Salient Stills,
2003.
Company that turns video into still images,
the market is newspapers. Take a 640X480 video and
generate a 3KX2K still image.
WWW Link.
See also Salient Video Stills: Content and Context Preserved.
Almalence Incorporated,
2005.
Sells PhotoAcute Studio.
WWW Link.
Vendor, Superresolution. Create high resolution images. Also an HDR product.
Strohl, G.E.,
Parrish, Jr., E.A.,
A model for evaluating the effectiveness of resolution enhancement
algorithms,
PR(3), No. 3, October 1971, pp. 325-330.
Elsevier DOI
0309
BibRef
Hunt, B.R.,
Superresolution of images: algorithms, principles, performance,
IJIST(6), No. 4, Winter 1995, pp. 297-304.
Subpixel edges.
BibRef
9500
Miller, C.[Casey],
Hunt, B.R.,
Kendrick, R.L.,
Duncan, A.L.,
Reconstruction and Super-Resolution of Dilute Aperture Imagery,
ICIP96(I: 697-699).
IEEE DOI
BibRef
9600
Keightley, D.,
Hunt, B.R.,
A rigid POCS extension to a Poisson super-resolution algorithm,
ICIP95(II: 508-511).
IEEE DOI
9510
BibRef
Chaudhuri, S.[Subhasis],
Super-Resolution Imaging,
KluwerSeptember 2001, ISBN 0-7923-7471-1
WWW Link.
BibRef
0109
Leizerson, I.,
Lipson, S.G.,
Sarafis, V.,
Superresolution in far-field imaging,
JOSA-A(19), No. 3, March 2002, pp. 436-443.
WWW Link.
0204
BibRef
Baker, S.[Simon],
Kanade, T.[Takeo],
Limits on Super-Resolution and How to Break Them,
PAMI(24), No. 9, September 2002, pp. 1167-1183.
IEEE Abstract.
0209
BibRef
Earlier:
CVPR00(II: 372-379).
IEEE DOI
0005
Super-resolution based on the constraint that the SR image should generate the input image
with appropriate warping and downsampling.
Add new constraint, atempt to recognize features and enhance their appearance.
BibRef
Baker, S., and
Kanade, T.,
Super Resolution Optical Flow,
CMU-RI-TR-99-36, October, 1999.
HTML Version.
BibRef
9910
Liu, H.T.[Hai-Tao],
Yan, Y.B.[Ying-Bai],
Tan, Q.F.[Qiao-Feng],
Jin, G.F.[Guo-Fan],
Theories for the design of diffractive superresolution elements and
limits of optical superresolution,
JOSA-A(19), No. 11, November 2002, pp. 2185-2193.
WWW Link.
0211
BibRef
Liu, H.T.[Hai-Tao],
Yan, Y.[Yingbai],
Yi, D.[Deer],
Jin, G.[Guofan],
Theories for the design of a hybrid refractive-diffractive
superresolution lens with high numerical aperture,
JOSA-A(20), No. 5, May 2003, pp. 913-924.
WWW Link.
0307
BibRef
Lin, Z.C.[Zhou-Chen],
Shum, H.Y.[Heung-Yeung],
Fundamental limits of reconstruction-based superresolution algorithms
under local translation,
PAMI(26), No. 1, January 2004, pp. 83-97.
IEEE Abstract.
0401
BibRef
And:
Response to comments:
PAMI(28), No. 5, May 2006, pp. 847-847.
IEEE DOI
0604
BibRef
Earlier:
On the Fundamental Limits of Reconstruction-Based Super-resolution
Algorithms,
CVPR01(I:1171-1176).
IEEE DOI
0110
Reconstruction-Based: simulate the image formation process.
Conclusion seems to be that the limit is 1.6X, though 5.7X under synthetic
conditions. To achieve real gains use recognition-based algorithms.
BibRef
Wang, L.W.[Li-Wei],
Feng, J.F.[Ju-Fu],
Comments on 'Fundamental Limits of Reconstruction-Based Superresolution
Algorithms under Local Translation',
PAMI(28), No. 5, May 2006, pp. 846-846.
IEEE DOI
0604
BibRef
Schultz, R.R.,
Super-resolution enhancement of native digital video versus digitized
NTSC sequences,
Southwest02(193-197).
IEEE Top Reference.
0208
BibRef
Robinson, D.,
Milanfar, P.[Peyman],
Statistical Performance Analysis of Super-Resolution,
IP(15), No. 6, June 2006, pp. 1413-1428.
IEEE DOI
0606
BibRef
Farsiu, S.[Sina],
Robinson, D.[Dirk],
Elad, M.[Michael],
Milanfar, P.[Peyman],
Advances and challenges in super-resolution,
IJIST(14), No. 2, 2004, pp. 47-57.
