22.3.6.2.2 Emotion Recognition, Learning

Chapter Contents (Back)
Emotion Recognition. Learning. General learning issues. More sprcific Deep Learning:
See also Emotion Recognition, Deep Learning.

Rapp, V.[Vincent], Bailly, K.[Kevin], Senechal, T.[Thibaud], Prevost, L.[Lionel],
Multi-Kernel Appearance Model,
IVC(31), No. 8, August 2013, pp. 542-554.
Elsevier DOI 1306
Facial feature localization; Multiple-kernel learning; Two-stage classifiers; SIFT descriptor; Deformable model alignment; Gauss-Newton optimization BibRef

Senechal, T.[Thibaud], Rapp, V.[Vincent], Prevost, L.[Lionel],
Facial Feature Tracking for Emotional Dynamic Analysis,
ACIVS11(495-506).
Springer DOI 1108

See also Combining AAM coefficients with LGBP histograms in the multi-kernel SVM framework to detect facial action units. BibRef

Senechal, T.[Thibaud], Bailly, K.[Kevin], Prevost, L.[Lionel],
Automatic Facial Action Detection Using Histogram Variation Between Emotional States,
ICPR10(3752-3755).
IEEE DOI 1008
BibRef

Kim, D.H.[Dae Hoe], Baddar, W.J.[Wissam J.], Jang, J., Ro, Y.M.[Yong Man],
Multi-Objective Based Spatio-Temporal Feature Representation Learning Robust to Expression Intensity Variations for Facial Expression Recognition,
AffCom(10), No. 2, April 2019, pp. 223-236.
IEEE DOI 1906
BibRef
Earlier: A2, A1, A4, Only:
Learning Features Robust to Image Variations with Siamese Networks for Facial Expression Recognition,
MMMod17(I: 189-200).
Springer DOI 1701
Feature extraction, Face recognition, Robustness, Machine learning, Training, long short-term memory (LSTM) BibRef

Kim, H.I.[Hyung-Il], Lee, S.H.[Seung Ho], Ro, Y.M.[Yong Man],
Face image assessment learned with objective and relative face image qualities for improved face recognition,
ICIP15(4027-4031)
IEEE DOI 1512
BibRef
Earlier:
Adaptive feature extraction for blurred face images in facial expression recognition,
ICIP14(5971-5975)
IEEE DOI 1502
Face recognition. BibRef

Sariyanidi, E.[Evangelos], Gunes, H.[Hatice], Cavallaro, A.[Andrea],
Learning Bases of Activity for Facial Expression Recognition,
IP(26), No. 4, April 2017, pp. 1965-1978.
IEEE DOI 1704
Computational modeling BibRef

Zhao, S., Yao, H., Gao, Y., Ji, R., Ding, G.,
Continuous Probability Distribution Prediction of Image Emotions via Multitask Shared Sparse Regression,
MultMed(19), No. 3, March 2017, pp. 632-645.
IEEE DOI 1702
Distance measurement BibRef

Zhao, S., Ding, G., Gao, Y., Zhao, X., Tang, Y., Han, J., Yao, H., Huang, Q.,
Discrete Probability Distribution Prediction of Image Emotions with Shared Sparse Learning,
AffCom(11), No. 4, October 2020, pp. 574-587.
IEEE DOI 2011
Visualization, Feature extraction, Probability distribution, Training, Task analysis, Dictionaries, Learning systems, multi-feature fusion BibRef

Zhao, S., Yao, H., Gao, Y., Ding, G., Chua, T.,
Predicting Personalized Image Emotion Perceptions in Social Networks,
AffCom(9), No. 4, October 2018, pp. 526-540.
IEEE DOI 1812
Feature extraction, Social network services, Visualization, Bridges, Context, Meteorology, Clouds, Personalized image emotion, heypergraph learning BibRef

Xia, R., Liu, Y.,
A Multi-Task Learning Framework for Emotion Recognition Using 2D Continuous Space,
AffCom(8), No. 1, January 2017, pp. 3-14.
IEEE DOI 1703
Acoustics BibRef

