Karssemeijer, N.,
Stochastic model for automated detection of calcifications in digital
mammograms,
IVC(10), No. 6, July-August 1992, pp. 369-375.
Elsevier DOI
0401
BibRef
Miller, P.[Peter],
Astley, S.[Sue],
Classification of Breast Tissue by Texture Analysis,
IVC(10), No. 5, June 1992, pp. 277-282.
Elsevier DOI
BibRef
9206
Earlier:
BMVC91(xx-yy).
PDF File.
9109
BibRef
Miller, P.[Peter],
Astley, S.[Sue],
Automated detection of Breast Asymmetries,
BMVC93(xx-yy).
PDF File.
9309
BibRef
Sahiner, B.,
Chan, H.P.[Heang-Ping],
Petrick, N.,
Wei, D.T.[Da-Tong],
Helvie, M.A.,
Adler, D.D.,
Goodsitt, M.M.,
Classification of mass and normal breast tissue: a convolution neural
network classifier with spatial domain and texture images,
MedImg(15), No. 5, October 1996, pp. 598-610.
IEEE Top Reference.
0203
BibRef
Dhawan, A.P.,
Chitre, Y.,
Kaiser-Bonasso, C.,
Analysis of mammographic microcalcifications using gray-level image
structure features,
MedImg(15), No. 3, June 1996, pp. 246-259.
IEEE Top Reference.
0203
BibRef
Strickland, R.N.,
Hahn, H.I.[Hee Il],
Wavelet transforms for detecting microcalcifications in mammograms,
MedImg(15), No. 2, April 1996, pp. 218-229.
IEEE Top Reference.
0203
BibRef
Earlier:
Wavelet transform matched filters for the detection and classification
of microcalcifications in mammography,
ICIP95(I: 422-425).
IEEE DOI
9510
BibRef
Earlier:
Wavelet transforms for detecting microcalcifications in mammography,
ICIP94(I: 402-406).
IEEE DOI
9411
BibRef
Marchette, D.J.,
Lorey, R.A.,
Priebe, C.E.,
An Analysis of Local Feature-Extraction in Digital Mammography,
PR(30), No. 9, September 1997, pp. 1547-1554.
Elsevier DOI
9708
BibRef
Heine, J.J.,
Deans, S.R.,
Cullers, D.K.,
Stauduhar, R.,
Clarke, L.P.,
Multiresolution statistical analysis of high-resolution digital
mammograms,
MedImg(16), No. 5, October 1997, pp. 503-515.
IEEE Top Reference.
0205
BibRef
Kim, J.K.,
Park, J.M.,
Song, K.S.,
Park, H.W.,
Detection of Clustered Microcalcifications on Mammograms
Using Surrounding Region Dependence Method and Artificial Neural Network,
VLSIVideo(18), No. 3, April 1998, pp. 251-262.
9806
See also Adaptive Mammographic Image Enhancement Using First Derivative and Local Statistics.
BibRef
Lee, Y.J.[Yong Jin],
Park, J.M.[Jeong Mi],
Park, H.W.[Hyun Wook],
Mammographic mass detection by adaptive thresholding and region growing,
IJIST(11), No. 5, 2000, pp. 340-346.
WWW Link.
0110
BibRef
Kim, J.K.[Jong Kook],
Park, H.W.[Hyun Wook],
Statistical textural features for detection of microcalcifications in
digitized mammograms,
MedImg(18), No. 3, March 1999, pp. 231-238.
IEEE Top Reference.
0110
BibRef
Earlier:
Surrounding Region Dependence Method For Detection Of
Clustered Microcalcifications on Mammograms,
ICIP97(III: 535-538).
IEEE DOI
9710
BibRef
Bruce, L.M.,
Adhami, R.R.,
Classifying mammographic mass shapes using the wavelet transform
modulus-maxima method,
MedImg(18), No. 12, December 1999, pp. 1170-1177.
IEEE Top Reference.
0110
BibRef
Mudigonda, N.R.,
Rangayyan, R.,
Desautels, J.E.L.,
Gradient and texture analysis for the classification of mammographic
masses,
MedImg(19), No. 10, October 2000, pp. 1032-1043.
IEEE Top Reference.
