20.7.3.9.1 Anomalies, Anomaly Detection

Chapter Contents (Back)
Anomaly Detection. Application, Inspection. Inspection, Defects. Defect Detection. General Anomaly Detection.
See also Time Series Anomaly Detection.

Tang, T.W.[Ta-Wei], Hsu, H.[Hakiem], Li, K.M.[Kuan-Ming],
Industrial anomaly detection with multiscale autoencoder and deep feature extractor-based neural network,
IET-IPR(17), No. 6, 2023, pp. 1752-1761.
DOI Link 2305
image classification, image recognition, inspection, unsupervised learning BibRef

Yu, Q.[Qianzi], Zhu, K.[Kai], Cao, Y.[Yang], Xia, F.[Feijie], Kang, Y.[Yu],
TF²: Few-Shot Text-Free Training-Free Defect Image Generation for Industrial Anomaly Inspection,
CirSysVideo(34), No. 11, November 2024, pp. 11825-11837.
IEEE DOI 2412
Inspection, Diffusion models, Feature extraction, Image synthesis, Task analysis, Production, Anomaly generation, anomaly inspection BibRef

Yang, M.H.[Ming-Hui], Liu, J.[Jing], Yang, Z.W.[Zhi-Wei], Wu, Z.Y.[Zhao-Yang],
SLSG: Industrial image anomaly detection with improved feature embeddings and one-class classification,
PR(156), 2024, pp. 110862.
Elsevier DOI 2408
Anomaly detection, One-class classification, Self-supervised learning, Graph convolutional network BibRef

Liu, B.[Binhui], Guo, T.[Tianchu], Luo, B.[Bin], Cui, Z.[Zhen], Yang, J.[Jian],
Cross-Attention Regression Flow for Defect Detection,
IP(33), 2024, pp. 5183-5193.
IEEE DOI 2410
Feature extraction, Anomaly detection, Transforms, Defect detection, Visualization, Fitting, Testing, Defect detection, autoregression BibRef

Chen, Z.H.[Zi-Heng], Lyu, C.Z.[Chen-Zhi], Zhang, L.[Lei], Li, S.K.[Shao-Kang], Xia, B.[Bin],
RDMS: Reverse distillation with multiple students of different scales for anomaly detection,
IET-IPR(18), No. 13, 2024, pp. 3815-3826.
DOI Link Code:
WWW Link. 2411
crack detection, pattern recognition, unsupervised learning BibRef

Wan, Y.H.[Yong-Hao], Feng, A.[Aimin],
DualAD: Dual adversarial network for image anomaly detection?,
IET-CV(18), No. 8, 2024, pp. 1138-1148.
DOI Link 2501
feature extraction, image recognition, image reconstruction, vision defects BibRef

Chen, Z.[Ziyi], Bai, C.Y.[Chen-Yao], Zhu, Y.L.[Yun-Long], Lu, X.W.[Xi-Wen],
TUT: Template-Augmented U-Net Transformer for Unsupervised Anomaly Detection,
SPLetters(31), 2024, pp. 780-784.
IEEE DOI 2404
Image reconstruction, Decoding, Convolution, Vectors, Anomaly detection, Head, Self-supervised learning, unsupervised learning BibRef

Chen, Q.Y.[Qi-Yu], Luo, H.Y.[Hui-Yuan], Gao, H.[Han], Lv, C.[Chengkan], Zhang, Z.T.[Zheng-Tao],
Progressive Boundary Guided Anomaly Synthesis for Industrial Anomaly Detection,
CirSysVideo(35), No. 2, February 2025, pp. 1193-1208.
IEEE DOI Code:
WWW Link. 2502
Image reconstruction, Feature extraction, Anomaly detection, Training, Optimization, Learning (artificial intelligence), progressive boundary guidance BibRef

Liu, J.[Jinfan], Yan, Y.C.[Yi-Chao], Li, J.J.[Jun-Jie], Zhao, W.M.[Wei-Ming], Chu, P.Z.[Peng-Zhi], Sheng, X.[Xingdong], Liu, Y.H.[Yun-Hui], Yang, X.K.[Xiao-Kang],
IPAD: Industrial Process Anomaly Detection Dataset,
CirSysVideo(35), No. 1, January 2025, pp. 380-393.
IEEE DOI Code:
WWW Link. 2502
Anomaly detection, Synthetic data, Pedestrians, Image reconstruction, Production facilities, Data models, reconstruction model BibRef

Wang, C.J.[Cheng-Jie], Jiang, X.[Xi], Gao, B.B.[Bin-Bin], Gan, Z.[Zhenye], Liu, Y.[Yong], Zheng, F.[Feng], Ma, L.Z.[Li-Zhuang],
SoftPatch+: Fully unsupervised anomaly classification and segmentation,
PR(161), 2025, pp. 111295.
Elsevier DOI Code:
WWW Link. 2502
Anomaly detection, Unsupervised learning, Learn with noise BibRef