Wu, B., Jia, J., Yang, Y., Zhao, P., Tang, J., Tian, Q.,
Inferring Emotional Tags From Social Images With User Demographics,
MultMed(19), No. 7, July 2017, pp. 1670-1684.
IEEE DOI 1706
Computer science, Correlation, Feature extraction, Learning systems, Social network services, Support vector machines, Visualization, Emotion, image, user, demographics BibRef

Ferrari, C., Lisanti, G., Berretti, S.[Stefano], del Bimbo, A.[Alberto],
A Dictionary Learning-Based 3D Morphable Shape Model,
MultMed(19), No. 12, December 2017, pp. 2666-2679.
IEEE DOI 1712
Face, Face recognition, Shape, Solid modeling, Training. emotion recognition BibRef

Li, X., Rao, Y., Xie, H., Lau, R.Y.K., Yin, J., Wang, F.L.,
Bootstrapping Social Emotion Classification with Semantically Rich Hybrid Neural Networks,
AffCom(8), No. 4, October 2017, pp. 428-442.
IEEE DOI 1712
Computational modeling, Education, Encoding, Feature extraction, Neural networks, Semantics, Unsupervised learning, transfer learning BibRef

Liu, W.F.[Wei-Feng], Zhang, L.[Lianbo], Tao, D.P.[Da-Peng], Cheng, J.[Jun],
Reinforcement online learning for emotion prediction by using physiological signals,
PRL(107), 2018, pp. 123-130.
Elsevier DOI 1805
Emotion prediction, Reinforcement learning, Online learning, Biometric surveillance BibRef

Xu, B., Fu, Y., Jiang, Y.G., Li, B., Sigal, L.,
Heterogeneous Knowledge Transfer in Video Emotion Recognition, Attribution and Summarization,
AffCom(9), No. 2, April 2018, pp. 255-270.
IEEE DOI 1806
Emotion recognition, Feature extraction, Image recognition, Knowledge transfer, Semantics, Training, Visualization, zero-shot learning BibRef

Schuller, D., Schuller, B.W.,
The Age of Artificial Emotional Intelligence,
Computer(51), No. 9, September 2018, pp. 38-46.
IEEE DOI 1810
Artificial intelligence, Emotion recognition, Machine learning, Learning systems, Artificial Emotional Intelligence, future of AI BibRef

Zhang, H.M.[Hai-Min], Xu, M.[Min],
Recognition of Emotions in User-Generated Videos through Frame-Level Adaptation and Emotion Intensity Learning,
MultMed(25), 2023, pp. 881-891.
IEEE DOI 2303
BibRef
Earlier:
Recognition of Emotions in User-Generated Videos With Kernelized Features,
MultMed(20), No. 10, October 2018, pp. 2824-2835.
IEEE DOI 1810
Videos, Feature extraction, Emotion recognition, Task analysis, Semantics, Adaptation models, Adversarial domain adaptation, video emotion recognition. discrete Fourier transforms, feature extraction, image classification, image representation, kernel method BibRef

Zhang, Y., Qian, Y., Wu, D., Hossain, M.S., Ghoneim, A., Chen, M.,
Emotion-Aware Multimedia Systems Security,
MultMed(21), No. 3, March 2019, pp. 617-624.
IEEE DOI 1903
authorisation, cloud computing, data privacy, emotion recognition, learning (artificial intelligence), multimedia systems, social robot BibRef

Wang, X.H.[Xiao-Hua], Peng, M.[Muzi], Pan, L.J.[Li-Juan], Hu, M.[Min], Jin, C.H.[Chun-Hua], Ren, F.[Fuji],
Two-level attention with two-stage multi-task learning for facial emotion recognition,
JVCIR(62), 2019, pp. 217-225.
Elsevier DOI 1908
BibRef
Earlier:
Two-Level Attention with Multi-task Learning for Facial Emotion Estimation,
MMMod19(I:227-238).
Springer DOI 1901
Facial emotion recognition, Attention mechanism, Multi-task learning, Valence-arousal dimension BibRef