0110
BibRef
Mudigonda, N.R.,
Rangayyan, R.M.,
Desautels, J.E.L.,
Detection of breast masses in mammograms by density slicing and texture
flow-field analysis,
MedImg(20), No. 12, December 2001, pp. 1215-1227.
IEEE Top Reference.
0201
BibRef
Blot, L.[Lilian],
Davis, A.[Anne],
Holubinka, M.[Mike],
Martí, R.[Robert],
Zwiggelaar, R.[Reyer],
Automated Quality Assurance Applied to Mammographic Imaging,
JASP(2002), No. 7, July 2002, pp. 736-745.
0208
BibRef
Marti, R.,
Zwiggelaar, R.,
Rubin, C.M.E.,
Tracking Mammographic Structures Over Time,
BMVC01(Poster Session 1).
HTML Version. University of Portsmouth
0110
BibRef
Zwiggelaar, R.,
Parr, T.C., and
Taylor, C.J.,
Finding Orientated Line Patterns in Digital Mammographic Images,
BMVC96(Applications).
9608
University of Manchester
BibRef
Zwiggelaar, R.,
Separating Background Texture and Image Structure in Mammograms,
BMVC99(Posters/Exhibition/Demos).
PDF File.
BibRef
9900
Zwiggelaar, R.,
Astley, S.M.,
Boggis, C.R.M.,
Taylor, C.J.,
Linear Structures in Mammographic Images: Detection and Classification,
MedImg(23), No. 9, September 2004, pp. 1077-1086.
IEEE Abstract.
0409
BibRef
Astley, S.M.,
Taylor, C.J.,
Combining cues for mammographic abnormalities,
BMVC90(xx-yy).
PDF File.
9009
BibRef
Parr, T.C.,
Zwiggelaar, R.,
Taylor, C.J.,
Astley, S.M.,
Boggis, C.R.M.,
Detecting Stellate Lesions in Mammograms via Statistical Models,
BMVC97(xx-yy).
HTML Version.
0209
BibRef
Rocha Ferreira, C.B.[Cristiane Bastos],
Borges, D.L.[Díbio Leandro],
Analysis of mammogram classification using a wavelet transform
decomposition,
PRL(24), No. 7, April 2003, pp. 973-982.
Elsevier DOI
0301
BibRef
Lemaur, G.,
Drouiche, K.,
DeConinck, J.,
Highly regular wavelets for the detection of clustered
microcalcifications in mammograms,
MedImg(22), No. 3, March 2003, pp. 393-401.
IEEE Abstract.
0306
BibRef
Penedo, M.,
Pearlman, W.A.,
Tahoces, P.G.,
Souto, M.,
Vidal, J.J.,
Region-based wavelet coding methods for digital mammography,
MedImg(22), No. 10, October 2003, pp. 1288-1296.
IEEE Abstract.
0310
BibRef
And:
Correction:
MedImg(22), No. 12, December 2003, pp. 1575-1575.
IEEE Abstract.
0401
BibRef
Earlier:
Embedded wavelet region-based coding methods applied to digital
mammography,
ICIP03(III: 197-200).
IEEE DOI
0312
BibRef
Soltanian-Zadeh, H.[Hamid],
Rafiee-Rad, F.[Farshid],
Pourabdollah-Nejad, S.[Siamak],
Comparison of multiwavelet, wavelet, Haralick, and shape features for
microcalcification classification in mammograms,
PR(37), No. 10, October 2004, pp. 1973-1986.
Elsevier DOI
0409
BibRef
Rashed, E.A.[Essam A.],
Ismail, I.A.[Ismail A.],
Zaki, S.I.[Sherif I.],
Multiresolution mammogram analysis in multilevel decomposition,
PRL(28), No. 2, 15 January 2007, pp. 286-292.
Elsevier DOI
0611
Digital mammogram; Discrete wavelets transform; Features extraction;
Breast cancer diagnosis
BibRef
Grim, J.,
Somol, P.,
Haindl, M.,
Danes, J.,
Computer-Aided Evaluation of Screening Mammograms Based on Local
Texture Models,
IP(18), No. 4, April 2009, pp. 765-773.
