Katevas, N.L.,
Sgouros, N.M.,
Tzafestas, S.G.,
Papakonstantinou, G.,
Beattie, P.,
Bishop, J.M.,
Tsanakas, P.,
Koutsouris, D.,
The Autonomous Mobile Robot Senario:
A Sensor-Aided Intelligent Navigation System for Powered Wheelchairs,
RAMag(4), No. 4, December 1997, pp. 60-70.
9801
BibRef
Crisman, J.D.[Jill D.],
Cleary, M.E.[Michael E.],
Rojas, J.C.[Juan Carlos],
The Deictically Controlled Wheelchair,
IVC(16), No. 4, March 1998, pp. 235-249.
Elsevier DOI
9804
BibRef
Galindo, C.,
Gonzalez, J.,
Fernandez-Madrigal, J.A.,
Control Architecture for Human-Robot Integration:
Application to a Robotic Wheelchair,
SMC-B(36), No. 5, October 2006, pp. 1053-1067.
IEEE DOI
0609
BibRef
Satoh, Y.[Yutaka],
Sakaue, K.[Katsuhiko],
An Omnidirectional Stereo Vision-Based Smart Wheelchair,
JIVP(2007), 2007, pp. xx-yy.
DOI Link
0804
BibRef
Earlier:
Development of Omni-directional Stereo Vision-based Intelligent
Electric Wheelchair,
ICPR06(IV: 799-804).
IEEE DOI
0609
BibRef
Andreopoulos, A.[Alexander],
Tsotsos, J.K.[John K.],
A Computational Learning Theory of Active Object Recognition Under
Uncertainty,
IJCV(101), No. 1, January 2013, pp. 95-142.
WWW Link.
1302
BibRef
Earlier:
A theory of active object localization,
ICCV09(903-910).
IEEE DOI
0909
BibRef
Earlier:
Active Vision for Door Localization and Door Opening using Playbot:
A Computer Controlled Wheelchair for People with Mobility Impairments,
CRV08(3-10).
IEEE DOI
0805
BibRef
Leishman, F.,
Monfort, V.,
Horn, O.,
Bourhis, G.,
Driving Assistance by Deictic Control for a Smart Wheelchair:
The Assessment Issue,
HMS(44), No. 1, February 2014, pp. 66-77.
IEEE DOI
1403
cognition
BibRef
Jiang, H.R.[Hai-Rong],
Zhang, T.[Ting],
Wachs, J.P.[Juan P.],
Duerstock, B.S.[Bradley S.],
Enhanced control of a wheelchair-mounted robotic manipulator using
3-D vision and multimodal interaction,
CVIU(149), No. 1, 2016, pp. 21-31.
Elsevier DOI
1606
3D vision
BibRef
Narayanan, V.K.[Vishnu K.],
Pasteau, F.[François],
Marchal, M.[Maud],
Krupa, A.[Alexandre],
Babel, M.[Marie],
Vision-based adaptive assistance and haptic guidance for safe
wheelchair corridor following,
CVIU(149), No. 1, 2016, pp. 171-185.
Elsevier DOI
1606
Vision-based robotics
BibRef
Leaman, J.,
La, H.M.,
A Comprehensive Review of Smart Wheelchairs:
Past, Present, and Future,
HMS(47), No. 4, August 2017, pp. 486-499.
IEEE DOI
1708
Batteries, Computers, Human factors, Mobile robots, Sensors,
Technological innovation, Wheelchairs, Autonomous wheelchair,
human factors, intelligent wheelchair, robotic wheelchair, smart,
wheelchair, (SW)
BibRef
Scudellari, M.,
Self-driving wheelchairs debut in hospitals and airports,
Spectrum(54), No. 10, October 2017, pp. 14-14.
IEEE DOI
1710
News Item.
airports, hospitals, remotely operated vehicles, wheelchairs,
Japanese airport, SMART, Singapore Changi general hospital,
Singapore-MIT Alliance, autonomous vehicle, electric taxi,
golf cart, robotic wheelchair, self-driving, wheelchair
BibRef
Cruz, A.,
Pires, G.,
Lopes, A.,
Carona, C.,
Nunes, U.J.,
A Self-Paced BCI With a Collaborative Controller for Highly Reliable
Wheelchair Driving: Experimental Tests With Physically Disabled
Individuals,
HMS(51), No. 2, April 2021, pp. 109-119.
IEEE DOI
2103
Wheelchairs, Navigation, Task analysis, Collaboration, Reliability,
Usability, Control systems, Brain-computer interface (BCI),
self-paced
BibRef
Ahmadi, A.,
Argany, M.,
Neysani Samany, N.,
Rasooli, M.,
Urban Vision Development in Order to Monitor Wheelchair Users Based On
The Yolo Algorithm,
SMPR19(25-27).
DOI Link
1912
BibRef
Manero, A.[Albert],
Oskarsson, B.[Bjorn],
Sparkman, J.[John],
Smith, P.A.[Peter A.],
Dombrowski, M.[Matt],
Peddinti, M.[Mrudula],
Rodriguez, A.[Angel],
Vila, J.[Juan],
Jones, B.[Brendan],
Xavier Electromyographic Wheelchair Control and Virtual Training,
VAMR19(I:133-142).