Yan, Y.X.[Yi-Xin], Li, C.Y.[Chen-Yang], Meng, S.L.[Shao-Liang],
Emotion recognition based on sparse learning feature selection method for social communication,
SIViP(13), No. 7, October 2019, pp. 1253-1257.
WWW Link. 1911
BibRef

Canales, L., Strapparava, C., Boldrini, E., Martínez-Barco, P.,
Intensional Learning to Efficiently Build Up Automatically Annotated Emotion Corpora,
AffCom(11), No. 2, April 2020, pp. 335-347.
IEEE DOI 2006
Semantics, Standards, Computational modeling, Emotion recognition, Proposals, Reliability, Affective computing, corpora annotation, textual emotion recognition BibRef

Yu, L., Wang, J., Lai, K.R., Zhang, X.,
Pipelined Neural Networks for Phrase-Level Sentiment Intensity Prediction,
AffCom(11), No. 3, July 2020, pp. 447-458.
IEEE DOI 2008
Artificial neural networks, Predictive models, Switches, Learning systems, Linear regression, Prediction algorithms, neural network BibRef

Yannakakis, G.N., Cowie, R., Busso, C.,
The Ordinal Nature of Emotions: An Emerging Approach,
AffCom(12), No. 1, January 2021, pp. 16-35.
IEEE DOI 2103
Affective computing, Psychology, Reliability theory, Computational modeling, Task analysis, Tools, Emotion annotation, preference learning BibRef

Li, H.Y.[Hang-Yu], Wang, N.N.[Nan-Nan], Yang, X.[Xi], Gao, X.B.[Xin-Bo],
CRS-CONT: A Well-Trained General Encoder for Facial Expression Analysis,
IP(31), 2022, pp. 4637-4650.
IEEE DOI 2207
Face recognition, Task analysis, Feature extraction, Training data, Training, Representation learning, Data mining, coarse-contrastive learning BibRef

Wang, S.F.[Shang-Fei], Peng, G.Z.[Guo-Zhu], Zheng, Z.Q.[Zhuang-Qiang], Xu, Z.W.[Zhi-Wei],
Capturing Emotion Distribution for Multimedia Emotion Tagging,
AffCom(12), No. 4, October 2021, pp. 821-831.
IEEE DOI 2112
Tagging, Streaming media, Multimedia databases, Media, Computational modeling, Adversarial machine learning, joint label distribution BibRef

Yang, J.Y.[Jing-Yuan], Li, J.[Jie], Li, L.[Leida], Wang, X.M.[Xiu-Mei], Ding, Y.X.[Yu-Xuan], Gao, X.B.[Xin-Bo],
Seeking Subjectivity in Visual Emotion Distribution Learning,
IP(31), 2022, pp. 5189-5202.
IEEE DOI 2208
Visualization, Appraisal, Psychology, Feature extraction, Task analysis, Prediction algorithms, Annotations, memory network BibRef

Heimerl, A.[Alexander], Weitz, K.[Katharina], Baur, T.[Tobias], André, E.[Elisabeth],
Unraveling ML Models of Emotion With NOVA: Multi-Level Explainable AI for Non-Experts,
AffCom(13), No. 3, July 2022, pp. 1155-1167.
IEEE DOI 2209
Annotations, Machine learning, Computational modeling, Tools, Predictive models, Data models, Databases, annotation tools BibRef

Dindar, M.[Muhterem], Järvelä, S.[Sanna], Ahola, S.[Sara], Huang, X.H.[Xiao-Hua], Zhao, G.Y.[Guo-Ying],
Leaders and Followers Identified by Emotional Mimicry During Collaborative Learning: A Facial Expression Recognition Study on Emotional Valence,
AffCom(13), No. 3, July 2022, pp. 1390-1400.
IEEE DOI 2209
Collaboration, Collaborative work, Task analysis, Emotion recognition, Face recognition, Leadership, multimodality BibRef