IEEE DOI
0903
BibRef
Haindl, M.[Michal],
Mikes, S.[Stanislav],
Unsupervised mammograms segmentation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Li, Y.F.[Yan-Feng],
Chen, H.[Houjin],
Yang, Y.Y.[Yong-Yi],
Yang, N.[Na],
Pectoral muscle segmentation in mammograms based on homogenous texture
and intensity deviation,
PR(46), No. 3, March 2013, pp. 681-691.
Elsevier DOI
1212
Homogeneous texture; Image segmentation; Intensity deviation; Kalman
filter; Mammogram; Pectoral muscle
BibRef
Li, X.Z.[Xi-Zhao],
Williams, S.[Simon],
Bottema, M.J.[Murk J.],
Background intensity independent texture features for assessing breast
cancer risk in screening mammograms,
PRL(34), No. 9, July 2013, pp. 1053-1062.
Elsevier DOI
1305
Intensity independent; Mammogram; Density classification; Breast
cancer; Risk evaluation; Subspace ensemble
BibRef
Li, X.Z.[Xi-Zhao],
Williams, S.[Simon],
Bottema, M.J.[Murk J.],
Texture and region dependent breast cancer risk assessment from
screening mammograms,
PRL(36), No. 1, 2014, pp. 117-124.
Elsevier DOI
1312
Texture analysis
BibRef
Li, X.Z.[Xi-Zhao],
Williams, S.[Simon],
Bottema, M.J.[Murk J.],
Constructing and applying higher order textons: Estimating breast
cancer risk,
PR(47), No. 3, 2014, pp. 1375-1382.
Elsevier DOI
1312
Texture analysis
BibRef
Prabukumar, M.[Manoharan],
Prasenjit, N.[Nandi],
Sangeetha, V.[Vadivelu],
Feature extraction method for breast cancer diagnosis in digital
mammograms using multi-resolution transformations and SVM-fuzzy logic
classifier,
IJCVR(3), No. 3, 2013, pp. 279-292.
DOI Link
1402
BibRef
Suruliandi, A.,
Murugeswari, G.,
Rani, P.A.J.[P. Arockia Jansi],
Empirical Evaluation of Generic Weighted Cubicle Pattern and LBP
Derivatives for Abnormality Detection in Mammogram Images,
IJIG(15), No. 01, 2015, pp. 1550001.
DOI Link
1503
BibRef
Li, Y.F.[Yan-Feng],
Chen, H.[Houjin],
Rohde, G.K.[Gustavo Kunde],
Yao, C.[Chang],
Cheng, L.[Lin],
Texton analysis for mass classification in mammograms,
PRL(52), No. 1, 2015, pp. 87-93.
Elsevier DOI
1412
Breast cancer
BibRef
Peikari, M.,
Gangeh, M.J.,
Zubovits, J.,
Clarke, G.,
Martel, A.L.,
Triaging Diagnostically Relevant Regions from Pathology Whole Slides
of Breast Cancer: A Texture Based Approach,
MedImg(35), No. 1, January 2016, pp. 307-315.
IEEE DOI
1601
Dictionaries
BibRef
Li, Y.F.[Yan-Feng],
Chen, H.[Houjin],
Wei, X.[Xueye],
Peng, Y.H.[Ya-Hui],
Cheng, L.[Lin],
Mass classification in mammograms based on two-concentric masks and
discriminating texton,
PR(60), No. 1, 2016, pp. 648-656.
Elsevier DOI
1609
Concentric mask
BibRef
Pardo, A.,
Real, E.,
Krishnaswamy, V.,
López-Higuera, J.M.,
Pogue, B.W.,
Conde, O.M.,
Directional Kernel Density Estimation for Classification of Breast
Tissue Spectra,
MedImg(36), No. 1, January 2017, pp. 64-73.
IEEE DOI
1701
Cancer
BibRef
Pardo, A.[Arturo],
Streeter, S.S.[Samuel S.],
Maloney, B.W.[Benjamin W.],
Gutiérrez-Gutiérrez, J.A.[José A.],
McClatchy, D.M.[David M.],
Wells, W.A.[Wendy A.],
Paulsen, K.D.[Keith D.],
López-Higuera, J.M.[José M.],
Pogue, B.W.[Brian W.],
Conde, O.M.[Olga M.],
Modeling and Synthesis of Breast Cancer Optical Property Signatures
With Generative Models,
MedImg(40), No. 6, June 2021, pp. 1687-1701.
