Elnagar, A.,
Gupta, K.,
Motion Prediction of Moving Objects Based on Autoregressive Model,
SMC-A(28), No. 6, November 1998, pp. 803-810.
IEEE Top Reference.
BibRef
9811
Macwan, A.,
Nejat, G.,
Benhabib, B.,
Target-Motion Prediction for Robotic Search and Rescue in Wilderness
Environments,
SMC-B(41), No. 5, October 2011, pp. 1287-1298.
IEEE DOI
1110
BibRef
Macwan, A.,
Vilela, J.,
Nejat, G.,
Benhabib, B.,
A Multirobot Path-Planning Strategy for Autonomous Wilderness Search
and Rescue,
Cyber(45), No. 9, September 2015, pp. 1784-1797.
IEEE DOI
1509
multi-robot systems
BibRef
Lin, L.[Lili],
Wey, I.C.[I-Chyn],
Ding, J.H.[Jing-Hua],
Fast predictive motion estimation algorithm with adaptive search mode
based on motion type classification,
SIViP(10), No. 1, January 2016, pp. 171-180.
WWW Link.
1601
BibRef
Gan, W.H.[Wei-Hao],
Lee, M.S.[Ming-Sui],
Wu, C.H.[Chi-Hao],
Kuo, C.C.J.[C.C. Jay],
Object tracking with temporal prediction and spatial refinement
(TPSR),
SP:IC(47), No. 1, 2016, pp. 303-312.
Elsevier DOI
1610
Visual object tracking
BibRef
Gan, W.H.[Wei-Hao],
Lee, M.S.[Ming-Sui],
Wu, C.H.[Chi-Hao],
Kuo, C.C.J.[C.C. Jay],
Online object tracking via motion-guided convolutional neural network
(MGNet),
JVCIR(53), 2018, pp. 180-191.
Elsevier DOI
1805
Object tracking, Online tracking, Convolutional neural network,
Optical flow, Multi-domain learning
BibRef
Huang, S.Y.[Si-Yu],
Li, X.[Xi],
Zhang, Z.F.[Zhong-Fei],
He, Z.Z.[Zhou-Zhou],
Wu, F.[Fei],
Liu, W.[Wei],
Tang, J.H.[Jin-Hui],
Zhuang, Y.T.[Yue-Ting],
Deep Learning Driven Visual Path Prediction From a Single Image,
IP(25), No. 12, December 2016, pp. 5892-5904.
IEEE DOI
1612
feature extraction
BibRef
Liang, N.,
Wu, G.,
Kang, W.,
Wang, Z.,
Feng, D.D.,
Real-Time Long-Term Tracking With Prediction-Detection-Correction,
MultMed(20), No. 9, September 2018, pp. 2289-2302.
IEEE DOI
1809
computational complexity, computer vision, image motion analysis,
learning (artificial intelligence), object detection,
dual SVMs
BibRef
Wang, J.Z.[Jin-Zhuo],
Wang, W.M.[Wen-Min],
Gao, W.[Wen],
Predicting Diverse Future Frames With Local Transformation-Guided
Masking,
CirSysVideo(29), No. 12, December 2019, pp. 3531-3543.
IEEE DOI
1912
Predictive models, Generators, Task analysis, Visualization,
Computational modeling, Complexity theory, Training,
video prediction on single frame
BibRef
Chen, R.[Rui],
Chen, M.J.[Ming-Jian],
Li, W.L.[Wan-Li],
Guo, N.K.[Nai-Kun],
Predicting Future Locations of Moving Objects by Recurrent Mixture
Density Network,
IJGI(9), No. 2, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Šaric, J.,
Oršic, M.,
Antunovic, T.,
Vražic, S.,
Šegvic, S.,
Warp to the Future: Joint Forecasting of Features and Feature Motion,
CVPR20(10645-10654)
IEEE DOI
2008
Forecasting, Semantics, Adaptive optics, Optical imaging,
Predictive models, Correlation, Casting
BibRef
Rempe, D.[Davis],
Sridhar, S.[Srinath],
Wang, H.[He],
Guibas, L.J.[Leonidas J.],
Predicting the Physical Dynamics of Unseen 3D Objects,
WACV20(2823-2832)
IEEE DOI
2006
Shape, Dynamics, Friction, Angular velocity, Robots
BibRef
Gao, H.[Hang],
Xu, H.Z.[Hua-Zhe],
Cai, Q.Z.[Qi-Zhi],
Wang, R.[Ruth],
Yu, F.[Fisher],
Darrell, T.J.[Trevor J.],
Disentangling Propagation and Generation for Video Prediction,
ICCV19(9005-9014)
IEEE DOI
2004
image colour analysis, image motion analysis, image resolution,
image sequences, learning (artificial intelligence), neural nets,
Standards
BibRef
Ye, Y.,
Singh, M.,
Gupta, A.,
Tulsiani, S.,
Compositional Video Prediction,
ICCV19(10352-10361)
IEEE DOI
2004
Code, Motion.