Lo, L.[Ling], Xie, H.X.[Hong-Xia], Shuai, H.H.[Hong-Han], Cheng, W.H.[Wen-Huang],
Facial Chirality: From Visual Self-Reflection to Robust Facial Feature Learning,
MultMed(24), 2022, pp. 4275-4284.
IEEE DOI 2210
Faces, Feature extraction, Transformers, Reflection, Robustness, Facial features, Face recognition, Facial expression, vision transformer BibRef

Lazarou, I.[Ilias], Kesidis, A.L.[Anastasios L.], Hloupis, G.[George], Tsatsaris, A.[Andreas],
Panic Detection Using Machine Learning and Real-Time Biometric and Spatiotemporal Data,
IJGI(11), No. 11, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Deng, J.[Jiawen], Ren, F.[Fuji],
Multi-Label Emotion Detection via Emotion-Specified Feature Extraction and Emotion Correlation Learning,
AffCom(14), No. 1, January 2023, pp. 475-486.
IEEE DOI 2303
Correlation, Feature extraction, Task analysis, Sentiment analysis, Emotion recognition, Context modeling, Multi-label, multi-label focal loss BibRef

Xu, Z.W.[Zhi-Wei], Wang, S.F.[Shang-Fei],
Emotional Attention Detection and Correlation Exploration for Image Emotion Distribution Learning,
AffCom(14), No. 1, January 2023, pp. 357-369.
IEEE DOI 2303
Feature extraction, Visualization, Semantics, Mathematical model, Task analysis, Prediction algorithms, Correlation, graph convolutional network BibRef

Karumbaiah, S.[Shamya], Baker, R.S.[Ryan S.], Ocumpaugh, J.[Jaclyn], Andres, J.M.A.L.[Juliana Ma. Alexandra L.],
A Re-Analysis and Synthesis of Data on Affect Dynamics in Learning,
AffCom(14), No. 2, April 2023, pp. 1696-1710.
IEEE DOI 2306
Context modeling, Predictive models, Urban areas, Analytical models, Statistics, Sociology, Affective computing, modeling human emotion BibRef

Bisogni, C.[Carmen], Cimmino, L.[Lucia], de Marsico, M.[Maria], Hao, F.[Fei], Narducci, F.[Fabio],
Emotion recognition at a distance: The robustness of machine learning based on hand-crafted facial features vs deep learning models,
IVC(136), 2023, pp. 104724.
Elsevier DOI 2308
Emotion recognition, Facial expression, Expression recognition at a distance, Deep learning, Mediapipe BibRef

Zhang, T.Y.[Tian-Yi], El Ali, A.[Abdallah], Wang, C.[Chen], Hanjalic, A.[Alan], Cesar, P.[Pablo],
Weakly-Supervised Learning for Fine-Grained Emotion Recognition Using Physiological Signals,
AffCom(14), No. 3, July 2023, pp. 2304-2322.
IEEE DOI 2310
BibRef

Bota, P.[Patrícia], Zhang, T.Y.[Tian-Yi], El Ali, A.[Abdallah], Fred, A.[Ana], da Silva, H.P.[Hugo Plácido], Cesar, P.[Pablo],
Group Synchrony for Emotion Recognition Using Physiological Signals,
AffCom(14), No. 4, October 2023, pp. 2614-2625.
IEEE DOI 2312
BibRef

Zhang, T.Y.[Tian-Yi], El Ali, A.[Abdallah], Hanjalic, A.[Alan], Cesar, P.[Pablo],
Few-Shot Learning for Fine-Grained Emotion Recognition Using Physiological Signals,
MultMed(25), 2023, pp. 3773-3787.
IEEE DOI 2310
BibRef

