Xu, W.J.[Wen-Ju],
Keshmiri, S.[Shawn],
Wang, G.H.[Guang-Hui],
Adversarially Approximated Autoencoder for Image Generation and
Manipulation,
MultMed(21), No. 9, September 2019, pp. 2387-2396.
IEEE DOI
1909
Training, Neural networks, Data models,
Image reconstruction, Image generation,
latent manifold structure
BibRef
Zakharov, N.[Nikolai],
Su, H.[Hang],
Zhu, J.[Jun],
Gläscher, J.[Jan],
Towards controllable image descriptions with semi-supervised VAE,
JVCIR(63), 2019, pp. 102574.
Elsevier DOI
1909
VAE, Image caption, Generative models, Semi-supervised
BibRef
Duan, X.T.[Xin-Tao],
Liu, J.J.[Jing-Jing],
Zhang, E.[En],
Efficient image encryption and compression based on a VAE generative
model,
RealTimeIP(16), No. 3, June 2019, pp. 765-773.
WWW Link.
1906
BibRef
Liu, S.Q.[Shi-Qi],
Liu, J.X.[Jing-Xin],
Zhao, Q.[Qian],
Cao, X.Y.[Xiang-Yong],
Li, H.B.[Hui-Bin],
Meng, D.Y.[De-Yu],
Meng, H.Y.[Hong-Ying],
Liu, S.[Sheng],
Discovering influential factors in variational autoencoders,
PR(100), 2020, pp. 107166.
Elsevier DOI
2005
Variational autoencoder, Mutual information, Generative model
BibRef
Joo, W.Y.[Weon-Young],
Lee, W.S.[Won-Sung],
Park, S.[Sungrae],
Moon, I.C.[Il-Chul],
Dirichlet Variational Autoencoder,
PR(107), 2020, pp. 107514.
Elsevier DOI
2008
Representation learning, Variational autoencoder,
Deep generative model, Multi-modal latent representation, Component collapse
BibRef
Kim, D.J.[Dong-Jun],
Song, K.[Kyungwoo],
Kim, Y.Y.[Yoon-Yeong],
Shin, Y.J.[Yong-Jin],
Kang, W.[Wanmo],
Moon, I.C.[Il-Chul],
Joo, W.Y.[Weon-Young],
Sequential Likelihood-Free Inference with Neural Proposal,
PRL(169), 2023, pp. 102-109.
Elsevier DOI
2305
Likelihood-Free inference, Simulation parameter calibration,
MCMC, Generative models
BibRef
Nazábal, A.[Alfredo],
Olmos, P.M.[Pablo M.],
Ghahramani, Z.[Zoubin],
Valera, I.[Isabel],
Handling incomplete heterogeneous data using VAEs,
PR(107), 2020, pp. 107501.
Elsevier DOI
2008
Generative models, Variational autoencoders, Incomplete heterogenous data
BibRef
Gao, R.,
Hou, X.,
Qin, J.,
Chen, J.,
Liu, L.,
Zhu, F.,
Zhang, Z.,
Shao, L.,
Zero-VAE-GAN: Generating Unseen Features for Generalized and
Transductive Zero-Shot Learning,
IP(29), 2020, pp. 3665-3680.
IEEE DOI
2002
Zero-shot learning, generative model, self-training
BibRef
Gordon, J.[Jonathan],
Hernández-Lobato, J.M.[José Miguel],
Combining deep generative and discriminative models for Bayesian
semi-supervised learning,
PR(100), 2020, pp. 107156.
Elsevier DOI
2005
Probabilistic models, Semi-supervised learning,
Variational autoencoders, Predictive uncertainty
BibRef
Patacchiola, M.[Massimiliano],
Fox-Roberts, P.[Patrick],
Rosten, E.[Edward],
Y-Autoencoders: Disentangling latent representations via sequential
encoding,
PRL(140), 2020, pp. 59-65.
Elsevier DOI
2012
Disentangled representations, Deep learning, Autoencoders, Generative models
BibRef
Abrol, V.[Vinayak],
Sharma, P.[Pulkit],
Patra, A.[Arijit],
Improving Generative Modelling in VAEs Using Multimodal Prior,
MultMed(23), 2021, pp. 2153-2161.