Zhang, J.J.[Jia-Jun], Yang, Z.W.[Zhou-Wang], Song, Y.Z.[Yan-Zhi],
DC-AD: A Divide-and-Conquer Method for Few-Shot Anomaly Detection,
PR(162), 2025, pp. 111360.
Elsevier DOI 2503
Few-shot learning, Anomaly detection, Region matching, Benchmarks BibRef

Pei, M.J.[Ming-Jing], Zhou, X.[Xiancun], Huang, Y.[Yourui], Zhang, F.H.[Feng-Hui], Pei, M.L.[Ming-Li], Yang, Y.D.[Ya-Dong], Zheng, S.J.[Shi-Jian], Xin, M.[Mai],
Enhancing industrial anomaly detection with Mamba-inspired feature fusion,
JVCIR(107), 2025, pp. 104368.
Elsevier DOI 2503
Industrial image anomaly detection, Unsupervised learning, Mamba, Feature fusion BibRef

Zhang, J.N.[Jiang-Ning], Chen, X.[Xuhai], Wang, Y.B.[Ya-Biao], Wang, C.J.[Cheng-Jie], Liu, Y.[Yong], Li, X.T.[Xiang-Tai], Yang, M.H.[Ming-Hsuan], Tao, D.C.[Da-Cheng],
Exploring plain ViT features for multi-class unsupervised visual anomaly detection,
CVIU(253), 2025, pp. 104308.
Elsevier DOI Code:
WWW Link. 2503
Multi-class anomaly detection, Vision transformer, Unsupervised learning, Feature reconstruction BibRef

He, L.[Liren], Jiang, Z.K.[Zheng-Kai], Peng, J.L.[Jin-Long], Zhu, W.B.[Wen-Bing], Liu, L.[Liang], Du, Q.G.[Qian-Gang], Hu, X.B.[Xia-Bin], Chi, M.M.[Ming-Min], Wang, Y.B.[Ya-Biao], Wang, C.J.[Cheng-Jie],
Learning Unified Reference Representation for Unsupervised Multi-class Anomaly Detection,
ECCV24(LXVII: 216-232).
Springer DOI 2412
BibRef

Chen, D.[Dong], Pan, K.[Kaihang], Dai, G.Y.[Guang-Yu], Wang, G.M.[Guo-Ming], Zhuang, Y.T.[Yue-Ting], Tang, S.L.[Si-Liang], Xu, M.L.[Ming-Liang],
Improving Vision Anomaly Detection With the Guidance of Language Modality,
MultMed(27), 2025, pp. 1410-1419.
IEEE DOI 2503
Detectors, Feature extraction, Anomaly detection, Entropy, Training, Correlation, Contrastive learning, Semantics, Testing, Symbols, anomaly detection BibRef

Wu, G.C.[Gao-Chang], Zhang, Y.P.[Ya-Peng], Deng, L.[Lan], Zhang, J.X.[Jing-Xin], Chai, T.Y.[Tian-You],
Cross-Modal Learning for Anomaly Detection in Complex Industrial Process: Methodology and Benchmark,
CirSysVideo(35), No. 3, March 2025, pp. 2632-2645.
IEEE DOI Code:
WWW Link. 2503
Anomaly detection, Smelting, Magnesium, Visualization, Feature extraction, Transformers, Tokenization, Correlation, fused magnesium furnace BibRef

Chen, Z.X.[Zi-Xuan], Xie, X.H.[Xiao-Hua], Yang, L.X.[Ling-Xiao], Lai, J.H.[Jian-Huang],
Hard-Normal Example-Aware Template Mutual Matching for Industrial Anomaly Detection,
IJCV(133), No. 5, May 2025, pp. 2927-2949.
Springer DOI 2504
BibRef

He, S.[Sihan], Zhang, T.[Tao], Song, W.[Wei], Yu, H.B.[Hong-Bin],
Feature Bank-Guided Reconstruction for Anomaly Detection,
SPLetters(32), 2025, pp. 1480-1484.
IEEE DOI 2504
Image reconstruction, Discrete cosine transforms, Feature extraction, Anomaly detection, Training, semisupervised learning BibRef

Yu, Q.[Qien], Dai, S.X.[Sheng-Xin], Dong, R.[Ran], Ikuno, S.[Soichiro],
Attention-based vector quantized variational autoencoder for anomaly detection by using orthogonal subspace constraints,
PR(164), 2025, pp. 111500.
Elsevier DOI 2504
Industrial image, Anomaly detection, Subspace projection, Attention mechanism, Vector quantized variational autoencoder BibRef

Wang, C.[Chen], Erfani, S.[Sarah], Alpcan, T.[Tansu], Leckie, C.[Christopher],
OIL-AD: An anomaly detection framework for decision-making sequences,
PR(166), 2025, pp. 111656.
Elsevier DOI Code:
WWW Link. 2505
Anomaly detection, Offline imitation learning, Sequential decision-making, Reinforcement learning BibRef

Li, J.H.[Jia-Hao], Chen, Y.Q.[Yi-Qiang], Xing, Y.[Yunbing], Gu, Y.[Yang], Lan, X.Y.[Xiang-Yuan],
GSM: Global Semantic Memory,
PR(169), 2026, pp. 111950.
Elsevier DOI 2509
Anomaly detection, Unsupervised learning, Memory BibRef