Yang, K.[Kailai], Zhang, T.[Tianlin], Alhuzali, H.[Hassan], Ananiadou, S.[Sophia],
Cluster-Level Contrastive Learning for Emotion Recognition in Conversations,
AffCom(14), No. 4, October 2023, pp. 3269-3280.
IEEE DOI Code:
WWW Link. 2312
BibRef

Zhang, X.Q.[Xiao-Qin], Li, M.[Min], Lin, S.[Sheng], Xu, H.[Hang], Xiao, G.[Guobao],
Transformer-Based Multimodal Emotional Perception for Dynamic Facial Expression Recognition in the Wild,
CirSysVideo(34), No. 5, May 2024, pp. 3192-3203.
IEEE DOI 2405
Feature extraction, Transformers, Face recognition, Emotion recognition, Visualization, Data mining, deep learning BibRef

Shi, G.[Ge], Deng, S.[Sinuo], Wang, B.[Bo], Feng, C.[Chong], Zhuang, Y.[Yan], Wang, X.M.[Xiao-Mei],
One for All: A Unified Generative Framework for Image Emotion Classification,
CirSysVideo(34), No. 8, August 2024, pp. 7057-7068.
IEEE DOI 2408
Task analysis, IEC, Emotion recognition, Semantics, Data models, Adaptation models, Psychology, Pre-training model, multi-modal learning BibRef

Tang, X.Y.[Xiao-Yu], Feng, J.[Jiewen], Huang, J.[Jinbo], Xiang, Q.C.[Qiu-Chi], Xue, B.H.[Bo-Huan],
A lightweight and continuous dimensional emotion analysis system of facial expression recognition under complex background,
JVCIR(103), 2024, pp. 104260.
Elsevier DOI Code:
WWW Link. 2409
Artificial intelligence, Deep learning, Embedding system, Facial expression recognition, Intelligent control BibRef

Hosseini, I.[Iman], Hossain, M.Z.[Md Zakir], Zhang, Y.H.[Yu-Hao], Rahman, S.[Shafin],
Deep learning model for simultaneous recognition of quantitative and qualitative emotion using visual and bio-sensing data,
CVIU(248), 2024, pp. 104121.
Elsevier DOI Code:
WWW Link. 2409
Emotion recognition, Deep learning, Physiological signals, End-to-end learning, Human facial expressions BibRef

Su, X.X.[Xin-Xin], Huang, Z.[Zhen], Su, Y.X.[Yi-Xin], Trisedya, B.D.[Bayu Distiawan], Dou, Y.[Yong], Zhao, Y.X.[Yun-Xiang],
Hierarchical Shared Encoder With Task-Specific Transformer Layer Selection for Emotion-Cause Pair Extraction,
AffCom(15), No. 4, October 2024, pp. 1934-1948.
IEEE DOI 2412
Task analysis, Feature extraction, Emotion recognition, Benchmark testing, Affective computing, Transformers, Tagging, BERT, joint learning BibRef

Singh, G.[Gargi], Brahma, D.[Dhanajit], Rai, P.[Piyush], Modi, A.[Ashutosh],
Text-Based Fine-Grained Emotion Prediction,
AffCom(15), No. 2, April 2024, pp. 405-416.
IEEE DOI 2406
Task analysis, Predictive models, Transformers, Emotion recognition, Bit error rate, Transfer learning, transformers BibRef

Ryumina, E.[Elena], Ryumin, D.[Dmitry], Axyonov, A.[Alexandr], Ivanko, D.[Denis], Karpov, A.[Alexey],
Multi-corpus emotion recognition method based on cross-modal gated attention fusion,
PRL(190), 2025, pp. 192-200.
Elsevier DOI 2503
Multimodal emotion recognition, Encoders-decoder, Context-independent features, Gated feature fusion, Affective computing BibRef

Dresvyanskiy, D.[Denis], Markitantov, M.[Maxim], Yu, J.W.[Jia-Wei], Kaya, H.[Heysem], Karpov, A.[Alexey],
Multi-modal Arousal and Valence Estimation under Noisy Conditions,
ABAW24(4773-4783)
IEEE DOI 2410
Deep learning, Emotion recognition, Protocols, Estimation, Transformers, Valence-Arousal Estimation, BibRef

