BibRef
Gual-Arnau, X.,
Herold-García, S.,
Simó, A.,
Shape description from generalized support functions,
PRL(34), No. 6, 15 April 2013, pp. 619-626.
Elsevier DOI
1303
Contour set functions; Integral geometry; Shape description; Support
function; Shape retrieval
BibRef
Fu, H.J.[Hui-Jing],
Tian, Z.[Zheng],
Ran, M.H.[Mao-Hua],
Fan, M.[Ming],
Novel affine-invariant curve descriptor for curve matching and
occluded object recognition,
IET-CV(7), No. 4, 2013, pp. 279-292.
DOI Link
1307
Curve description signature.
BibRef
Zheng, D.C.[Dan-Chen],
Han, M.[Min],
Shape retrieval and recognition based on fuzzy histogram,
JVCIR(24), No. 7, 2013, pp. 1009-1019.
Elsevier DOI
1309
Shape matching
BibRef
Li, Y.L.[Yue-Long],
Feng, J.F.[Ju-Fu],
Meng, L.[Li],
Wu, J.G.[Ji-Gang],
Sparse Representation Shape Models,
JMIV(48), No. 1, January 2014, pp. 83-91.
Springer DOI
1402
BibRef
And:
Erratum:
JMIV(48), No. 1, January 2014, pp. 92.
WWW Link.
Springer DOI
1402
Deformable shape model, Sparse Representation Shape Models (SRSM).
For faces.
BibRef
Abdel-Kader, R.F.[Rehab F.],
Ramadan, R.M.[Rabab M.],
Zaki, F.W.[Fayez W.],
El-Sayed, E.[Emad],
A boundary-based approach to shape orientability using particle swarm
optimization,
SIViP(8), No. 4, May 2014, pp. 779-788.
Springer DOI
1404
BibRef
Duan, H.B.[Hai-Bin],
Gan, L.[Lu],
Elitist Chemical Reaction Optimization for Contour-Based Target
Recognition in Aerial Images,
GeoRS(53), No. 5, May 2015, pp. 2845-2859.
IEEE DOI
1502
Contour matching.
artificial satellites
BibRef
Janan, F.[Faraz],
Brady, M.[Michael],
Shape Description and Matching Using Integral Invariants on
Eccentricity Transformed Images,
IJCV(113), No. 2, June 2015, pp. 92-112.
Springer DOI
1506
Occluded and noisy shapes.
Boundary signature and global shape measures.
BibRef
Hu, D.[Dameng],
Huang, W.G.[Wei-Guo],
Yang, J.Y.[Jian-Yu],
Shang, L.[Li],
Zhu, Z.[Zhongkui],
Shape matching and object recognition using common base triangle area,
IET-CV(9), No. 5, 2015, pp. 769-778.
DOI Link
1511
computer vision
BibRef
Zhu, Z.J.[Zhong-Jie],
Wang, Y.E.[Yu-Er],
Jiang, G.Y.[Gang-Yi],
Highly efficient contour-based predictive shape coding,
PRL(65), No. 1, 2015, pp. 131-136.
Elsevier DOI
1511
Image coding
BibRef
Jia, Q.[Qi],
Fan, X.[Xin],
Liu, Y.[Yu],
Li, H.J.[Hao-Jie],
Luo, Z.X.[Zhong-Xuan],
Guo, H.[He],
Hierarchical projective invariant contexts for shape recognition,
PR(52), No. 1, 2016, pp. 358-374.
Elsevier DOI
1601
Shape descriptor
BibRef
Huang, W.[Wen],
Gallivan, K.A.[Kyle A.],
Srivastava, A.[Anuj],
Absil, P.A.[Pierre-Antoine],
Riemannian Optimization for Registration of Curves in Elastic Shape
Analysis,
JMIV(54), No. 3, March 2016, pp. 320-343.
Springer DOI
1604
BibRef
Huang, W.[Wen],
You, Y.Q.[Ya-Qing],
Gallivan, K.A.[Kyle A.],
Absil, P.A.[Pierre-Antoine],
Karcher Mean in Elastic Shape Analysis,
DIFF-CV15(xx-yy).