IEEE DOI
2107
Object oriented modeling, Training, Mutual information, Decoding,
Kernel, Data models, Uncertainty, Generative modelling, autoencoders,
representation learning
BibRef
Chen, Z.T.[Zhi-Tao],
Tong, L.[Lei],
Qian, B.[Bin],
Yu, J.[Jing],
Xiao, C.B.[Chuang-Bai],
Self-Attention-Based Conditional Variational Auto-Encoder Generative
Adversarial Networks for Hyperspectral Classification,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Yu, J.C.[Jun-Chi],
Xu, T.Y.[Ting-Yang],
Rong, Y.[Yu],
Huang, J.Z.[Jun-Zhou],
He, R.[Ran],
Structure-aware conditional variational auto-encoder for constrained
molecule optimization,
PR(126), 2022, pp. 108581.
Elsevier DOI
2204
Molecule optimization, Conditional generation, Drug discovery
BibRef
Xu, W.J.[Wen-Jia],
Xian, Y.Q.[Yong-Qin],
Wang, J.[Jiuniu],
Schiele, B.[Bernt],
Akata, Z.[Zeynep],
Attribute Prototype Network for Any-Shot Learning,
IJCV(130), No. 7, July 2022, pp. 1735-1753.
Springer DOI
2207
BibRef
Xian, Y.Q.[Yong-Qin],
Sharma, S.[Saurabh],
Schiele, B.[Bernt],
Akata, Z.[Zeynep],
F-VAEGAN-D2: A Feature Generating Framework for Any-Shot Learning,
CVPR19(10267-10276).
IEEE DOI
2002
BibRef
Ma, S.Q.[Su-Qiang],
Liu, C.[Chun],
Li, Z.[Zheng],
Yang, W.[Wei],
Integrating Adversarial Generative Network with Variational
Autoencoders towards Cross-Modal Alignment for Zero-Shot Remote
Sensing Image Scene Classification,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Choi, J.[Jaewoong],
Hwang, G.[Geonho],
Kang, M.[Myungjoo],
Disentangling the correlated continuous and discrete generative
factors of data,
PR(133), 2023, pp. 109055.
Elsevier DOI
2210
Variational autoencoder, Disentanglement, Generative model,
Representation learning
BibRef
Peis, I.[Ignacio],
Olmos, P.M.[Pablo M.],
Artés-Rodríguez, A.[Antonio],
Unsupervised learning of global factors in deep generative models,
PR(134), 2023, pp. 109130.
Elsevier DOI
2212
VAE, Deep generative models, Global factors,
Unsupervised learning, Disentanglement, Representation learning
BibRef
Shao, H.J.[Hua-Jie],
Xiao, Z.S.[Zhi-Sheng],
Yao, S.C.[Shuo-Chao],
Sun, D.[Dachun],
Zhang, A.[Aston],
Liu, S.Z.[Sheng-Zhong],
Wang, T.[Tianshi],
Li, J.Y.[Jin-Yang],
Abdelzaher, T.[Tarek],
ControlVAE: Tuning, Analytical Properties, and Performance Analysis,
PAMI(44), No. 12, December 2022, pp. 9285-9297.
IEEE DOI
2212
Image reconstruction, Training, PI control, Optimization,
Image synthesis, Task analysis, Tuning, image generation
BibRef
Cao, B.[Bing],
Bi, Z.W.[Zhi-Wei],
Hu, Q.H.[Qing-Hua],
Zhang, H.[Han],
Wang, N.N.[Nan-Nan],
Gao, X.B.[Xin-Bo],
Shen, D.G.[Ding-Gang],
AutoEncoder-Driven Multimodal Collaborative Learning for Medical Image
Synthesis,
IJCV(131), No. 8, August 2023, pp. 1995-2014.
Springer DOI
2307
BibRef
Amirfakhrian, M.[Majid],
Samavati, F.F.[Faramarz F.],
Variational-Based Spatial-Temporal Approximation of Images in Remote
Sensing,
RS(16), No. 13, 2024, pp. 2349.