Lee, Y.J.[Yu-Jin], Lim, H.[Harin], Jang, S.[Seoyoon], Yoon, H.[Hyunsoo],
UniFormaly: Towards task-agnostic unified framework for visual anomaly detection,
PR(169), 2026, pp. 111820.
Elsevier DOI Code:
WWW Link. 2509
Anomaly detection, Unified framework, Off-the-shelf representation, Patch-level memory bank BibRef

Liu, X.[Xu], Wu, C.L.[Chun-Lei], Zhang, H.[Huan], Wang, L.[Leiquan],
A memory-tree driven network for multi-view fusion anomaly detection,
PR(170), 2026, pp. 112106.
Elsevier DOI 2509
Memory tree, Fusion scheme, Anomaly detection BibRef


Li, X.F.[Xiao-Fan], Tan, X.[Xin], Chen, Z.[Zhuo], Zhang, Z.Z.[Zhi-Zhong], Zhang, R.X.[Rui-Xin], Guo, R.[Rizen], Jiang, G.[Guanna], Chen, Y.L.[Yu-Long], Qu, Y.[Yanyun], Ma, L.Z.[Li-Zhuang], Xie, Y.[Yuan],
One-for-More: Continual Diffusion Model for Anomaly Detection,
CVPR25(4766-4775)
IEEE DOI Code:
WWW Link. 2508
Training, Memory management, Markov processes, Diffusion models, Stability analysis, Iterative methods, Anomaly detection, continual learning BibRef

Huang, Z.M.[Zi-Ming], Li, X.[Xurui], Liu, H.T.[Hao-Tian], Xue, F.[Feng], Wang, Y.Z.[Yu-Zhe], Zhou, Y.[Yu],
AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios,
CVPR25(4755-4765)
IEEE DOI Code:
WWW Link. 2508
Representation learning, Codes, Clustering methods, Merging, Semantics, Crops, Anomaly detection, Faces BibRef

Ma, W.X.[Wen-Xin], Zhang, X.[Xu], Yao, Q.S.[Qing-Song], Tang, F.[Fenghe], Wu, C.X.[Chen-Xu], Li, Y.[Yingtai], Yan, R.[Rui], Jiang, Z.H.[Zi-Hang], Zhou, S.K.[S. Kevin],
AA-CLIP: Enhancing Zero-Shot Anomaly Detection via Anomaly-Aware CLIP,
CVPR25(4744-4754)
IEEE DOI Code:
WWW Link. 2508
Location awareness, Visualization, Biomedical equipment, Codes, Semantics, Medical services, Lesions, Anomaly detection, clip, vlm BibRef

Yang, K.[Kaichen], Cao, J.J.[Jun-Jie], Bai, Z.[Zeyu], Su, Z.X.[Zhi-Xun], Tagliasacchi, A.[Andrea],
PIAD: Pose and Illumination agnostic Anomaly Detection,
CVPR25(4734-4743)
IEEE DOI Code:
WWW Link. 2508
Accuracy, Autonomous systems, Lighting, Training data, Anomaly detection, anomaly detection, camera pose estimation, 3dgs, illumination BibRef

Ye, J.A.[Jian-An], Zhao, W.G.[Wei-Guang], Yang, X.[Xi], Cheng, G.L.[Guang-Liang], Huang, K.[Kaizhu],
PO3AD: Predicting Point Offsets toward Better 3D Point Cloud Anomaly Detection,
CVPR25(1353-1362)
IEEE DOI Code:
WWW Link. 2508
Point cloud compression, Training, Measurement, Data visualization, Feature extraction, Vectors, Data models, Anomaly detection, 3d point cloud BibRef

Mao, K.[Kai], Wei, P.[Ping], Lian, Y.Y.[Yi-Yang], Wang, Y.Y.[Yang-Yang], Zheng, N.N.[Nan-Ning],
Beyond Single-Modal Boundary: Cross-Modal Anomaly Detection through Visual Prototype and Harmonization,
CVPR25(9964-9973)
IEEE DOI Code:
WWW Link. 2508
Visualization, Adaptation models, Codes, Semantics, Prototypes, Data models, Anomaly detection BibRef

Luo, W.[Wei], Cao, Y.[Yunkang], Yao, H.M.[Hai-Ming], Zhang, X.T.[Xiao-Tian], Lou, J.A.[Jian-An], Cheng, Y.Q.[Yu-Qi], Shen, W.M.[Wei-Ming], Yu, W.Y.[Wen-Yong],
Exploring Intrinsic Normal Prototypes within a Single Image for Universal Anomaly Detection,
CVPR25(9974-9983)
IEEE DOI Code:
WWW Link. 2508
Training, Limiting, Prototypes, Coherence, III-V semiconductor materials, Indium phosphide, feature reconstruction BibRef

