Heinemann, P.H.,
Pathare, N.P.,
Morrow, C.T.,
An Automated Inspection Station for Machine-Vision Grading of Potatoes,
MVA(9), No. 1, 1996, pp. 14-19.
Springer DOI
9608
BibRef
Zhou, L.Y.,
Chalana, V.,
Kim, Y.,
PC-Based Machine Vision System for Real-Time Computer-Aided
Potato Inspection,
IJIST(9), No. 6, 1998, pp. 423-433.
9812
BibRef
Polder, G.,
van der Heijden, G.W.A.M.,
Young, I.T.,
Tomato sorting using independent component analysis on spectral images,
RealTimeImg(9), No. 4, August 2003, pp. 253-259.
Elsevier DOI
0311
BibRef
Zeng, G.[Guang],
Birchfield, S.T.[Stanley T.],
Wells, C.E.[Christina E.],
Detecting and Measuring Fine Roots in Minirhizotron Images Using
Matched Filtering and Local Entropy Thresholding,
MVA(17), No. 4, September 2006, pp. 265-278.
Springer DOI
0608
BibRef
Zeng, G.[Guang],
Birchfield, S.T.[Stanley T.],
Wells, C.E.[Christina E.],
Rapid automated detection of roots in minirhizotron images,
MVA(21), No. 3, April 2010, pp. xx-yy.
Springer DOI
1003
BibRef
Cai, J.H.[Jin-Hai],
Miklavcic, S.,
Surface fitting for individual image thresholding and beyond,
IET-IPR(7), No. 6, August 2013, pp. 596-605.
DOI Link
1312
background-foreground segmentation.
botany
BibRef
Kumar, P.[Pankaj],
Cai, J.H.[Jin-Hai],
Miklavcic, S.[Stan],
Root crown detection using statistics of Zernike moments,
ICARCV12(1130-1135).
IEEE DOI
1304
BibRef
And:
Automated Detection of Root Crowns Using Gaussian Mixture Model and
Bayes Classification,
DICTA12(1-7).
IEEE DOI
1303
rice, corn, grass.
BibRef
Chen, X.M.[Xu-Ming],
Yang, S.X.[Simon X.],
A practical solution for ripe tomato recognition and localisation,
RealTimeIP(8), No. 1, March 2013, pp. 35-51.
WWW Link.
1303
BibRef
Iwasaki, F.[Fumiya],
Imamura, H.[Hiroki],
A Robust Recognition Method for Occlusion of Mini Tomatoes Based on
Hue Information and the Curvature,
IJIG(15), No. 02, 2015, pp. 1540004.
DOI Link
1505
BibRef
Verma, U.[Ujjwal],
Rossant, F.[Florence],
Bloch, I.[Isabelle],
Segmentation and size estimation of tomatoes from sequences of paired
images,
JIVP(2015), No. 1, 2015, pp. 33.
DOI Link
1512
BibRef
Mairhofer, S.[Stefan],
Johnson, J.[James],
Sturrock, C.J.[Craig J.],
Bennett, M.J.[Malcolm J.],
Mooney, S.J.[Sacha J.],
Pridmore, T.P.[Tony P.],
Visual tracking for the recovery of multiple interacting plant root
systems from X-ray CT images,
MVA(27), No. 5, July 2016, pp. 721-734.
Springer DOI
1608
BibRef
Peebles, M.,
Lim, S.H.,
Streeter, L.,
Duke, M.,
Au, C.K.,
Ground Plane Segmentation of Time-of-Flight Images for Asparagus
Harvesting,
IVCNZ18(1-6)
IEEE DOI
1902
Clutter, Cameras, Image segmentation,
Real-time systems, Mathematical model, asparagus,
ground plane segmentation
BibRef
Sun, J.[Jun],
He, X.F.[Xiao-Fei],
Wu, M.M.[Min-Min],
Wu, X.O.[Xia-Ohong],
Shen, J.F.[Ji-Feng],
Lu, B.[Bing],
Detection of tomato organs based on convolutional neural network under
the overlap and occlusion backgrounds,
MVA(31), No. 5, July 2020, pp. Article31.