DOI Link
2407
BibRef
Yang, H.H.[Hong-Hui],
He, T.[Tong],
Liu, J.H.[Jia-Heng],
Chen, H.[Hua],
Wu, B.[Boxi],
Lin, B.B.[Bin-Bin],
He, X.F.[Xiao-Fei],
Ouyang, W.L.[Wan-Li],
GD-MAE: Generative Decoder for MAE Pre-Training on LiDAR Point Clouds,
CVPR23(9403-9414)
IEEE DOI
2309
BibRef
Lin, X.M.[Xin-Miao],
Li, Y.K.[Yi-Kang],
Hsiao, J.[Jenhao],
Ho, C.M.[Chiu-Man],
Kong, Y.[Yu],
Catch Missing Details: Image Reconstruction with Frequency Augmented
Variational Autoencoder,
CVPR23(1736-1745)
IEEE DOI
2309
BibRef
Ma, B.R.[Bao-Rui],
Liu, Y.S.[Yu-Shen],
Zwicker, M.[Matthias],
Han, Z.Z.[Zhi-Zhong],
Surface Reconstruction from Point Clouds by Learning Predictive
Context Priors,
CVPR22(6316-6327)
IEEE DOI
2210
Point cloud compression, Measurement, Surface reconstruction,
Shape, Benchmark testing, 3D from multi-view and sensors, Vision + graphics
BibRef
Han, Z.Z.[Zhi-Zhong],
Wang, X.,
Liu, Y.S.[Yu-Shen],
Zwicker, M.[Matthias],
Multi-Angle Point Cloud-VAE: Unsupervised Feature Learning for 3D
Point Clouds From Multiple Angles by Joint Self-Reconstruction and
Half-to-Half Prediction,
ICCV19(10441-10450)
IEEE DOI
2004
computational geometry, feature extraction,
unsupervised learning, shape generation, RNN, MAP-VAE,
BibRef
Knop, S.[Szymon],
Spurek, P.[Przemyslaw],
Mazur, M.[Marcin],
Tabor, J.[Jacek],
Podolak, I.[Igor],
Batch Size Reconstruction-Distribution Trade-Off In Kernel Based
Generative Autoencoders,
ICIP22(3728-3732)
IEEE DOI
2211
Training, Codes, Computational modeling, Graphics processing units,
Machine learning, Cost function, Data models, deep learning,
kernel methods
BibRef
Phillips, T.[Tessa],
Abdulla, W.[Waleed],
Variational Autoencoders for Generating Hyperspectral Imaging Honey
Adulteration Data,
PBVS22(213-220)
IEEE DOI
2210
Training, Training data, Machine learning, Detectors
BibRef
Yamaguchi, K.[Kota],
CanvasVAE: Learning to Generate Vector Graphic Documents,
ICCV21(5461-5469)
IEEE DOI
2203
Graphics, Geometry, Visualization, Image resolution, Shape,
Computational modeling, Neural generative models,
Representation learning
BibRef
Kim, J.[Jinwoo],
Yoo, J.[Jaehoon],
Lee, J.H.[Ju-Ho],
Hong, S.[Seunghoon],
SetVAE: Learning Hierarchical Composition for Generative Modeling of
Set-Structured Data,
CVPR21(15054-15063)
IEEE DOI
2111
Art, Data models, Cognition, Encoding,
Task analysis
BibRef
Parmar, G.[Gaurav],
Li, D.C.[Da-Cheng],
Lee, K.[Kwonjoon],
Tu, Z.W.[Zhuo-Wen],
Dual Contradistinctive Generative Autoencoder,
CVPR21(823-832)
IEEE DOI
2111
Interpolation, Image resolution, Image synthesis,
Computational modeling, Generative adversarial networks, Encoding
BibRef
Goto, K.[Keita],
Inoue, N.[Nakamasa],
Learning VAE with Categorical Labels for Generating Conditional
Handwritten Characters,
MVA21(1-5)
DOI Link
2109
Image synthesis, Semantics, Data models, Task analysis
BibRef
Plumerault, A.[Antoine],
Borgne, H.L.[Hervé Le],
Hudelot, C.[Céline],
AVAE: Adversarial Variational Auto Encoder,
ICPR21(8687-8694)
IEEE DOI
2105
Manifolds, Generative adversarial networks
BibRef
Bhalodia, R.[Riddhish],
Lee, I.[Iain],
Elhabian, S.[Shireen],
dpvaes: Fixing Sample Generation for Regularized VAEs,
ACCV20(IV:643-660).
Springer DOI
2103
BibRef
Vowels, M.J.[Matthew J.],
Camgoz, N.C.[Necati Cihan],
Bowden, R.[Richard],
VDSM: Unsupervised Video Disentanglement with State-Space Modeling
and Deep Mixtures of Experts,
CVPR21(8172-8182)
IEEE DOI
2111
BibRef
Earlier:
Gated Variational AutoEncoders:
Incorporating Weak Supervision to Encourage Disentanglement,
FG20(125-132)
IEEE DOI
2102
Computational modeling, Machine learning,
Cognition, Decoding, Task analysis.
Training, Logic gates, Measurement, Task analysis,
Image reconstruction, Decoding, Faces, VAE, disentanglement,
generative models
BibRef
Purkait, P.[Pulak],
Zach, C.[Christopher],
Reid, I.D.[Ian D.],
SG-VAE: Scene Grammar Variational Autoencoder to Generate New Indoor
Scenes,
ECCV20(XXIV:155-171).