Chen, C.[Chuang], Sun, X.[Xiao], Liu, Z.[Zhi],
UniEmoX: Cross-Modal Semantic-Guided Large-Scale Pretraining for Universal Scene Emotion Perception,
IP(34), 2025, pp. 4691-4705.
IEEE DOI Code:
WWW Link. 2508
Visualization, Training, Psychology, Feature extraction, Semantics, Optimization, Data mining, Contrastive learning, Sun, vision transformer BibRef


Gowda, S.N.[Shreyank N], Gao, B.[Boyan], Clifton, D.A.[David A.],
FE-Adapter: Adapting Image-Based Emotion Classifiers to Videos,
FG24(1-6)
IEEE DOI 2408
Training, Adaptation models, Emotion recognition, Analytical models, Accuracy, Face recognition, Transfer learning BibRef

Achlioptas, P.[Panos], Ovsjanikov, M.[Maks], Guibas, L.J.[Leonidas J.], Tulyakov, S.[Sergey],
Affection: Learning Affective Explanations for Real-World Visual Data,
CVPR23(6641-6651)
IEEE DOI 2309
BibRef

Xue, F.L.[Fang-Lei], Sun, Y.F.[Yi-Fan], Yang, Y.[Yi],
Exploring Expression-related Self-supervised Learning and Spatial Reserve Pooling for Affective Behaviour Analysis,
ABAW23(5701-5708)
IEEE DOI 2309
BibRef

Kollias, D.[Dimitrios],
ABAW: Learning from Synthetic Data & Multi-task Learning Challenges,
ABAWE22(157-172).
Springer DOI 2304
BibRef

Zhang, T.G.[Teng-Gan], Liu, C.H.[Chuan-He], Liu, X.L.[Xiao-Long], Liu, Y.C.[Yu-Chen], Meng, L.[Liyu], Sun, L.[Lei], Jiang, W.Q.[Wen-Qiang], Zhang, F.Y.[Feng-Yuan], Zhao, J.M.[Jin-Ming], Jin, Q.[Qin],
Multi-task Learning Framework for Emotion Recognition In-the-wild,
ABAWE22(143-156).
Springer DOI 2304
BibRef

Min, S.[Seongjae], Yang, J.[Junseok], Lim, S.[Sejoon],
Emotion Recognition Using Transformers with Random Masking,
ABAW24(4860-4865)
IEEE DOI 2410
Deep learning, Emotion recognition, Gold, Computational modeling, Estimation, Transformer cores BibRef

Savchenko, A.V.[Andrey V.],
MT-emotieffnet for Multi-task Human Affective Behavior Analysis and Learning from Synthetic Data,
ABAWE22(45-59).
Springer DOI 2304
BibRef

Gera, D.[Darshan], Kumar, B.V.R.[Bobbili Veerendra Raj], Badveeti, N.S.K.[Naveen Siva Kumar], Balasubramanian, S.,
Facial Affect Recognition Using Semi-supervised Learning with Adaptive Threshold,
ABAWE22(31-44).
Springer DOI 2304
BibRef

Madapana, N.[Naveen], Wachs, J.[Juan],
ZF-SSE: A Unified Sequential Semantic Encoder for Zero-Few-Shot Learning,
FG21(1-8)
IEEE DOI 2303
Learning systems, Emotion recognition, Face recognition, Semantics, Gesture recognition, Object recognition BibRef

Jegorova, M.[Marija], Petridis, S.[Stavros], Pantic, M.[Maja],
SS-VAERR: Self-Supervised Apparent Emotional Reaction Recognition from Video,
FG23(1-8)
IEEE DOI 2303
Emotion recognition, Annotations, Face recognition, Self-supervised learning, Gesture recognition, Task analysis BibRef