Springer DOI
2006
BibRef
Morellos, A.[Antonios],
Tziotzios, G.[Georgios],
Orfanidou, C.[Chrysoula],
Pantazi, X.E.[Xanthoula Eirini],
Sarantaris, C.[Christos],
Maliogka, V.[Varvara],
Alexandridis, T.K.[Thomas K.],
Moshou, D.[Dimitrios],
Non-Destructive Early Detection and Quantitative Severity Stage
Classification of Tomato Chlorosis Virus (ToCV) Infection in Young
Tomato Plants Using Vis-NIR Spectroscopy,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Soltaninejad, M.,
Sturrock, C.J.,
Griffiths, M.,
Pridmore, T.P.,
Pound, M.P.,
Three Dimensional Root CT Segmentation Using Multi-Resolution
Encoder-Decoder Networks,
IP(29), 2020, pp. 6667-6679.
IEEE DOI
2007
Image segmentation, Computed tomography, Soil, Image resolution,
Decoding, Biomedical imaging,
plant phenotyping
BibRef
Yu, G.[Guohao],
Zare, A.[Alina],
Sheng, H.[Hudanyun],
Matamala, R.[Roser],
Reyes-Cabrera, J.[Joel],
Fritschi, F.B.[Felix B.],
Juenger, T.E.[Thomas E.],
Root identification in minirhizotron imagery with multiple instance
learning,
MVA(31), No. 6, August 2020, pp. Article43.
Springer DOI
2008
BibRef
Abdulridha, J.[Jaafar],
Ampatzidis, Y.[Yiannis],
Qureshi, J.[Jawwad],
Roberts, P.[Pamela],
Laboratory and UAV-Based Identification and Classification of Tomato
Yellow Leaf Curl, Bacterial Spot, and Target Spot Diseases in Tomato
Utilizing Hyperspectral Imaging and Machine Learning,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Siddiquee, K.N.[Kazy Noor_e_Alam],
Islam, M.S.[Md. Shabiul],
Ud Dowla, M.Y.[Mohammad Yasin],
Rezaul, K.M.[Karim Mohammed],
Grout, V.[Vic],
Detection, quantification and classification of ripened tomatoes: a
comparative analysis of image processing and machine learning,
IET-IPR(14), No. 11, September 2020, pp. 2442-2456.
DOI Link
2009
BibRef
Jayanthi, M.G.,
Shashikumar, D.R.[Dandinashivara Revanna],
Cucumber disease detection using adaptively regularised kernel-based
fuzzy C-means and probabilistic neural network,
IJCVR(10), No. 5, 2020, pp. 385-411.
DOI Link
2009
BibRef
Zhao, J.S.[Jiang-San],
Kechasov, D.[Dmitry],
Rewald, B.[Boris],
Bodner, G.[Gernot],
Verheul, M.[Michel],
Clarke, N.[Nicholas],
Clarke, J.H.L.[Ji-Hong Liu],
Deep Learning in Hyperspectral Image Reconstruction from Single RGB
images: A Case Study on Tomato Quality Parameters,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Appeltans, S.[Simon],
Pieters, J.G.[Jan G.],
Mouazen, A.M.[Abdul M.],
Detection of Leek Rust Disease under Field Conditions Using
Hyperspectral Proximal Sensing and Machine Learning,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Farrar, M.B.[Michael B.],
Wallace, H.M.[Helen M.],
Brooks, P.[Peter],
Yule, C.M.[Catherine M.],
Tahmasbian, I.[Iman],
Dunn, P.K.[Peter K.],
Bai, S.H.[Shahla Hosseini],
A Performance Evaluation of Vis/NIR Hyperspectral Imaging to Predict
Curcumin Concentration in Fresh Turmeric Rhizomes,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Lu, Y.W.[Ya-Wen],
Wang, Y.X.[Yu-Xing],
Parikh, D.[Devarth],
Khan, A.[Awais],
Lu, G.Y.[Guo-Yu],
Simultaneous Direct Depth Estimation and Synthesis Stereo for Single
Image Plant Root Reconstruction,
IP(30), 2021, pp. 4883-4893.