Springer DOI
2012
BibRef
Liang, H.W.[Han-Wen],
Zhang, Q.[Qiong],
Dai, P.[Peng],
Lu, J.W.[Ju-Wei],
Boosting the Generalization Capability in Cross-Domain Few-shot
Learning via Noise-enhanced Supervised Autoencoder,
ICCV21(9404-9414)
IEEE DOI
2203
Correlation, Transfer learning, Predictive models,
Feature extraction, Boosting, Representation learning
BibRef
Ojha, U.[Utkarsh],
Li, Y.J.[Yi-Jun],
Lu, J.W.[Jing-Wan],
Efros, A.A.[Alexei A.],
Lee, Y.J.[Yong Jae],
Shechtman, E.[Eli],
Zhang, R.[Richard],
Few-shot Image Generation via Cross-domain Correspondence,
CVPR21(10738-10747)
IEEE DOI
2111
Training, Image synthesis, Computational modeling
BibRef
Yoo, J.[Jaeyoung],
Lee, H.[Hojun],
Kwak, N.[Nojun],
Unpriortized Autoencoder For Image Generation,
ICIP20(763-767)
IEEE DOI
2011
Image reconstruction, Footwear, Image generation, Estimation,
Training, Decoding, Interpolation, Autoencoder, Image Generation,
Mixture Model
BibRef
Theodoridis, T.[Thomas],
Chatzis, T.[Theocharis],
Solachidis, V.[Vassilios],
Dimitropoulos, K.[Kosmas],
Daras, P.[Petros],
Cross-modal Variational Alignment of Latent Spaces,
MULWS20(4127-4136)
IEEE DOI
2008
Two variational autoencoder (VAE) networks which generate and model
the latent space of each modality.
Decoding, Task analysis,
Probability distribution, Training, Pose estimation
BibRef
Han, T.,
Nijkamp, E.,
Zhou, L.,
Pang, B.,
Zhu, S.,
Wu, Y.N.,
Joint Training of Variational Auto-Encoder and Latent Energy-Based
Model,
CVPR20(7975-7984)
IEEE DOI
2008
Generators, Training, Data models, Linear programming,
Minimization, Computational modeling
BibRef
Zhu, Y.Z.[Yi-Zhe],
Min, M.R.[Martin Renqiang],
Kadav, A.[Asim],
Graf, H.P.[Hans Peter],
S3VAE: Self-Supervised Sequential VAE for Representation
Disentanglement and Data Generation,
CVPR20(6537-6546)
IEEE DOI
2008
Sequential Variational Autoencoder.
Static factors and dynamic factors.
Videos, Data models, Task analysis, Visualization, Dynamics,
Computational modeling
BibRef
Zhu, Y.,
Suri, S.,
Kulkarni, P.,
Chen, Y.,
Duan, J.,
Kuo, C.C.J.,
An Interpretable Generative Model for Handwritten Digits Synthesis,
ICIP19(1910-1914)
IEEE DOI
1910
Generative model, feedforward Design,
variational autoencoder (VAE), explainable machine learning,
principal component analysis (PCA)
BibRef
Kingkan, C.,
Hashimoto, C.,
Generating Mesh-based Shapes From Learned Latent Spaces of Point
Clouds with VAE-GAN,
ICPR18(308-313)
IEEE DOI
1812
computational geometry, encoding, image reconstruction,
image representation, learning (artificial intelligence),
Image reconstruction
BibRef
Mishra, A.,
Reddy, S.K.,
Mittal, A.,
Murthy, H.A.,
A Generative Model for Zero Shot Learning Using Conditional
Variational Autoencoders,
Scarce18(2269-22698)
IEEE DOI
1812
Semantics, Training, Image generation, Decoding, Visualization, Data models
BibRef
Jyothi, A.A.[Akash Abdu],
Durand, T.[Thibaut],
He, J.W.[Jia-Wei],
Sigal, L.[Leonid],
Mori, G.[Greg],
LayoutVAE: Stochastic Scene Layout Generation From a Label Set,
ICCV19(9894-9903)
IEEE DOI
2004
object detection, LayoutVAE, label set, textual description,
plausible visual variations,
BibRef
Jin, G.,
Zhang, D.,
Dai, F.,
Guo, J.,
Ma, Y.,
Zhang, Y.,
Semantic Preserving Hash Coding Through VAE-GAN,
ICIP18(1997-2001)
IEEE DOI
1809
Semantics, Generators, Machine learning, Training, Binary codes,
Image generation, Image retrieval,
Generative adversarial network
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
MAE, Masked Autoencoder .