Li, W.Q.[Wen-Qiao], Zheng, B.[Bozhong], Xu, X.H.[Xiao-Hao], Gan, J.Y.[Jin-Ye], Lu, F.[Fading], Li, X.[Xiang], Ni, N.[Na], Tian, Z.[Zheng], Huang, X.N.[Xiao-Nan], Gao, S.H.[Sheng-Hua], Wu, Y.[Yingna],
Multi-Sensor Object Anomaly Detection: Unifying Appearance, Geometry, and Internal Properties,
CVPR25(9984-9993)
IEEE DOI Code:
WWW Link. 2508
Geometry, Deformation, Face recognition, Infrared imaging, Inspection, Sensors, Laser fusion, Anomaly detection, multisensor BibRef

Wei, S.[Shun], Jiang, J.L.[Jie-Lin], Xu, X.L.[Xiao-Long],
UniNet: A Contrastive Learning-guided Unified Framework with Feature Selection for Anomaly Detection,
CVPR25(9994-10003)
IEEE DOI 2508
Bridges, Technological innovation, Visualization, Correlation, Feature extraction, Anomaly detection, anomaly detection, contrastive learning BibRef

Nafez, M.[Mojtaba], Koochakian, A.[Amirhossein], Maleki, A.[Arad], Habibi, J.[Jafar], Rohban, M.H.[Mohammad Hossein],
PatchGuard: Adversarially Robust Anomaly Detection and Localization through Vision Transformers and Pseudo Anomalies,
CVPR25(20383-20394)
IEEE DOI 2508
Location awareness, Training, Training data, Performance gain, Transformers, Robustness, Anomaly detection, Biomedical imaging BibRef

Bhunia, A.[Ankan], Li, C.J.[Chang-Jian], Bilen, H.[Hakan],
Odd-One-Out: Anomaly Detection by Comparing with Neighbors,
CVPR25(20395-20404)
IEEE DOI 2508
Solid modeling, Correlation, Computational modeling, Benchmark testing, Object recognition, Anomaly detection, multi-view BibRef

Guo, J.[Jia], Lu, S.[Shuai], Zhang, W.[Weihang], Chen, F.[Fang], Li, H.Q.[Hui-Qi], Liao, H.[Hongen],
Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection,
CVPR25(20405-20415)
IEEE DOI Code:
WWW Link. 2508
Philosophical considerations, Computational modeling, Noise, Force, Transformers, Feature extraction, Noise measurement, unsupervised learning BibRef

Wang, F.[Fuyun], Zhang, T.[Tong], Wang, Y.Z.[Yuan-Zhi], Qiu, Y.[Yide], Liu, X.[Xin], Guo, X.[Xu], Cui, Z.[Zhen],
Distribution Prototype Diffusion Learning for Open-set Supervised Anomaly Detection,
CVPR25(20416-20426)
IEEE DOI 2508
Representation learning, Bridges, Prototypes, Gaussian distribution, Robustness, Anomaly detection, Dispersion BibRef

Sun, H.[Han], Cao, Y.[Yunkang], Dong, H.[Hao], Fink, O.[Olga],
Unseen Visual Anomaly Generation,
CVPR25(25508-25517)
IEEE DOI Code:
WWW Link. 2508
Training, Visualization, Limiting, Image synthesis, Foundation models, Training data, Anomaly detection, Optimization, diffusion model BibRef

Akshay, S.[Shilhora], Narasimhan, N.L.[Niveditha Lakshmi], George, J.[Jacob], Balasubramanian, V.N.[Vineeth N.],
A Unified Latent Schrödinger Bridge Diffusion Model for Unsupervised Anomaly Detection and Localization,
CVPR25(25528-25538)
IEEE DOI Code:
WWW Link. 2508
Location awareness, Bridges, Training, Adaptation models, Transforms, Robustness, Anomaly detection, Image reconstruction, diffusion BibRef

Qu, Z.[Zhen], Tao, X.[Xian], Gong, X.[Xinyi], Qu, S.[ShiChen], Chen, Q.Y.[Qi-Yu], Zhang, Z.T.[Zheng-Tao], Wang, X.G.[Xin-Gang], Ding, G.[Guiguang],
Bayesian Prompt Flow Learning for Zero-Shot Anomaly Detection,
CVPR25(30398-30408)
IEEE DOI Code:
WWW Link. 2508
Training, Uncertainty, Semantics, Probabilistic logic, Vectors, Probability distribution, oBayes methods, Anomaly detection, CLIP BibRef

Zhang, J.J.[Jin-Jin], Wang, G.D.[Guo-Dong], Jin, Y.Z.[Yi-Zhou], Huang, D.[Di],
Towards Training-free Anomaly Detection with Vision and Language Foundation Models,
CVPR25(15204-15213)
IEEE DOI Code:
WWW Link. 2508
Training, Foundation models, Semantic segmentation, Detectors, Inspection, Robustness, Proposals, Anomaly detection, vision and language foundation models BibRef