IEEE DOI
2106
Image reconstruction, Estimation,
Solid modeling, Shape, Cameras, Periodic structures,
single image depth estimation
BibRef
Fernández, C.I.[Claudio I.],
Leblon, B.[Brigitte],
Wang, J.F.[Jin-Fei],
Haddadi, A.[Ata],
Wang, K.[Keri],
Detecting Infected Cucumber Plants with Close-Range Multispectral
Imagery,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Al-gaashani, M.S.A.M.[Mehdhar S. A. M.],
Shang, F.J.[Feng-Jun],
Muthanna, M.S.A.[Mohammed S. A.],
Khayyat, M.[Mashael],
El-Latif, A.A.A.[Ahmed A. Abd],
Tomato leaf disease classification by exploiting transfer learning
and feature concatenation,
IET-IPR(16), No. 3, 2022, pp. 913-925.
DOI Link
2202
BibRef
Psiroukis, V.[Vasilis],
Espejo-Garcia, B.[Borja],
Chitos, A.[Andreas],
Dedousis, A.[Athanasios],
Karantzalos, K.[Konstantinos],
Fountas, S.[Spyros],
Assessment of Different Object Detectors for the Maturity Level
Classification of Broccoli Crops Using UAV Imagery,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Moualeu-Ngangué, D.[Dany],
Bötzl, M.[Maria],
Stützel, H.[Hartmut],
First Form, Then Function: 3D Reconstruction of Cucumber Plants
(Cucumis sativus L.) Allows Early Detection of Stress Effects through
Leaf Dimensions,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Cen, Y.[Yi],
Huang, Y.[Ying],
Hu, S.S.[Shun-Shi],
Zhang, L.[Lifu],
Zhang, J.[Jian],
Early Detection of Bacterial Wilt in Tomato with Portable
Hyperspectral Spectrometer,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Guo, Y.[Yan],
Xia, H.M.[Hao-Ming],
Zhao, X.Y.[Xiao-Yang],
Qiao, L.X.[Long-Xin],
Qin, Y.C.[Yao-Chen],
Estimate the Earliest Phenophase for Garlic Mapping Using Time Series
Landsat 8/9 Images,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Croci, M.[Michele],
Impollonia, G.[Giorgio],
Blandinières, H.[Henri],
Colauzzi, M.[Michele],
Amaducci, S.[Stefano],
Impact of Training Set Size and Lead Time on Early Tomato Crop
Mapping Accuracy,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Li, Y.[Yuan],
Hu, T.T.[Ting-Ting],
Fuchikami, R.[Ryuji],
Ikenaga, T.[Takeshi],
Global to multi-scale local architecture with hardwired CNN for 1-ms
tomato defect detection,
IET-IPR(18), No. 8, 2024, pp. 2078-2092.
DOI Link
2406
field programmable gate arrays, object detection,
parallel processing, real-time systems
BibRef
Cardellicchio, A.,
Solimani, F.,
Dimauro, G.,
Summerer, S.,
Renò, V.,
Patch-based probabilistic identification of plant roots using
convolutional neural networks,
PRL(183), 2024, pp. 125-132.
Elsevier DOI
2406
Deep learning, Root system architecture,
Convolutional neural network
BibRef
Singh, G.[Gursewak],
Slonecki, T.[Tyler],
Wadl, P.[Philip],
Flessner, M.[Michael],
Sosnoskie, L.[Lynn],
Hatterman-Valenti, H.[Harlene],
Gage, K.[Karla],
Cutulle, M.[Matthew],
Implementing Digital Multispectral 3D Scanning Technology for Rapid
Assessment of Hemp (Cannabis sativa L.) Weed Competitive Traits,
RS(16), No. 13, 2024, pp. 2375.
DOI Link
2407
BibRef
Linfeng, W.[Wang],
Jia-Yao, L.[Liu],
Yong, L.[Liu],
Yunsheng, W.[Wang],
Shipu, X.[Xu],
A lightweight tomato leaf disease identification method based on
shared-twin neural networks,
IET-IPR(18), No. 9, 2024, pp. 2291-2303.