DOI Link
0408
BibRef
Choi, E.[Euncheol],
Choi, J.[Jongseong],
Kang, M.G.[Moon Gi],
Super-resolution approach to overcome physical limitations of imaging
sensors: An overview,
IJIST(14), No. 2, 2004, pp. 36-46.
DOI Link
0408
BibRef
van Ouwerkerk, J.D.,
Image super-resolution survey,
IVC(24), No. 10, 1 October 2006, pp. 1039-1052.
Elsevier DOI
0609
Survey, Super Resolution. Single frame
BibRef
Shieh, H.M.[Hsin M.],
Byrne, C.L.[Charles L.],
Fiddy, M.A.[Michael A.],
Image reconstruction: a unifying model for resolution enhancement and
data extrapolation. Tutorial,
JOSA-A(23), No. 2, February 2006, pp. 258-266.
WWW Link.
0610
BibRef
Shieh, H.M.[Hsin M.],
Byrne, C.L.[Charles L.],
Testorf, M.E.[Markus E.],
Fiddy, M.A.[Michael A.],
Iterative image reconstruction using prior knowledge,
JOSA-A(23), No. 6, June 2006, pp. 1292-1300.
WWW Link.
0610
BibRef
Shieh, H.M.[Hsin M.],
Byrne, C.L.[Charles L.],
Image reconstruction from limited Fourier data,
JOSA-A(23), No. 11, November 2006, pp. 2732-2736.
WWW Link.
0801
BibRef
Shieh, H.M.[Hsin M.],
Hsu, Y.C.[Yu-Ching],
Byrne, C.L.[Charles L.],
Fiddy, M.A.[Michael A.],
Resolution enhancement of imaging small-scale portions in a compactly
supported function,
JOSA-A(27), No. 2, February 2010, pp. 141-150.
WWW Link.
1002
BibRef
Chaudhuri, S.[Subhasis],
Joshi, M.V.[Manjunath V.],
Motion-Free Super-Resolution,
Springer2005, ISBN 978-0-387-25890-4.
WWW Link.
Various methods of generating super-resolution (SR) images from
a set of low-resolution images.
BibRef
0500
Park, S.C.,
Park, M.K., and
Kang, M.G.,
Super-resolution image reconstruction: a technical overview,
SPMag(20), 2003, pp. 21-36.
BibRef
0300
Katsaggelos, A.K.[Aggelos K.],
Mateos, J.[Javier],
Molina, R.[Rafael],
Super Resolution of Images and Video,
Morgan Claypool2007.
Synthesis Lectures on Image, Video, and Multimedia Processing
Survey, Super Resolution.
WWW Link.
BibRef
0700
Bannore, V.[Vivek],
Iterative-Interpolation Super-Resolution Image Reconstruction:
A Computationally Efficient Techniqu,
Springer2009, ISBN: 978-3-642-00384-4
WWW Link.
Survey, Super Resolution. Buy this book: Iterative-Interpolation Super-Resolution Image Reconstruction: A Computationally Efficient Technique (Studies in Computational Intelligence)
1010
BibRef
Milanfar, P.[Peyman], (Ed.)
Super-Resolution Imaging,
CRC PressBoca Raton, FL, September 28, 2010.
ISBN: 9781439819302
WWW Link.
Buy this book: Super-Resolution Imaging (Digital Imaging and Computer Vision)
Code, Super-Resolution.
Survey, Super-Resolution.
1010
BibRef
Tian, J.[Jing],
Ma, K.K.[Kai-Kuang],
A survey on super-resolution imaging,
SIViP(5), No. 3, September 2011, pp. 329-342.
WWW Link.
1109
Survey, Super-Resolution.
BibRef
Anagun, Y.[Yildiray],
Isik, S.[Sahin],
Seke, E.[Erol],
SRLibrary: Comparing different loss functions for super-resolution
over various convolutional architectures,
JVCIR(61), 2019, pp. 178-187.
Elsevier DOI
1906
Super-resolution, Convolutional neural networks, Loss functions
BibRef
Wang, Z.H.[Zhi-Hao],
Chen, J.[Jian],
Hoi, S.C.H.[Steven C. H.],
Deep Learning for Image Super-Resolution: A Survey,
PAMI(43), No. 10, October 2021, pp. 3365-3387.
IEEE DOI
2109
Survey, Super Resolution. Deep learning, Degradation, Animals, Benchmark testing, Measurement,
Image super-resolution, deep learning,
Generative adversarial nets (GAN)
BibRef
Zhao, T.S.[Tie-Song],
Lin, Y.T.[Yu-Ting],
Xu, Y.[Yiwen],
Chen, W.L.[Wei-Ling],
Wang, Z.[Zhou],
Learning-Based Quality Assessment for Image Super-Resolution,
MultMed(24), 2022, pp. 3570-3581.