Zhu, W.B.[Wen-Bing], Wang, L.[Lidong], Zhou, Z.Q.[Zi-Qing], Wang, C.J.[Cheng-Jie], Pan, Y.R.[Yu-Rui], Zhang, R.[Ruoyi], Chen, Z.[Zhuhao], Cheng, L.J.[Lin-Jie], Gao, B.B.[Bin-Bin], Zhang, J.N.[Jiang-Ning], Gan, Z.[Zhenye], Wang, Y.X.[Yu-Xie], Chen, Y.L.[Yu-Long], Qian, S.G.[Shu-Guang], Chi, M.[Mingmin], Peng, B.[Bo], Ma, L.Z.[Li-Zhuang],
Real-IAD D3: A Real-World 2D/Pseudo-3D/3D Dataset for Industrial Anomaly Detection,
CVPR25(15214-15223)
IEEE DOI Code:
WWW Link. 2508
Point cloud compression, Image resolution, Face recognition, Machine vision, Feature extraction, Robustness, Complexity theory, Anomaly detection BibRef

Wu, S.[Sheng], Wang, Y.[Yimi], Liu, X.D.[Xu-Dong], Yang, Y.G.[Yu-Guang], Wang, R.[Runqi], Guo, G.D.[Guo-Dong], Doermann, D.[David], Zhang, B.C.[Bao-Chang],
DFM: Differentiable Feature Matching for Anomaly Detection,
CVPR25(15224-15233)
IEEE DOI 2508
Training, Computational modeling, Transforms, Feature extraction, Anomaly detection, Optimization, Pattern matching BibRef

Gu, Z.P.[Zhao-Peng], Zhu, B.[Bingke], Zhu, G.[Guibo], Chen, Y.Y.[Ying-Ying], Tang, M.[Ming], Wang, J.Q.[Jin-Qiao],
UniVAD: A Training-free Unified Model for Few-shot Visual Anomaly Detection,
CVPR25(15194-15203)
IEEE DOI Code:
WWW Link. 2508
Training, Visualization, Semantics, Training data, Standardization, Data models, Anomaly detection, Context modeling, multimodal BibRef

Beizaee, F.[Farzad], Lodygensky, G.A.[Gregory A.], Desrosiers, C.[Christian], Dolz, J.[Jose],
Correcting Deviations from Normality: A Reformulated Diffusion Model for Multi-Class Unsupervised Anomaly Detection,
CVPR25(19088-19097)
IEEE DOI Code:
WWW Link. 2508
Location awareness, Degradation, Noise, Diffusion models, Anomaly detection, Image reconstruction, Standards BibRef

Kashiani, H.[Hossein], Talemi, N.A.[Niloufar Alipour], Afghah, F.[Fatemeh],
ROADS: Robust Prompt-Driven Multi-Class Anomaly Detection Under Domain Shift,
WACV25(7908-7917)
IEEE DOI 2505
Location awareness, Degradation, Roads, Interference, Detectors, Robustness, Decoding, Anomaly detection, visual anomaly detection, anomaly detection BibRef

Zhou, Z.Y.[Zhe-Yuan], Wang, L.[Le], Fang, N.[Naiyu], Wang, Z.L.[Zi-Li], Qiu, L.[Lemiao], Zhang, S.[Shuyou],
R3D-AD: Reconstruction via Diffusion for 3d Anomaly Detection,
ECCV24(XXXVI: 91-107).
Springer DOI 2412
BibRef

Yao, H.[Hang], Liu, M.[Ming], Yin, Z.[Zhicun], Yan, Z.[Zifei], Hong, X.P.[Xiao-Peng], Zuo, W.M.[Wang-Meng],
Glad: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection,
ECCV24(LXXI: 1-17).
Springer DOI 2412
BibRef

Jin, Y.[Ying], Peng, J.L.[Jin-Long], He, Q.D.[Qing-Dong], Hu, T.[Teng], Wu, J.[Jiafu], Chen, H.[Hao], Wang, H.X.[Hao-Xuan], Zhu, W.B.[Wen-Bing], Chi, M.M.[Ming-Min], Liu, J.[Jun], Wang, Y.B.[Ya-Biao],
Dual-Interrelated Diffusion Model for Few-Shot Anomaly Image Generation,
CVPR25(30420-30429)
IEEE DOI 2508
Location awareness, Image synthesis, Shape, Computational modeling, Fitting, Inspection, Diffusion models, Distortion, Data models, Manufacturing BibRef

Gui, G.[Guan], Gao, B.B.[Bin-Bin], Liu, J.[Jun], Wang, C.J.[Cheng-Jie], Wu, Y.S.[Yun-Sheng],
Few-shot Anomaly-driven Generation for Anomaly Classification and Segmentation,
ECCV24(LXXXIII: 210-226).
Springer DOI 2412
BibRef

Meng, S.Y.[Shi-Yuan], Meng, W.C.[Wen-Chao], Zhou, Q.H.[Qi-Hang], Li, S.Z.[Shi-Zhong], Hou, W.[Weiye], He, S.[Shibo],
Moead: A Parameter-efficient Model for Multi-class Anomaly Detection,
ECCV24(LXXXV: 345-361).
Springer DOI 2412
BibRef

Shi, J.[Jian], Zhang, P.Y.[Peng-Yi], Zhang, N.[Ni], Ghazzai, H.[Hakim], Wonka, P.[Peter],
Dissolving is Amplifying: Towards Fine-grained Anomaly Detection,
ECCV24(LIX: 377-394).
Springer DOI 2412
BibRef