WWW Link. image motion analysis, stochastic processes,
video signal processing, realistic stochastic video prediction, Encoding
BibRef
Ho, Y.,
Cho, C.,
Jin, G.,
Peng, W.,
SME-Net: Sparse Motion Estimation for Parametric Video Prediction
Through Reinforcement Learning,
ICCV19(10461-10469)
IEEE DOI
2004
data compression, image sequences,
learning (artificial intelligence), motion compensation,
BibRef
Hu, Z.,
Wang, J.,
A Novel Adversarial Inference Framework for Video Prediction with
Action Control,
SDL-CV19(768-772)
IEEE DOI
2004
computer vision, image motion analysis, image representation,
image segmentation, image sequences, neural nets, Cycle Consistent
BibRef
Hoyer, L.,
Kesper, P.,
Khoreva, A.,
Fischer, V.,
Short-Term Prediction and Multi-Camera Fusion on Semantic Grids,
CVRSUAD19(813-821)
IEEE DOI
2004
cameras, computer vision, decision making, image fusion,
image segmentation, image sequences, motion estimation,
environment representation
BibRef
Sadeghian, A.[Amir],
Kosaraju, V.[Vineet],
Sadeghian, A.[Ali],
Hirose, N.[Noriaki],
Rezatofighi, H.[Hamid],
Savarese, S.[Silvio],
SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and
Physical Constraints,
CVPR19(1349-1358).
IEEE DOI
2002
BibRef
Zhu, D.[Deyao],
Munderloh, M.[Marco],
Rosenhahn, B.[Bodo],
Stückler, J.[Jörg],
Learning to Disentangle Latent Physical Factors for Video Prediction,
GCPR19(595-608).
Springer DOI
1911
BibRef
Baik, S.,
Kwon, J.,
Lee, K.M.,
Learning to Remember Past to Predict Future for Visual Tracking,
ICIP19(3068-3072)
IEEE DOI
1910
tracking, neural network
BibRef
Singh, G.[Gurkirt],
Saha, S.[Suman],
Cuzzolin, F.[Fabio],
Predicting Action Tubes,
AnticipateBeh18(III:106-123).
Springer DOI
1905
BibRef
Terwilliger, A.[Adam],
Brazil, G.[Garrick],
Liu, X.M.[Xiao-Ming],
Recurrent Flow-Guided Semantic Forecasting,
WACV19(1703-1712)
IEEE DOI
1904
Predict future motion.
image motion analysis, image segmentation, image sequences,
learning (artificial intelligence),
Predictive models
BibRef
Vukotic, V.[Vedran],
Pintea, S.L.[Silvia-Laura],
Raymond, C.[Christian],
Gravier, G.[Guillaume],
van Gemert, J.C.[Jan C.],
One-Step Time-Dependent Future Video Frame Prediction with a
Convolutional Encoder-Decoder Neural Network,
CIAP17(I:140-151).
Springer DOI
1711
BibRef
Vondrick, C.[Carl],
Torralba, A.B.[Antonio B.],
Generating the Future with Adversarial Transformers,
CVPR17(2992-3000)
IEEE DOI
1711
Generators, Network architecture, Predictive models, Robots,
Semantics, Spatial resolution, Visualization
BibRef
Zhou, Y.P.[Yi-Pin],
Berg, T.L.[Tamara L.],
Learning Temporal Transformations from Time-Lapse Videos,
ECCV16(VIII: 262-277).
Springer DOI
1611
Predict the changes like people do.
BibRef
Mottaghi, R.[Roozbeh],
Bagherinezhad, H.,
Rastegari, M.[Mohammad],
Farhadi, A.[Ali],
Newtonian Image Understanding: Unfolding the Dynamics of Objects in
Static Images,
CVPR16(3521-3529)
IEEE DOI
1612
BibRef
Mottaghi, R.[Roozbeh],
Rastegari, M.[Mohammad],
Gupta, A.[Abhinav],
Farhadi, A.[Ali],
'What Happens If...' Learning to Predict the Effect of Forces in Images,
ECCV16(IV: 269-285).
Springer DOI
1611
BibRef
Ballan, L.[Lamberto],
Castaldo, F.[Francesco],
Alahi, A.[Alexandre],
Palmieri, F.[Francesco],
Savarese, S.[Silvio],
Knowledge Transfer for Scene-Specific Motion Prediction,
ECCV16(I: 697-713).
Springer DOI
1611
BibRef
Rodriguez, C.[Cristian],
Fernando, B.[Basura],
Li, H.D.[Hong-Dong],
Action Anticipation by Predicting Future Dynamic Images,
AnticipateBeh18(III:89-105).
Springer DOI
1905
BibRef
Li, Z.C.[Zhi-Cheng],
Qiao, B.[Bing],
Deng, S.B.[Shao-Bin],
Color-Based Visual Object Tracking with Prediction and Error Judgment,
CISP09(1-4).
IEEE DOI
0910
BibRef
Rajpurohit, V.S.[Vijay S.],
Pai, M.M.M.[M. M. Manohara],
An Optimized Fuzzy Based Short Term Object Motion Prediction for
Real-Life Robot Navigation Environment,
Visual08(xx-yy).
Springer DOI
0809
BibRef
Gupta, N.,
Mittal, P.,
Patwardhan, K.S.,
Roy, S.D.,
Chaudhury, S.,
Banerjee, S.,
On line predictive appearance-based tracking,
ICIP04(II: 1041-1044).
IEEE DOI
0505
BibRef
Zhou, K.[Kun],
Dai, Q.H.[Qiong-Hai],
Wu, J.[Jiang],
Er, G.H.[Gui-Hua],
Fast tracking of semantic video object based on motion prediction and
subregion extraction,
ICIP02(III: 621-624).
IEEE DOI
0210
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Target Tracking Techniques, Prediction, Trajectory Based .