IEEE DOI
2207
Databases, Measurement, Labeling, Deep learning, Image quality,
Convolutional neural networks, Visualization,
reduced-reference
BibRef
Yeganeh, H.[Hojatollah],
Rostami, M.[Mohammad],
Wang, Z.[Zhou],
Objective quality assessment for image super-resolution:
A natural scene statistics approach,
ICIP12(1481-1484).
IEEE DOI
1302
BibRef
Liu, A.[Anran],
Liu, Y.H.[Yi-Hao],
Gu, J.J.[Jin-Jin],
Qiao, Y.[Yu],
Dong, C.[Chao],
Blind Image Super-Resolution: A Survey and Beyond,
PAMI(45), No. 5, May 2023, pp. 5461-5480.
IEEE DOI
2304
Survey, Super-Resolution. Degradation, Mathematical models, Data models, Taxonomy,
Superresolution, Adaptation models, Training, Deep learning,
image super-resolution
BibRef
Li, X.[Xin],
Dong, W.S.[Wei-Sheng],
Wu, J.J.[Jin-Jian],
Li, L.[Leida],
Shi, G.M.[Guang-Ming],
Superresolution Image Reconstruction:
Selective milestones and open problems,
SPMag(40), No. 5, July 2023, pp. 54-66.
IEEE DOI
2307
Deep learning, Analytical models, Visualization, Uncertainty,
Computational modeling, Superresolution, Video signal processing,
Image reconstruction
BibRef
Moser, B.B.[Brian B.],
Raue, F.[Federico],
Frolov, S.[Stanislav],
Palacio, S.[Sebastian],
Hees, J.[Jörn],
Dengel, A.[Andreas],
Hitchhiker's Guide to Super-Resolution:
Introduction and Recent Advances,
PAMI(45), No. 8, August 2023, pp. 9862-9882.
IEEE DOI
2307
Survey, Super-Resolution. Task analysis, Superresolution, Measurement, Indexes, PSNR,
Computer architecture, Satellites, Artificial intelligence
BibRef
Jo, Y.,
Yang, S.,
Kim, S.J.,
Investigating Loss Functions for Extreme Super-Resolution,
NTIRE20(1705-1712)
IEEE DOI
2008
Generators, Image resolution, Training, Measurement,
Image restoration, Task analysis
BibRef
Vaezi Joze, H.R.,
Zharkov, I.,
Powell, K.,
Ringler, C.,
Liang, L.,
Roulston, A.,
Lutz, M.,
Pradeep, V.,
ImagePairs: Realistic Super Resolution Dataset via Beam Splitter
Camera Rig,
NTIRE20(2190-2200)
IEEE DOI
2008
Cameras, Image resolution, Machine learning, Task analysis, Training,
Interpolation, Benchmark testing
BibRef
Nelson, K.,
Bhatti, A.,
Nahavandi, S.,
Performance Evaluation of Multi-Frame Super-Resolution Algorithms,
DICTA12(1-8).
IEEE DOI
1303
BibRef
Namboodiri, V.P.[Vinay P.],
de Smet, V.[Vincent],
Van Gool, L.J.[Luc J.],
Systematic evaluation of super-resolution using classification,
VCIP11(1-4).
IEEE DOI
1201
BibRef
Laflen, J.B.,
Greco, C.R.,
Brooksby, G.W.,
Barrett, E.B.,
Objective performance evaluation of a moving object super-resolution
system,
AIPR09(1-8).
IEEE DOI
0910
BibRef
Tian, L.[Li],
Suzuki, A.[Akira],
Koike, H.[Hideki],
Task-Oriented Evaluation of Super-Resolution Techniques,
ICPR10(493-498).
IEEE DOI
1008
BibRef
Yang, J.[Junlan],
Schonfeld, D.[Dan],
New results on performance analysis of super-resolution image
reconstruction,
ICIP09(1517-1520).
IEEE DOI
0911
BibRef
Arora, H.[Himanshu],
Namboodiri, A.M.[Anoop M.],
How Much Zoom is the Right Zoom from the Perspective of
Super-Resolution?,
ICCVGIP08(142-149).
IEEE DOI
0812
BibRef
Reibman, A.R.,
Bell, R.M.,
Gray, S.,
Quality assessment for super-resolution image enhancement,
ICIP06(2017-2020).
IEEE DOI
0610
BibRef
Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Image Manipulation -- Expansion, Zoom, Magnification .