DOI Link
2407
botany, convolutional neural nets, data visualisation
BibRef
Ye, Y.B.[Yuan-Bo],
Zhou, H.[Houkui],
Yu, H.M.[Hui-Min],
Hu, H.J.[Hao-Ji],
Zhang, G.Q.[Guang-Qun],
Hu, J.[Junguo],
He, T.[Tao],
Application of Tswin-F network based on multi-scale feature fusion in
tomato leaf lesion recognition,
PR(156), 2024, pp. 110775.
Elsevier DOI Code:
WWW Link.
2408
Plant leaf disease identification, Bilateral attention mechanism,
Belf-supervised learning, Feature fuse local attention
BibRef
Ivanovska, M.[Marija],
Štruc, V.[Vitomir],
Perš, J.[Janez],
TomatoDIFF: On-plant Tomato Segmentation with Denoising Diffusion
Models *,
MVA23(1-6)
DOI Link Code:
WWW Link.
2403
Costs, Semantic segmentation, Computational modeling,
Source coding, Green products, Noise reduction, Crops
BibRef
Wang, Y.K.[Yi-Kai],
Dong, Y.P.[Yin-Peng],
Sun, F.C.[Fu-Chun],
Yang, X.[Xiao],
Root Pose Decomposition Towards Generic Non-rigid 3D Reconstruction
with Monocular Videos,
ICCV23(13844-13854)
IEEE DOI Code:
WWW Link.
2401
BibRef
Song, H.[Hao],
Panjvani, K.[Karim],
Liu, Z.G.[Zhi-Gang],
Amar, H.[Huzaifa],
Kochian, L.[Leon],
Ye, S.J.[Sheng-Jian],
Yang, X.[Xuan],
Feurtado, J.A.[J. Allan],
Chavda, K.[Krunal],
Huatatoca, K.A.C.[Karina Angela Chimbo],
Eramian, M.[Mark],
Plant Root Occlusion Inpainting with Generative Adversarial Network,
CVPPA23(531-539)
IEEE DOI
2401
BibRef
Gillert, A.[Alexander],
Peters, B.[Bo],
von Lukas, U.F.[Uwe Freiherr],
Kreyling, J.[Jürgen],
Blume-Werry, G.[Gesche],
Tracking Growth and Decay of Plant Roots in Minirhizotron Images,
WACV23(3688-3697)
IEEE DOI
2302
Codes, Neural networks, User interfaces, Monitoring,
Applications: Environmental monitoring/climate change/ecology, Agriculture
BibRef
Yang, S.[Si],
Zheng, L.H.[Li-Hua],
Chen, X.[Xieyuanli],
Zabawa, L.[Laura],
Zhang, M.[Man],
Wang, M.J.[Min-Juan],
Transfer Learning from Synthetic In-vitro Soybean Pods Dataset for
In-situ Segmentation of On-branch Soybean Pods,
AgriVision22(1665-1674)
IEEE DOI
2210
Training, Image segmentation, Analytical models, Visualization,
Image synthesis, Computational modeling, Transfer learning,
Plant phenotyping
BibRef
Lu, Y.W.[Ya-Wen],
Lu, G.Y.[Guo-Yu],
3D Modeling Beneath Ground: Plant Root Detection and Reconstruction
Based on Ground-Penetrating Radar,
WACV22(697-706)
IEEE DOI
2202
Geometry, Ground penetrating radar,
Shape, Convolution, Instruments, Neural networks, Remote Sensing ,
Vision for Aerial/Drone/Underwater/Ground Vehicles
BibRef
Masuda, T.[Takeshi],
Leaf Area Estimation by Semantic Segmentation of Point Cloud of
Tomato Plants,
CVPPA21(1381-1389)
IEEE DOI
2112
Training, Image resolution,
Annotations, Semantics, Estimation, Production facilities
BibRef
Möller, B.[Birgit],
Schreck, B.[Berit],
Posch, S.[Stefan],
Analysis of Arabidopsis Root Images: Studies on CNNs and
Skeleton-Based Root Topology,
CVPPA21(1294-1302)
IEEE DOI
2112
Image segmentation, Time series analysis, Semantics,