Lee, J.C.[Joo Chan], Kim, T.[Taejune], Park, E.[Eunbyung], Woo, S.S.[Simon S.], Ko, J.H.[Jong Hwan],
Continuous Memory Representation for Anomaly Detection,
ECCV24(LI: 438-454).
Springer DOI 2412
BibRef

Sträter, L.P.J.[Luc P. J.], Salehi, M.[Mohammadreza], Gavves, E.[Efstratios], Snoek, C.G.M.[Cees G. M.], Asano, Y.M.[Yuki M.],
Generalad: Anomaly Detection Across Domains by Attending to Distorted Features,
ECCV24(XXXVII: 448-465).
Springer DOI 2412
BibRef

Chen, Q.Y.[Qi-Yu], Luo, H.Y.[Hui-Yuan], Lv, C.[Chengkan], Zhang, Z.T.[Zheng-Tao],
A Unified Anomaly Synthesis Strategy with Gradient Ascent for Industrial Anomaly Detection and Localization,
ECCV24(LXVII: 37-54).
Springer DOI 2412
BibRef

Gao, B.B.[Bin-Bin],
Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt,
ECCV24(LXVII: 454-470).
Springer DOI 2412
BibRef

Isaac-Medina, B.K.S.[Brian K. S.], Gaus, Y.F.A.[Yona Falinie A.], Bhowmik, N.[Neelanjan], Breckon, T.P.[Toby P.],
Towards Open-world Object-based Anomaly Detection via Self-supervised Outlier Synthesis,
ECCV24(LXXI: 196-214).
Springer DOI 2412
BibRef

Qu, Z.[Zhen], Tao, X.[Xian], Prasad, M.[Mukesh], Shen, F.[Fei], Zhang, Z.T.[Zheng-Tao], Gong, X.[Xinyi], Ding, G.G.[Gui-Guang],
VCP-CLIP: A Visual Context Prompting Model for Zero-shot Anomaly Segmentation,
ECCV24(LXIX: 301-317).
Springer DOI 2412
BibRef

Tu, Y.P.[Yuan-Peng], Zhang, B.S.[Bo-Shen], Liu, L.[Liang], Li, Y.X.[Yu-Xi], Zhang, J.N.[Jiang-Ning], Wang, Y.B.[Ya-Biao], Wang, C.J.[Cheng-Jie], Zhao, C.R.[Cai-Rong],
Self-Supervised Feature Adaptation for 3D Industrial Anomaly Detection,
ECCV24(II: 75-91).
Springer DOI 2412
BibRef

Costanzino, A.[Alex], Ramirez, P.Z.[Pierluigi Zama], Lisanti, G.[Giuseppe], di Stefano, L.[Luigi],
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping,
CVPR24(17234-17243)
IEEE DOI 2410
Point cloud compression, Memory management, Feature extraction, Manufacturing, Anomaly detection, anomaly, layer pruning BibRef

Rolih, B.[Bla˛], Ameln, D.[Dick], Vaidya, A.[Ashwin], Akcay, S.[Samet],
Divide and Conquer: High-Resolution Industrial Anomaly Detection via Memory Efficient Tiled Ensemble,
VAND24(3866-3875)
IEEE DOI 2410
Training, Image resolution, Tiles, Memory management, Stacking, Graphics processing units, Anomaly Detection, High-resolution processing BibRef

Costanzino, A.[Alex], Ramirez, P.Z.[Pierluigi Zama], del Moro, M.[Mirko], Aiezzo, A.[Agostino], Lisanti, G.[Giuseppe], Salti, S.[Samuele], di Stefano, L.[Luigi],
Test Time Training for Industrial Anomaly Segmentation,
VAND24(3910-3920)
IEEE DOI 2410
Training, Quality control, Feature extraction, Standards, anomaly, anomaly detection, anomaly segmentation, anomaly scores BibRef

Zhu, B.K.[Bing-Ke], Li, H.[Hao], Chen, C.L.[Chang-Lin], Hua, L.J.[Liu-Jie], Wang, J.Q.[Jin-Qiao],
Estate: Expert-Guided State Text Enhancement for Zero-Shot Industrial Anomaly Detection,
ICIP24(1281-1287)
IEEE DOI 2411
Training, Measurement, Image segmentation, Benchmark testing, Task analysis, Anomaly detection, Standards, anomaly detection, text-guided BibRef

Hu, W.R.[Wen-Rui], Xie, Y.[Yuan], Yu, W.[Wei],
TDAD: Trident Distillations for Anomaly Detection,
ICIP24(346-352)
IEEE DOI 2411
Training, Reliability, Task analysis, Anomaly detection, Surface treatment, Unsupervised anomaly detection, self-supervised learning BibRef

Li, G.J.[Guan-Ji], Gao, H.X.[Hong-Xia],
Apnet: Generating Precise Anomaly Prior Information for Mixed-Supervised Defect Detection,
ICIP24(3889-3895)
IEEE DOI 2411
Location awareness, Inductance, Image segmentation, Vector quantization, Pipelines, Object detection BibRef