IEEE DOI
2106
Optical imaging, Nonlinear optics, Biomedical optical imaging,
Imaging, Adaptive optics, Pathology, Optical scattering,
convolutional neural networks
BibRef
Haindl, M.[Michal],
Remeš, V.[Václav],
Pseudocolor enhancement of mammogram texture abnormalities,
MVA(30), No. 4, June 2019, pp. 785-794.
Springer DOI
1906
BibRef
Benhassine, N.E.[Nasser Edinne],
Boukaache, A.[Abdelnour],
Boudjehem, D.[Djalil],
Classification of mammogram images using the energy probability in
frequency domain and most discriminative power coefficients,
IJIST(30), No. 1, 2020, pp. 45-56.
DOI Link
2002
ANN, classification, computer aided diagnosis, DCT, mammogram,
Naive Bayes, SVM
BibRef
Melekoodappattu, J.G.[Jayesh George],
Kadan, A.B.[Anoop Balakrishnan],
Anoop, V.,
Early detection of breast malignancy using wavelet features and
optimized classifier,
IJIST(31), No. 3, 2021, pp. 1551-1563.
DOI Link
2108
CAD, classification, GOA, mammogram, wavelets
BibRef
Gupta, V.[Vibha],
Bhavsar, A.[Arnav],
Sequential Modeling of Deep Features for Breast Cancer
Histopathological Image Classification,
Microscopy18(2335-23357)
IEEE DOI
1812
BibRef
Earlier:
Breast Cancer Histopathological Image Classification:
Is Magnification Important?,
Microscopy17(769-776)
IEEE DOI
1709
BibRef
And:
An Integrated Multi-scale Model for Breast Cancer Histopathological
Image Classification with Joint Colour-Texture Features,
CAIP17(II: 354-366).
Springer DOI
1708
Breast cancer, Convolution, Biomedical imaging, Task analysis.
Cancer, Feature extraction, Image color analysis, Kernel,
Measurement, Microscopy, Support vector machines.
BibRef
Kulshreshtha, D.,
Singh, V.P.,
Shrivastava, A.,
Chaudhary, A.,
Srivastava, R.,
Content-based mammogram retrieval using k-means clustering and local
binary pattern,
ICIVC17(634-638)
IEEE DOI
1708
Breast cancer, Feature extraction, Histograms, Image retrieval,
Mammography, CAD, content-based image retrieval, kmeans clustering,
local binary pattern, mammography
BibRef
Busaleh, M.[Mariam],
Hussain, M.[Muhammad],
Aboalsamh, H.A.[Hatim A.],
Zuair, M.[Mansour],
Bebis, G.[George],
False Positive Reduction in Breast Mass Detection Using the Fusion of
Texture and Gradient Orientation Features,
ISVC16(I: 669-678).
Springer DOI
1701
BibRef
Gao, X.L.[Xiao-Li],
Wang, K.[Keju],
Guo, Y.[Yanan],
Yang, Z.[Zhen],
Ma, Y.[Yide],
Mass Segmentation in Mammograms Based on the Combination of the Spiking
Cortical Model (SCM) and the Improved CV Model,
ISVC15(II: 664-671).
Springer DOI
1601
BibRef
Vargas Cardona, H.D.[Hernán Darío],
Orozco, Á.A.[Álvaro A.],
Álvarez, M.A.[Mauricio A.],
Automatic Recognition of Microcalcifications in Mammography Images
through Fractal Texture Analysis,
ISVC14(II: 841-850).
Springer DOI
1501
BibRef
Pourreza-Shahri, R.,
Saki, F.,
Kehtarnavaz, N.,
Leboulluec, P.,
Liu, H.,
Classification of ex-vivo breast cancer positive margins measured by
hyperspectral imaging,
ICIP13(1408-1412)
IEEE DOI
1402
Fourier coefficient selection features
BibRef
Li, X.Z.[Xi-Zhao],
Williams, S.[Simon],
Lee, G.[Gobert],
Deng, M.[Min],
Computer-aided mammography classification of malignant mass regions and
normal regions based on novel texton features,
ICARCV12(1431-1436).
IEEE DOI
1304
BibRef
Anitha, J.,
Peter, J.D.[J. Dinesh],
A wavelet based morphological mass detection and classification in
mammograms,
IMVIP12(25-28).