DOI Link
1601
BibRef
Yang, J.Y.[Jian-Yu],
Wang, H.X.[Hong-Xing],
Yuan, J.S.[Jun-Song],
Li, Y.F.[You-Fu],
Liu, J.Y.[Jian-Yang],
Invariant multi-scale descriptor for shape representation, matching
and retrieval,
CVIU(145), No. 1, 2016, pp. 43-58.
Elsevier DOI
1604
Invariant descriptor
BibRef
Xu, H.R.[Hao-Ran],
Yang, J.Y.[Jian-Yu],
Yuan, J.S.[Jun-Song],
Invariant multi-scale shape descriptor for object matching and
recognition,
ICIP16(644-648)
IEEE DOI
1610
Decision support systems
BibRef
Wu, G.[Gang],
Zhang, Y.C.[Yan-Chun],
A Novel Fractional Implicit Polynomial Approach for Stable
Representation of Complex Shapes,
JMIV(55), No. 1, May 2016, pp. 89-104.
Springer DOI
1604
BibRef
Roussillon, P.[Pierre],
Glaunès, J.A.[Joan Alexis],
Kernel Metrics on Normal Cycles and Application to Curve Matching,
SIIMS(9), No. 4, 2016, pp. 1991-2038.
DOI Link
1612
Related to:
See also Varifold Representation of Nonoriented Shapes for Diffeomorphic Registration, The.
BibRef
Bauer, M.[Martin],
Bruveris, M.[Martins],
Harms, P.[Philipp],
Møller-Andersen, J.[Jakob],
A Numerical Framework for Sobolev Metrics on the Space of Curves,
SIIMS(10), No. 1, 2017, pp. 47-73.
DOI Link
1704
BibRef
Earlier:
Second Order Elastic Metrics on the Shape Space of Curves,
DIFF-CV15(xx-yy).
DOI Link
1601
See also Elastic Shape Analysis of Surfaces with Second-Order Sobolev Metrics: A Comprehensive Numerical Framework.
BibRef
Bauer, M.[Martin],
Charon, N.[Nicolas],
Harms, P.[Philipp],
Hsieh, H.W.[Hsi-Wei],
A Numerical Framework for Elastic Surface Matching, Comparison, and
Interpolation,
IJCV(129), No. 8, August 2021, pp. 2425-2444.
Springer DOI
2108
BibRef
Liu, H.M.[Hong-Min],
Chen, L.[Lulu],
Wang, Z.H.[Zhi-Heng],
Huo, Z.Q.[Zhan-Qiang],
GOCD: Gradient Order Curve Descriptor,
IEICE(E100-D), No. 12, December 2017, pp. 2973-2983.
WWW Link.
1712
Global and local contour descriptors.
BibRef
Chen, Z.L.[Zhan-Long],
Zhu, R.R.[Rong-Rong],
Xie, Z.[Zhong],
Wu, L.[Liang],
Hierarchical Model for the Similarity Measurement of a Complex
Holed-Region Entity Scene,
IJGI(6), No. 12, 2017, pp. xx-yy.
DOI Link
1801
sets of random region with holes in GIS.
BibRef
Giangreco-Maidana, A.J.[Alejandro J.],
Legal-Ayala, H.[Horacio],
Schaerer, C.E.[Christian E.],
Villamayor-Venialbo, W.[Waldemar],
Contour-Point Signature Shape Descriptor for Point Correspondence,
IJIG(18), No. 02, 2018, pp. 1850007.
DOI Link
1804
points selected from the outer contours of two arbitrary shapes.
BibRef
Chen, Z.L.[Zhan-Long],
Ma, X.C.[Xiao-Chuan],
Wu, L.[Liang],
Xie, Z.[Zhong],
An Intuitionistic Fuzzy Similarity Approach for Clustering Analysis
of Polygons,
IJGI(8), No. 2, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Wang, H.K.[Hong-Kui],
Yu, L.[Li],
Yin, H.B.[Hai-Bing],
Li, T.S.[Tian-Song],
Wang, S.W.[Sheng-Wei],
An improved DCT-based JND estimation model considering multiple
masking effects,
JVCIR(71), 2020, pp. 102850.