Li, X.F.[Xiao-Fan], Zhang, Z.Z.[Zhi-Zhong], Tan, X.[Xin], Chen, C.W.[Cheng-Wei], Qu, Y.[Yanyun], Xie, Y.[Yuan], Ma, L.Z.[Li-Zhuang],
PromptAD: Learning Prompts with only Normal Samples for Few-Shot Anomaly Detection,
CVPR24(16848-16858)
IEEE DOI Code:
WWW Link. 2410
Training, Learning systems, Codes, Semantics, Prompt engineering, Anomaly Detection, Prompt Learning, Few-Shot Learning BibRef

Zhu, J.[Jiawen], Pang, G.S.[Guan-Song],
Toward Generalist Anomaly Detection via In-Context Residual Learning with Few-Shot Sample Prompts,
CVPR24(17826-17836)
IEEE DOI Code:
WWW Link. 2410
Training, Codes, Computational modeling, Semantics, Benchmark testing, Data models, Anomaly Detection, Few-shot Anomaly Detection BibRef

Murphy, J.[James], Buckley, M.[Maria], Buckley, L.[Léonie], Taylor, A.[Adam], O'Brien, J.[Jake], Namee, B.M.[Brian Mac],
Deploying Machine Learning Anomaly Detection Models to Flight Ready AI Boards,
AI4Space24(6828-6836)
IEEE DOI 2410
Performance evaluation, Space missions, Image edge detection, Computational modeling, Machine learning, Transformers, Hardware, space BibRef

Gupta, S.[Shaurya], Gautam, N.[Neil], Malyala, A.[Anurag],
ATAC-NET: Zoomed View Works Better for Anomaly Detection,
ICIP24(249-255)
IEEE DOI 2411
Training, Deep learning, Visualization, Quality control, Manufacturing, Reliability, anomaly detection, self-explainability, deviation loss BibRef

Lee, M.Y.[Ming-Yu], Choi, J.W.[Jong-Won],
Text-Guided Variational Image Generation for Industrial Anomaly Detection and Segmentation,
CVPR24(26509-26518)
IEEE DOI 2410
Image segmentation, Image synthesis, Generators, Vectors, Stability analysis, Libraries, Data models, Industrial Anomaly Segmentation BibRef

Ugwu, C.I.[Cynthia I.], Casarin, S.[Sofia], Lanz, O.[Oswald],
Fractals as Pre-training Datasets for Anomaly Detection and Localization,
FaDE-TCV24(163-172)
IEEE DOI 2410
Training, Visualization, Data privacy, Solid modeling, Systematics, Feature extraction, Solids, anomaly detection, fractals images, feature-embedding BibRef

Tebbe, J.[Justin], Tayyub, J.[Jawad],
Dynamic Addition of Noise in a Diffusion Model for Anomaly Detection,
VAND24(3940-3949)
IEEE DOI 2410
Location awareness, Technological innovation, Noise reduction, Noise, Diffusion models, anomaly detection, diffusion models, domain adaptation BibRef

Artola, A.[Aitor], Kolodziej, Y.[Yannis], Morel, J.M.[Jean-Michel], Ehret, T.[Thibaud],
Model-guided contrastive fine-tuning for industrial anomaly detection,
VAND24(3981-3991)
IEEE DOI 2410
Location awareness, Visualization, Computational modeling, Neural networks, Contrastive learning, Feature extraction, contrastive learning BibRef

Zhao, Y.[Ying],
LogicAL: Towards logical anomaly synthesis for unsupervised anomaly localization,
VAND24(4022-4031)
IEEE DOI 2410
Location awareness, Manifolds, Image edge detection, Semantics, Production, Anomaly synthesis, Anomaly localization, Anomaly detection BibRef

Baitieva, A.[Aimira], Hurych, D.[David], Besnier, V.[Victor], Bernard, O.[Olivier],
Supervised Anomaly Detection for Complex Industrial Images,
CVPR24(17754-17762)
IEEE DOI Code:
WWW Link. 2410
Image segmentation, Visualization, Computational modeling, Production, Benchmark testing, Product design, Quality assessment BibRef

Zhu, J.[Jiawen], Ding, C.[Choubo], Tian, Y.[Yu], Pang, G.S.[Guan-Song],
Anomaly Heterogeneity Learning for Open-Set Supervised Anomaly Detection,
CVPR24(17616-17626)
IEEE DOI Code:
WWW Link. 2410
Training, Codes, Computational modeling, Collaboration, Rendering (computer graphics), Supervised Anomaly Detection BibRef

Li, H.M.[Hui-Min], Chen, Z.T.[Zhen-Tao], Xu, Y.H.[Yun-Hao], Hu, J.L.[Jun-Lin],
Hyperbolic Anomaly Detection,
CVPR24(17511-17520)
IEEE DOI 2410
Deep learning, Computational modeling, Pipelines, Benchmark testing, Feature extraction, feature embedding BibRef

Zhang, X.[Ximiao], Xu, M.[Min], Zhou, X.Z.[Xiu-Zhuang],
RealNet: A Feature Selection Network with Realistic Synthetic Anomaly for Anomaly Detection,
CVPR24(16699-16708)
IEEE DOI Code:
WWW Link. 2410
Location awareness, Redundancy, Reconstruction algorithms, Feature extraction, Data models, feature selection BibRef