Systems architecture, Skeleton, Topology
BibRef
Gillert, A.[Alexander],
Peters, B.[Bo],
von Lukas, U.F.[Uwe Freiherr],
Kreyling, J.[Jürgen],
Identification and Measurement of Individual Roots in Minirhizotron
Images of Dense Root Systems,
CVPPA21(1323-1331)
IEEE DOI
2112
Image segmentation, Head, Semantics, Estimation, Humidity,
Length measurement, Skeleton
BibRef
Horn, J.[Jannis],
Zhao, Y.[Yi],
Wandel, N.[Nils],
Landl, M.[Magdalena],
Schnepf, A.[Andrea],
Behnke, S.[Sven],
Robust Skeletonization for Plant Root Structure Reconstruction from
MRI,
ICPR21(10689-10696)
IEEE DOI
2105
Soil measurements,
Magnetic resonance imaging, Semantics, Soil, Task analysis
BibRef
Tsironis, V.,
Bourou, S.,
Stentoumis, C.,
Tomatod: Evaluation of Object Detection Algorithms on A New Real-world
Tomato Dataset,
ISPRS20(B3:1077-1084).
DOI Link
2012
BibRef
Ufuktepe, D.K.,
Palaniappan, K.,
Elmali, M.,
Baskin, T.I.,
Rtip: A Fully Automated Root Tip Tracker For Measuring Plant Growth
With Intermittent Perturbations,
ICIP20(2516-2520)
IEEE DOI
2011
Perturbation methods, Microscopy, Tracking, Image resolution,
Feature extraction, Kinematics, Plant growth, Shi-Tomasi features,
Video Tracking
BibRef
Ouhami, M.[Maryam],
Es-Saady, Y.[Youssef],
El Hajji, M.[Mohamed],
Hafiane, A.[Adel],
Canals, R.[Raphael],
El Yassa, M.[Mostafa],
Deep Transfer Learning Models for Tomato Disease Detection,
ICISP20(65-73).
Springer DOI
2009
BibRef
Masuda, T.,
3D Shape Reconstruction of Plant Roots in a Cylindrical Tank From
Multiview Images,
3D-Wild19(2149-2157)
IEEE DOI
2004
cameras, edge detection, feature extraction,
image matching, image reconstruction, ray tracing,
multiple views
BibRef
Tabb, A.,
Duncan, K.E.,
Topp, C.N.,
Segmenting Root Systems in X-Ray Computed Tomography Images Using
Level Sets,
WACV18(586-595)
IEEE DOI
1806
Plant roots.
computerised tomography, image segmentation,
medical image processing,
X-ray imaging
BibRef
Ding, Y.J.[Yong-Jun],
Li, J.Y.[Ji-Ying],
The application of Quantum-inspired ant colony algorithm in automatic
segmentation of tomato image,
ICIVC17(341-345)
IEEE DOI
1708
Chaos, Convergence, Image segmentation, Logic gates, Optimization,
Sociology, Statistics, image segmentation,
quantum ant colony algorithm, quantum individual, tomato, image
BibRef
Belan, P.A.,
Araújo, S.A.,
Alves, W.A.L.,
An Intelligent Vision-Based System Applied to Visual Quality Inspection
of Beans,
ICIAR16(801-809).
Springer DOI
1608
BibRef
Araújo, S.A.,
Alves, W.A.L.,
Belan, P.A.,
Anselmo, K.P.,
A Computer Vision System for Automatic Classification of Most Consumed
Brazilian Beans,
ISVC15(II: 45-53).
Springer DOI
1601
BibRef
Janusch, I.[Ines],
Kropatsch, W.G.[Walter G.],
Reeb Graphs Through Local Binary Patterns,
GbRPR15(54-63).
Springer DOI
1511
BibRef
Janusch, I.[Ines],
Kropatsch, W.G.[Walter G.],
Busch, W.[Wolfgang],
Ristova, D.[Daniela],
Representing Roots on the Basis of Reeb Graphs in Plant Phenotyping,
PlantType14(75-88).