Elsevier DOI
2009
Contour.
DCT-based JND estimation model, Contrast masking, Disorderly concealment effect
BibRef
Elghoul, S.[Sinda],
Ghorbel, F.[Faouzi],
Fast global SA(2,R) shape registration based on invertible invariant
descriptor,
SP:IC(90), 2021, pp. 116058.
Elsevier DOI
2012
Affine invariant registration, Reconstruction,
An invertible set of invariant, Shape retrieval
BibRef
Ghorbel, E.[Emna],
Ghorbel, F.[Faouzi],
Sakly, I.[Ines],
M'Hiri, S.[Slim],
Fast blending of planar shapes based on invariant invertible and
stable descriptors,
ICPR21(10259-10265)
IEEE DOI
2105
Interpolation, Shape, Databases, Computational modeling,
Discrete Fourier transforms, Topology, Planning, Shapes blending,
Shape morphing
BibRef
Faidi, T.[Taha],
Chaieb, F.[Faten],
Ghorbel, F.[Faouzi],
A New Multi-resolution Affine Invariant Planar Contour Descriptor,
CIAP15(II:494-505).
Springer DOI
1511
BibRef
Paramarthalingam, A.[Arjun],
Thankanadar, M.[Mirnalinee],
Extraction of compact boundary normalisation based geometric
descriptors for affine invariant shape retrieval,
IET-IPR(15), No. 5, 2021, pp. 1093-1104.
DOI Link
2106
BibRef
Blandon, J.S.,
Orozco-Gutierrez, A.A.,
Alvarez-Meza, A.M.,
An enhanced and interpretable feature representation approach to
support shape classification from binary images,
PRL(151), 2021, pp. 348-354.
Elsevier DOI
2110
Shape recognition, Binary images, Bag of contour fragments,
Relief, Kernel alignment
BibRef
Song, C.X.[Chuan-Xin],
Wu, H.[Hanbo],
Ma, X.[Xin],
Li, Y.[Yibin],
Semantic-embedded similarity prototype for scene recognition,
PR(155), 2024, pp. 110725.
Elsevier DOI Code:
WWW Link.
2408
Scene recognition, Similarity prototype, Semantic knowledge,
Label softening, Contrastive loss
BibRef
Liu, Y.[Ying],
Rong, Y.[Yi],
Gao, Y.S.[Yong-Sheng],
Guo, J.S.[Ji-Shan],
Xiong, S.W.[Sheng-Wu],
Multi-Scale Piecewise Line Integral Strategy for Structure Integral
Transform,
ICIP18(1373-1377)
IEEE DOI
1809
Invariant shape recognition.
Shape, Gray-scale, Transforms, Radon, Tools, butterfly identification
BibRef
Blandon, J.S.,
Valencia, C.K.,
Alvarez, A.,
Echeverry, J.,
Alvarez, M.A.,
Orozco, A.,
Shape Classification Using Hilbert Space Embeddings and Kernel Adaptive
Filtering,
ICIAR18(245-251).
Springer DOI
1807
BibRef
Pal, S.[Susovan],
Woods, R.P.[Roger P.],
Panjiyar, S.[Suchit],
Sowell, E.[Elizabeth],
Narr, K.L.[Katherine L.],
Joshi, S.H.[Shantanu H.],
A Riemannian Framework for Linear and Quadratic Discriminant Analysis
on the Tangent Space of Shapes,
Diff-CVML17(726-734)
IEEE DOI
1709
Biology, Measurement, Orbits, Random variables, Shape, Sociology,
Space vehicles
BibRef
Su, Z.[Zhe],
Klassen, E.[Eric],
Bauer, M.[Martin],
The Square Root Velocity Framework for Curves in a Homogeneous Space,
Diff-CVML17(680-689)
IEEE DOI
1709
Distortion, Extraterrestrial measurements, Manifolds,
Shape, Transforms
BibRef
Rolston, L.A.[Laura A.],
Cahill, N.D.[Nathan D.],
Interior and Exterior Shape Representations Using the Screened Poisson
Equation,
CompIMAGE16(118-131).