Kim, D.[Daeha], Song, B.C.[Byung Cheol],
Emotion-aware Multi-view Contrastive Learning for Facial Emotion Recognition,
ECCV22(XIII:178-195).
Springer DOI 2211
BibRef

Deng, D.[Didan], Shi, B.E.[Bertram E.],
Estimating Multiple Emotion Descriptors by Separating Description and Inference,
ABAW22(2391-2399)
IEEE DOI 2210
Space vehicles, Representation learning, Visualization, Emotion recognition, Gold, Face recognition, Psychology BibRef

Jia, M.L.[Meng-Lin], Wu, Z.[Zuxuan], Reiter, A.[Austin], Cardie, C.[Claire], Belongie, S.[Serge], Lim, S.N.[Ser-Nam],
Exploring Visual Engagement Signals for Representation Learning,
ICCV21(4186-4197)
IEEE DOI 2203
Representation learning, Visualization, Emotion recognition, Social networking (online), Computational modeling, Vision + language BibRef

Vonikakis, V.[Vassilios], Dexter, N.Y.R.[Neo Yuan Rong], Winkler, S.[Stefan],
Morphset: Augmenting Categorical Emotion Datasets With Dimensional Affect Labels Using Face Morphing,
ICIP21(2713-2717)
IEEE DOI 2201
Emotion recognition, Annotations, Face recognition, Image processing, Computational modeling, Supervised learning BibRef

Sanchez, E.[Enrique], Tellamekala, M.K.[Mani Kumar], Valstar, M.[Michel], Tzimiropoulos, G.[Georgios],
Affective Processes: stochastic modelling of temporal context for emotion and facial expression recognition,
CVPR21(9070-9080)
IEEE DOI 2111
Emotion recognition, Uncertainty, Face recognition, Supervised learning, Stochastic processes, Estimation, Predictive models BibRef

Yang, J.Y.[Jing-Yuan], Li, J.[Jie], Li, L.[Leida], Wang, X.M.[Xiu-Mei], Gao, X.B.[Xin-Bo],
A Circular-Structured Representation for Visual Emotion Distribution Learning,
CVPR21(4235-4244)
IEEE DOI 2111
Visualization, Social networking (online), Psychology, Task analysis BibRef

d'Apolito, S.[Stefano], Paudel, D.P.[Danda Pani], Huang, Z.W.[Zhi-Wu], Romero, A.[Andrés], Van Gool, L.J.[Luc J.],
GANmut: Learning Interpretable Conditional Space for Gamut of Emotions,
CVPR21(568-577)
IEEE DOI 2111
Training, Image synthesis, Computational modeling, Aerospace electronics, Search problems BibRef

González-Meneses, Y.N.[Yesenia N.], Guerrero-García, J.[Josefina], Reyes-García, C.A.[Carlos Alberto], Zatarain-Cabada, R.[Ramón],
Automatic Recognition of Learning-Centered Emotions,
MCPR21(33-43).
Springer DOI 2108
BibRef

Diamantini, C.[Claudia], Mircoli, A.[Alex], Potena, D.[Domenico], Storti, E.[Emanuele],
Automatic Annotation of Corpora For Emotion Recognition Through Facial Expressions Analysis,
ICPR21(5650-5657)
IEEE DOI 2105
Emotion recognition, Sentiment analysis, Gold, Machine learning algorithms, Annotations, dataset for sentiment analysis BibRef

Wei, Z., Zhang, J., Lin, Z., Lee, J., Balasubramanian, N., Hoai, M., Samaras, D.,
Learning Visual Emotion Representations From Web Data,
CVPR20(13103-13112)
IEEE DOI 2008
Visualization, Feature extraction, Emotion recognition, Task analysis, Taxonomy, Training, Noise measurement BibRef

Zhan, C., She, D., Zhao, S., Cheng, M., Yang, J.,
Zero-Shot Emotion Recognition via Affective Structural Embedding,
ICCV19(1151-1160)
IEEE DOI 2004
emotion recognition, feature extraction, learning (artificial intelligence), psychology, BibRef