Springer DOI
1909
BibRef
Ferreira, V.C.T.[Veridianna Cristina Teodoro],
Carvalho, A.[Agda],
Inclusive Design and Textile Technology in the Everyday Lives of
Wheelchair Dependent,
DHM18(295-307).
Springer DOI
1807
BibRef
Mukhtar, A.,
Cree, M.J.,
Scott, J.B.,
Streeter, L.,
Mobility Aids Detection Using Convolution Neural Network (CNN),
IVCNZ18(1-5)
IEEE DOI
1902
Training, Videos, Databases, Neural networks, Convolution,
Surveillance, Wheelchairs, convolutional neural network,
YOLO
BibRef
Mamun, S.A.[Shamim Al],
Fukuda, H.[Hisato],
Lam, A.[Antony],
Kobayashi, Y.[Yoshinori],
Kuno, Y.[Yoshinori],
Autonomous Bus Boarding Robotic Wheelchair Using Bidirectional Sensing
Systems,
ISVC18(737-747).
Springer DOI
1811
BibRef
Fu, J.C.[Ji-Cheng],
Li, F.[Fang],
Ong, M.[Marcus],
Cook, T.[Tyler],
Qian, G.[Gang],
Zhao, Y.D.[Yan Daniel],
A Novel Approach for Assessing Power Wheelchair Users' Mobility by
Using Curve Fitting,
DHM18(158-168).
Springer DOI
1807
BibRef
Chang, Y.,
Kutbi, M.,
Agadakos, N.,
Sun, B.,
Mordohai, P.,
A Shared Autonomy Approach for Wheelchair Navigation Based on Learned
User Preferences,
ACVR17(1490-1499)
IEEE DOI
1802
Collision avoidance, Mobile robots, Navigation, Path planning,
Safety, Wheelchairs
BibRef
Kondori, F.A.[F. Abedan],
Yousefi, S.,
Liu, L.[Li],
Li, H.B.[Hai-Bo],
Head operated electric wheelchair,
Southwest14(53-56)
IEEE DOI
1406
handicapped aids
BibRef
Ghorbel, A.,
Amor, N.B.[N. Ben],
Jallouli, M.,
An embedded real-time hands free control of an electrical wheelchair,
VCIP14(221-224)
IEEE DOI
1504
control engineering computing
BibRef
Ji, Y.G.[Yeoung-Gwang],
Lee, M.J.[Myeong-Jin],
Kim, E.Y.[Eun Yi],
An Intelligent Wheelchair to Enable Safe Mobility of the Disabled
People with Motor and Cognitive Impairments,
ACVR14(702-715).
Springer DOI
1504
BibRef
Suzuki, R.[Ryota],
Yamada, T.[Taichi],
Arai, M.[Masaya],
Sato, Y.[Yoshihisa],
Kobayashi, Y.[Yoshinori],
Kuno, Y.[Yoshinori],
Multiple Robotic Wheelchair System Considering Group Communication,
ISVC14(I: 805-814).
Springer DOI
1501
BibRef
Nakanishi, M.[Masaki],
Mitsukura, Y.[Yasue],
Wheelchair control system by using electrooculogram signal processing,
FCV13(137-142).
IEEE DOI
1304
BibRef
Miro, J.V.[Jaime Valls],
Poon, J.[James],
Huang, S.D.[Shou-Dong],
Low-cost visual tracking with an intelligent wheelchair for innovative
assistive care,
ICARCV12(1540-1545).
IEEE DOI
1304
BibRef
Wang, C.[Chao],
Savkin, A.V.[Andrey V.],
Nguyen, T.N.[Tuan Nghia],
Nguyen, H.T.[Hung T.],
An algorithm for collision free navigation of an intelligent powered
wheelchair in dynamic environments,
ICARCV12(1571-1575).
IEEE DOI
1304
BibRef
Kinpara, Y.[Yuki],
Takano, E.[Elly],
Kobayashi, Y.[Yoshinori],
Kuno, Y.[Yoshinori],
Situation-driven control of a robotic wheelchair to follow a caregiver,
FCV11(1-6).
IEEE DOI
1102
BibRef
Gong, K.,
Green, R.,
Ground-plane detection using stereo depth values for wheelchair
guidance,
IVCNZ09(97-101).
IEEE DOI
0911
BibRef
van Workum, K.,
Green, R.,
Smart wheelchair guidance using optical flow,
IVCNZ09(7-11).
IEEE DOI
0911
BibRef
Murarka, A.,
Modayil, J.,
Kuipers, B.,
Building Local Safety Maps for a Wheelchair Robot using Vision and
Lasers,
CRV06(25-25).
IEEE DOI
0607
BibRef
Kuno, Y.,
Nakanishi, S.,
Murashima, T.,
Shimada, N.,
Shirai, Y.,
Robotic wheelchair observing its inside and outside,
CIAP99(502-507).
IEEE DOI
9909
BibRef
Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Autonomous Vehicles, Surveys, Collections, Overviews .