Springer DOI
1704
Apply to natural silhouettes and handwritten numerals.
BibRef
Hinterstoisser, S.[Stefan],
Lepetit, V.[Vincent],
Rajkumar, N.[Naresh],
Konolige, K.[Kurt],
Going Further with Point Pair Features,
ECCV16(III: 834-848).
Springer DOI
1611
detect 3D objects in point clouds.
BibRef
Ilic, V.[Vladimir],
Lindblad, J.[Joakim],
Sladoje, N.[Nataša],
Signature of a Shape Based on Its Pixel Coverage Representation,
DGCI16(181-193).
WWW Link.
1606
BibRef
Bao, R.[Ruihan],
Higa, K.[Kyota],
Iwamoto, K.[Kota],
Local Feature Based Multiple Object Instance Identification Using Scale
and Rotation Invariant Implicit Shape Model,
RoLoD14(600-614).
Springer DOI
1504
BibRef
Tuzel, O.[Oncel],
Liu, M.Y.[Ming-Yu],
Taguchi, Y.[Yuichi],
Raghunathan, A.[Arvind],
Learning to Rank 3D Features,
ECCV14(I: 520-535).
Springer DOI
1408
oriented point pair features for pose.
BibRef
Banerjee, J.,
Ray, R.,
Vadali, S.R.K.,
Layek, R.K.,
Shome, S.N.,
Shape recognition based on shape-signature identification and
condensibility: Application to underwater imagery,
NCVPRIPG13(1-4)
IEEE DOI
1408
computational geometry
BibRef
Liu, Y.[Yu],
Jia, Q.[Qi],
Guo, H.[He],
Fan, X.[Xin],
A shape matching framework using metric partition constraint,
ICIP13(3494-3498)
IEEE DOI
1402
Contour; Metric partition constraint; Shape descriptor; Shape matching
BibRef
Ding, N.[Ning],
Qian, H.H.[Hui-Huan],
Xu, Y.S.[Yang-Sheng],
A finite element contour approach to affine invariant shape
representation,
ICIP13(1451-1455)
IEEE DOI
1402
Affine normalization
BibRef
Wong, C.Y.[Chin Yeow],
Lin, S.C.F.[Stephen Ching-Feng],
Jiang, G.N.[Guan-Nan],
Kwok, N.M.[Ngai Ming],
Basic Shape Classification Using Spatially Normalised Fourier Shape
Signature,
ISVC13(II:435-445).
Springer DOI
1311
BibRef
Mohideen, F.[Farlin],
Rodrigo, R.[Ranga],
Curvature Based Robust Descriptors,
BMVC12(41).
DOI Link
1301
BibRef
Xu, Y.[Yong],
Quan, Y.H.[Yu-Hui],
Zhang, Z.M.[Zhu-Ming],
Ji, H.[Hui],
Fermuller, C.[Cornelia],
Nishigaki, M.[Morimichi],
DeMenthon, D.F.[Daniel F.],
Contour-based recognition,
CVPR12(3402-3409).
IEEE DOI
1208
contour patch detector for interesting features on the contour.
BibRef
Tepper, M.[Mariano],
Gómez, F.[Francisco],
Musé, P.[Pablo],
Almansa, A.[Andrés],
Mejail, M.[Marta],
Morphological Shape Context:
Semi-locality and Robust Matching in Shape Recognition,
CIARP09(129-136).
Springer DOI
0911
BibRef
Sánchez-Cruz, H.[Hermilo],
Rodríguez-Díaz, M.A.[Mario A.],
Coding Long Contour Shapes of Binary Objects,
CIARP09(45-52).
Springer DOI
0911
BibRef
Wang, Z.Z.[Zhao-Zhong],
Wang, L.[Lei],
Wide-Baseline Correspondence from Locally Affine Invariant Contour
Matching,
ICIAR11(I: 242-252).
Springer DOI
1106
BibRef
Wang, Z.Z.[Zhao-Zhong],
Xiao, H.[Han],
Dimension-free affine shape matching through subspace invariance,
CVPR09(2482-2487).