Springer DOI
1504
BibRef
Mairhofer, S.[Stefan],
Sturrock, C.J.[Craig J.],
Bennett, M.J.[Malcolm J.],
Mooney, S.J.[Sacha J.],
Pridmore, T.P.[Tony P.],
Visual Object Tracking for the Extraction of Multiple Interacting Plant
Root Systems,
PlantType14(89-104).
Springer DOI
1504
BibRef
Nakini, T.K.D.[Tushar Kanta Das],
de Souza, G.N.[Guilherme N.],
Distortion Correction in 3D-Modeling of Root Systems for Plant
Phenotyping,
PlantType14(140-157).
Springer DOI
1504
BibRef
Dacal-Nieto, A.[Angel],
Formella, A.[Arno],
Carrión, P.[Pilar],
Vazquez-Fernandez, E.[Esteban],
Fernández-Delgado, M.[Manuel],
Common Scab Detection on Potatoes Using an Infrared Hyperspectral
Imaging System,
CIAP11(II: 303-312).
Springer DOI
1109
BibRef
And:
Non-destructive Detection of Hollow Heart in Potatoes Using
Hyperspectral Imaging,
CAIP11(II: 180-187).
Springer DOI
1109
BibRef
Barnes, M.[Michael],
Cielniak, G.[Grzegorz],
Duckett, T.[Tom],
Minimalist AdaBoost for Blemish Identification in Potatoes,
ICCVG10(I: 209-216).
Springer DOI
1009
BibRef
Earlier: A1, A3, A2:
Boosting minimalist classifiers for blemish detection in potatoes,
IVCNZ09(397-402).
IEEE DOI
0911
BibRef
Perciano, T.[Talita],
Hirata, R.[Roberto],
de Castro Jorge, L.A.[Lúcio André],
Ridge Linking Using an Adaptive Oriented Mask Applied to Plant Root
Images with Thin Structures,
CIARP10(378-385).
Springer DOI
1011
BibRef
Wang, H.M.[Hong-Mei],
Impact of Magnetic Field on Mung Bean Ultraweak Luminescence,
CISP09(1-3).
IEEE DOI
0910
BibRef
Qi, L.Y.[Li-Yong],
Yang, Q.H.[Qing-Hua],
Bao, G.J.[Guan-Jun],
Xun, Y.[Yi],
Zhang, L.[Libin],
A Dynamic Threshold Segmentation Algorithm for Cucumber Identification
in Greenhouse,
CISP09(1-4).
IEEE DOI
0910
BibRef
Mühlich, M.[Matthias],
Truhn, D.[Daniel],
Nagel, K.[Kerstin],
Walter, A.[Achim],
Scharr, H.[Hanno],
Aach, T.[Til],
Measuring Plant Root Growth,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Aguilar, M.A.,
Pozo, J.L.,
Aguilar, F.J.,
Sanchez-Hermosilla, J.,
Pàez, F.C.,
Negreiros, J.,
3D Surface Modeling of Tomato Plants Using Close-Range Photogrammetry,
ISPRS08(B5: 139 ff).
PDF File.
0807
BibRef
Erz, G.[Gregor],
Posch, S.[Stefan],
A Region Based Seed Detection for Root Detection in Minirhizotron
Images,
DAGM03(482-489).
Springer DOI
0310
BibRef
Kirchgessner, N.,
Spies, H.,
Scharr, H.,
Schurr, U.,
Root growth analysis in physiological coordinates,
CIAP01(589-594).
IEEE DOI
0210
BibRef
Huang, Q.,
Jain, A.K.,
Stockman, G.C.,
Smucker, A.J.M.,
Automatic image analysis of plant root structures,
ICPR92(II:569-572).
IEEE DOI
9208
BibRef
Lefebvre, M.,
Gil, S.,
Glassey, M.A.,
Baur, C.,
Pun, T.,
3D Computer Vision for Agrotics:
The Potato Operation, An Overview,
ICPR92(I:207-210).
IEEE DOI
BibRef
9200
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Fruit Detection, Fruit Inspection, Apples, Oranges .