Jia, X.[Xiuyi], Zheng, X.[Xiang], Li, W.W.[Wei-Wei], Zhang, C.Q.[Chang-Qing], Li, Z.C.[Ze-Chao],
Facial Emotion Distribution Learning by Exploiting Low-Rank Label Correlations Locally,
CVPR19(9833-9842).
IEEE DOI 2002
BibRef

Wang, C., Zeng, J., Shan, S., Chen, X.,
Multi-Task Learning of Emotion Recognition and Facial Action Unit Detection with Adaptively Weights Sharing Network,
ICIP19(56-60)
IEEE DOI 1910
facial expression recognition, emotion classification, facial action unit detection, multi-task learning BibRef

Aly, S.F.[Sherin F.], Abbott, A.L.[A. Lynn],
Facial Emotion Recognition with Varying Poses and/or Partial Occlusion Using Multi-stage Progressive Transfer Learning,
SCIA19(101-112).
Springer DOI 1906
BibRef

Nguyen, D., Nguyen, K., Sridharan, S., Abbasnejad, I., Dean, D., Fookes, C.,
Meta Transfer Learning for Facial Emotion Recognition,
ICPR18(3543-3548)
IEEE DOI 1812
Task analysis, Emotion recognition, Face recognition, Feature extraction, Face, Computer architecture BibRef

Torres-Valencia, C., Alvarez-Meza, A., Orozco-Gutierrez, A.,
Emotion Assessment Using Adaptive Learning-Based Relevance Analysis,
ICIAR18(193-200).
Springer DOI 1807
BibRef

Sokolov, D., Patkin, M.,
Real-Time Emotion Recognition on Mobile Devices,
FG18(787-787)
IEEE DOI 1806
Emotion recognition, Face recognition, Feature extraction, Machine learning, Mobile handsets, Neural networks, mobile devices BibRef

Lai, Y.H., Lai, S.H.,
Emotion-Preserving Representation Learning via Generative Adversarial Network for Multi-View Facial Expression Recognition,
FG18(263-270)
IEEE DOI 1806
Emotion recognition, Face, Face recognition, Feature extraction, Generators, face frontalization, pose variation BibRef

Saxen, F., Werner, P., Al-Hamadi, A.,
Real vs. Fake Emotion Challenge: Learning to Rank Authenticity from Facial Activity Descriptors,
EmotionComp17(3073-3078)
IEEE DOI 1802
Computational modeling, Estimation, Gold, Support vector machines, Training, Videos BibRef

Zhao, S.C.[Si-Cheng], Yao, H.X.[Hong-Xun], Jiang, X.L.[Xiao-Lei], Sun, X.S.[Xiao-Shuai],
Predicting discrete probability distribution of image emotions,
ICIP15(2459-2463)
IEEE DOI 1512
Emotion Distribution Prediction; Image Emotion; Sparse Learning BibRef

Acar, E.[Esra], Hopfgartner, F.[Frank], Albayrak, S.[Sahin],
Understanding Affective Content of Music Videos through Learned Representations,
MMMod14(I: 303-314).
Springer DOI 1405
BibRef

Rojas Quiñones, M.[Mario], Masip, D.[David], Vitrià, J.[Jordi],
Predicting dominance judgements automatically: A machine learning approach,
FG11(939-944).
IEEE DOI 1103
Facial features for social dominance estimation. BibRef

Chang, K.Y.[Kai-Yueh], Liu, T.L.[Tyng-Luh], Lai, S.H.[Shang-Hong],
Learning partially-observed hidden conditional random fields for facial expression recognition,
CVPR09(533-540).
IEEE DOI 0906
BibRef

Chapter on Face Recognition, Human Pose, Detection, Tracking, Gesture Recognition, Fingerprints, Biometrics continues in
Emotion Recognition, Deep Learning .


Last update:Sep 10, 2025 at 12:00:25