IEEE DOI
0906
configuration matrices of landmarks as the signature. 1D, 2D and 3D
data.
BibRef
Chen, C.[Cheng],
Zhuang, Y.T.[Yue-Ting],
Xiao, J.[Jun],
Wu, F.[Fei],
Adaptive and compact shape descriptor by progressive feature
combination and selection with boosting,
CVPR08(1-8).
IEEE DOI
0806
2-D shape descriptors.
BibRef
Gosciewska, K.[Katarzyna],
Frejlichowski, D.[Dariusz],
Silhouette-Based Action Recognition Using Simple Shape Descriptors,
ICCVG18(413-424).
Springer DOI
1810
BibRef
Gosciewska, K.[Katarzyna],
Frejlichowski, D.[Dariusz],
Hofman, R.[Radoslaw],
Application of the General Shape Analysis in Determining the Class of
Binary Object Silhouettes in the Video Surveillance System,
ICIAR15(473-480).
Springer DOI
1507
BibRef
Earlier: A2, A1, Only:
Application of 2D Fourier Descriptors and Similarity Measures to the
General Shape Analysis Problem,
ICCVG12(371-378).
Springer DOI
1210
BibRef
Frejlichowski, D.[Dariusz],
Three-Dimensional Object Representation Based on 2D UNL-Fourier Shape
Descriptor,
ICIAR13(389-396).
Springer DOI
1307
BibRef
Earlier:
A New Algorithm for 3D Shape Recognition by Means of the 2D Point
Distance Histogram,
CAIP11(II: 229-236).
Springer DOI
1109
BibRef
And:
A Three-Dimensional Shape Description Algorithm Based on Polar-Fourier
Transform for 3D Model Retrieval,
SCIA11(457-466).
Springer DOI
1105
BibRef
Earlier:
Analysis of Four Polar Shape Descriptors Properties in an Exemplary
Application,
ICCVG10(I: 376-383).
Springer DOI
1009
BibRef
Earlier:
An Algorithm for Binary Contour Objects Representation and Recognition,
ICIAR08(xx-yy).
Springer DOI
0806
Polar transform contour representation.
BibRef
Frejlichowski, D.[Dariusz],
An Experimental Evaluation of the Polar-Fourier Greyscale Descriptor in
the Recognition of Objects with Similar Silhouettes,
ICCVG12(363-370).
Springer DOI
1210
BibRef
Earlier:
An Experimental Comparison of Seven Shape Descriptors in the General
Shape Analysis Problem,
ICIAR10(I: 294-305).
Springer DOI
1006
BibRef
Frejlichowski, D.[Dariusz],
Identification of Erythrocyte Types in Greyscale MGG Images for
Computer-Assisted Diagnosis,
IbPRIA11(636-643).
Springer DOI
1106
BibRef
Earlier:
Pre-processing, Extraction and Recognition of Binary Erythrocyte Shapes
for Computer-Assisted Diagnosis Based on MGG Images,
ICCVG10(I: 368-375).
Springer DOI
1009
BibRef
Liu, Y.J.[Yong-Jin],
Chen, T.[Tao],
Chen, X.Y.[Xiao-Yu],
Chang, T.K.[Terry K.],
Yuen, M.M.F.[Matthew M. F.],
Planar Shape Matching and Feature Extraction Using Shape Profile,
GMP08(xx-yy).
Springer DOI
0804
BibRef
Giannarou, S.[Stamatia],
Stathaki, T.[Tania],
Shape Signature Matching for Object Identification Invariant to Image
Transformations and Occlusion,
CAIP07(710-717).
Springer DOI
0708
BibRef
Rusiñol, M.[Marçal],
Dosch, P.[Philippe],
Lladós, J.[Josep],
Boundary Shape Recognition Using Accumulated Length and Angle
Information,
IbPRIA07(II: 210-217).
Springer DOI
0706
BibRef
Lee, S.M.[Sang-Mook],
Abbott, A.L.[A. Lynn],
Clark, N.A.[Neil A.],
Araman, P.A.[Philip A.],
A Shape Representation for Planar Curves by Shape Signature Harmonic
Embedding,
CVPR06(II: 1940-1947).