IEEE DOI
1302
BibRef
Malar, E.,
Kandaswamy, A.,
Kirthana, S.S.,
Nivedhitha, D.,
A comparative study on mammographic image denoising technique using
wavelet, curvelet and contourlet transforms,
IMVIP12(65-68).
IEEE DOI
1302
BibRef
Padmanabhan, S.[Sharanya],
Sundararajan, R.[Raji],
Enhanced accuracy of breast cancer detection in digital mammograms
using wavelet analysis,
IMVIP12(153-156).
IEEE DOI
1302
BibRef
Padmanabhan, S.[Sharanya],
Sundararajan, R.[Raji],
Texture and statistical analysis of mammograms:
A novel method to detect tumor in Breast Cells,
IMVIP12(157-160).
IEEE DOI
1302
BibRef
Yao, C.[Chang],
Yang, Y.Y.[Yong-Yi],
Chen, H.[Houjin],
Jing, T.[Tao],
Hao, X.L.[Xiao-Li],
Bi, H.J.[Hong-Jun],
Adaptive kernel learning for detection of clustered microcalcifications
in mammograms,
Southwest12(5-8).
IEEE DOI
1205
BibRef
Dellepiane, S.G.[Silvana G.],
Minetti, I.[Irene],
Dellepiane, S.[Sara],
A Hierarchical Classification Method for Mammographic Lesions Using
Wavelet Transform and Spatial Features,
ICCVG10(I: 324-332).
Springer DOI
1009
BibRef
Jasionowska, M.[Magdalena],
Przelaskowski, A.[Artur],
Józwiak, R.[Rafal],
Characteristics of Architectural Distortions in Mammograms:
Extraction of Texture Orientation with Gabor Filters,
ICCVG10(I: 420-430).
Springer DOI
1009
BibRef
Kostopoulos, S.[Spiros],
Cavouras, D.[Dionisis],
Daskalakis, A.[Antonis],
Kalatzis, I.[Ioannis],
Bougioukos, P.[Panagiotis],
Kagadis, G.C.[George C.],
Ravazoula, P.[Panagiota],
Nikiforidis, G.[George],
Assessing Estrogen Receptors' Status by Texture Analysis of Breast
Tissue Specimens and Pattern Recognition Methods,
CAIP07(221-228).
Springer DOI
0708
BibRef
Georgsson, F.[Fredrik],
Jansson, S.[Stefan],
Olsén, C.[Christina],
Fractal Analysis of Mammograms,
SCIA07(92-101).
Springer DOI
0706
BibRef
Kim, H.J.[Hyung-Jun],
Kim, W.H.[Won-Ha],
Automatic Detection of Spiculated Masses Using Fractal Analysis in
Digital Mammography,
CAIP05(256).
Springer DOI
0509
BibRef
Chen, Y.[Yuan],
Chang, C.I.[Chein-I],
A new application of texture unit coding to mass classification for
mammograms,
ICIP04(V: 3335-3338).
IEEE DOI
0505
BibRef
Yuan, X.[Xin],
Shi, P.C.[Peng-Cheng],
Microcalcification detection based on localized texture comparison,
ICIP04(V: 2953-2956).
IEEE DOI
0505
BibRef
Tweed, T.,
Miguet, S.,
Automatic detection of regions of interest in mammographies based on a
combined analysis of texture and histogram,
ICPR02(II: 448-452).
IEEE DOI
0211
BibRef
Sakellaropoulos, P.,
Costaridou, L.,
Panayiotakis, G.,
Integrating Wavelet-based Mammographic Image Visualisation on a Web
Browser,
ICIP01(II: 873-876).
IEEE DOI
0108
BibRef
Bovis, K.,
Singh, S.,
Detection of Masses in Mammograms Using Texture Features,
ICPR00(Vol II: 267-270).
IEEE DOI
0009
BibRef
Yoshida, H.,
Zhang, W.[Wei],
Cai, W.D.[Wei-Dong],
Doi, K.,
Nishikawa, R.M.,
Giger, M.L.,
Optimizing wavelet transform based on supervised learning for detection
of microcalcifications in digital mammograms,
ICIP95(III: 152-155).
IEEE DOI
9510
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Mammograms, Image Enhancement, Noise Suppression .