IEEE DOI
0606
BibRef
Shah, R.[Ronak],
Mishra, A.[Anima],
Rakshit, S.[Subrata],
Robust Occluded Shape Recognition,
ACCV06(I:847-857).
Springer DOI
0601
BibRef
Bhalerao, A.H.[Abhir H.],
Wilson, R.G.[Roland G.],
Local Shape Modelling Using Warplets,
SCIA05(439-448).
Springer DOI
0506
BibRef
Loss, L.A.[Leandro A.],
Tozzi, C.L.[Clésio L.],
Discrimination of Natural Contours by Means of Time-Scale-Frequency
Decompositions,
ISVC05(684-689).
Springer DOI
0512
BibRef
Thakoor, N.[Ninad],
Gao, J.[Jean],
Shape Classifer Based on Generalized Probabilistic Descent Method with
Hidden Markov Descriptor,
ICCV05(I: 495-502).
IEEE DOI
0510
BibRef
Sun, K.B.[Kang B.],
Super, B.J.[Boaz J.],
Classification of Contour Shapes Using Class Segment Sets,
CVPR05(II: 727-733).
IEEE DOI
0507
BibRef
Dionisio, C.R.P.,
Kim, H.Y.[Hae Yong],
New features for affine-invariant shape classification,
ICIP04(IV: 2135-2138).
IEEE DOI
0505
BibRef
Yu, L.Y.[Liang-Yin],
Dyer, C.R.[Charles R.],
Perception-Based 2D Shape Modeling by Curvature Shaping,
VF01(272 ff.).
Springer DOI
0209
BibRef
Kyrki, V.,
Kamarainen, J.K.,
Kalviainen, H.,
Invariant Shape Recognition using Global Gabor Features,
SCIA01(O-Tu2).
0206
BibRef
Lazebnik, S.[Svetlana],
Sethi, A.[Amit],
Schmid, C.[Cordelia],
Kriegman, D.J.[David J.],
Ponce, J.[Jean],
Hebert, M.[Martial],
On Pencils of Tangent Planes and the Recognition of Smooth 3D Shapes
from Silhouettes,
ECCV02(III: 651 ff.).
Springer DOI
PS File.
0205
Define a signature.
BibRef
Ramakrishnan, S.,
Forte, P.,
MDL based Structural Interpretation of Images under Partial Occlusion,
BMVC01(Poster Session 2. and Demonstrations).
HTML Version. Kingston University
0110
BibRef
Ma, J.B.[Jian-Bo],
Ahuja, N.[Narendra],
Region Correspondence by Global Configuration Matching and Progressive
Delaunay Triangulation,
CVPR00(II: 637-642).
IEEE DOI
0005
BibRef
Krumm, J.[John],
Eigenfeatures for Planar Pose Measurement of Partially Occluded Objects,
CVPR96(55-60).
IEEE DOI Use extracted features of the contour.
BibRef
9600
Xia, F.,
Invariant property of contour: VPIUD with arbitrary neighbourhood,
ICIP95(II: 651-654).
IEEE DOI
9510
BibRef
Legrand, L.,
Khalil, K.,
Dipanda, A.,
Representing plane closed curves with Hartley descriptors,
ICIP95(III: 344-347).
IEEE DOI
9510
BibRef
Hanmandlu, M.,
Shantaram, V.,
Signature Based Recognition Of 2-D Occluded Objects,
ICPR92(I:595-598).
IEEE DOI
BibRef
9200
Al-Mohamad, H.A.,
3D shape classification using the R-transform,
ICPR90(I: 749-754).
IEEE DOI
9006
BibRef
Eom, K.B.,
Park, J.,
Recognition of shapes by statistical modeling of centroidal profile,
ICPR90(I: 860-864).
IEEE DOI
9006
BibRef
Hong, J.,
Wolfson, H.J.,
An Improved Model-Based Matching Method Using Footprints,
ICPR88(I: 72-78).
IEEE DOI
BibRef
8800
Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
2-D Contour Matching, Indexing or Hashing Techniques .