Ho, C.H.[Chih-Hui], Peng, K.C.[Kuan-Chuan], Vasconcelos, N.M.[Nuno M.],
Long-Tailed Anomaly Detection with Learnable Class Names,
CVPR24(12435-12446)
IEEE DOI Code:
WWW Link. 2410
Performance evaluation, Semantics, Training data, Transformers, Image reconstruction, Anomaly Detection, Visual Language Foundational Model BibRef

Wang, C.J.[Cheng-Jie], Zhu, W.B.[Wen-Bing], Gao, B.B.[Bin-Bin], Gan, Z.[Zhenye], Zhang, J.N.[Jiang-Ning], Gu, Z.H.[Zhi-Hao], Qian, S.G.[Shu-Guang], Chen, M.[Mingang], Ma, L.Z.[Li-Zhuang],
Real-IAD: A Real-World Multi-View Dataset for Benchmarking Versatile Industrial Anomaly Detection,
CVPR24(22883-22892)
IEEE DOI 2410
Training, Measurement, Noise, Metals, Production, Benchmark testing, Inspection BibRef

Vieira e Silva, A.L.[André Luiz], Simões, F.[Francisco], Kowerko, D.[Danny], Schlosser, T.[Tobias], Battisti, F.[Felipe], Teichrieb, V.[Veronica],
Attention Modules Improve Image-Level Anomaly Detection for Industrial Inspection: A DifferNet Case Study,
WACV24(8231-8240)
IEEE DOI 2404
Visualization, Artificial neural networks, Inspection, Anomaly detection, Applications, Remote Sensing, Algorithms. BibRef

Hyun, J.[Jeeho], Kim, S.[Sangyun], Jeon, G.[Giyoung], Kim, S.H.[Seung Hwan], Bae, K.[Kyunghoon], Kang, B.J.[Byung Jun],
ReConPatch: Contrastive Patch Representation Learning for Industrial Anomaly Detection,
WACV24(2041-2050)
IEEE DOI 2404
Representation learning, Training, Measurement, Dimensionality reduction, Visualization, Modulation, Image recognition and understanding BibRef

Bao, T.P.[Tian-Peng], Chen, J.D.[Jia-Dong], Li, W.[Wei], Wang, X.[Xiang], Fei, J.J.[Jing-Jing], Wu, L.W.[Li-Wei], Zhao, R.[Rui], Zheng, Y.[Ye],
MIAD: A Maintenance Inspection Dataset for Unsupervised Anomaly Detection,
LIMIT23(993-1002)
IEEE DOI 2401
BibRef

Wang, Y.[Yue], Peng, J.L.[Jin-Long], Zhang, J.N.[Jiang-Ning], Yi, R.[Ran], Wang, Y.B.[Ya-Biao], Wang, C.J.[Cheng-Jie],
Multimodal Industrial Anomaly Detection via Hybrid Fusion,
CVPR23(8032-8041)
IEEE DOI 2309
BibRef

Fang, Z.[Zheng], Wang, X.Y.[Xiao-Yang], Li, H.C.[Hao-Cheng], Liu, J.J.[Jie-Jie], Hu, Q.[Qiugui], Xiao, J.[Jimin],
FastRecon: Few-shot Industrial Anomaly Detection via Fast Feature Reconstruction,
ICCV23(17435-17444)
IEEE DOI Code:
WWW Link. 2401
BibRef

Rudolph, M.[Marco], Wehrbein, T.[Tom], Rosenhahn, B.[Bodo], Wandt, B.[Bastian],
Asymmetric Student-Teacher Networks for Industrial Anomaly Detection,
WACV23(2591-2601)
IEEE DOI 2302
Training, Location awareness, Neural networks, Estimation, Algorithms: Image recognition and understanding, object detection BibRef

Jang, J.K.[Jun-Kyu], Hwang, E.[Eugene], Park, S.H.[Sung-Hyuk],
N-pad : Neighboring Pixel-based Industrial Anomaly Detection,
VISION23(4365-4374)
IEEE DOI 2309
BibRef

Long, J.[Jun], Yang, Y.X.[Yu-Xi], Hua, L.[Liujie], Ou, Y.Q.[Yi-Qi],
Self-supervised Augmented Patches Segmentation for Anomaly Detection,
ACCV22(II:93-107).
Springer DOI 2307

WWW Link. BibRef

Ofir, N.[Nati], Yacobi, R.[Ran], Granoviter, O.[Omer], Levant, B.[Boris], Shtalrid, O.[Ore],
Automatic Defect Segmentation by Unsupervised Anomaly Learning,
ICIP22(306-310)
IEEE DOI 2211
Training, Image segmentation, Head, Shape, Manuals, Implants, Semiconductor device manufacture, Defect Segmentation, Contrastive Learning BibRef

Tian, H.[Huang], Li, X.[Xiang], Yang, L.F.[Ling-Feng], Li, J.[Jun], Yang, J.[Jian], Du, W.D.[Wei-Dong],
PPT: Anomaly Detection Dataset of Printed Products with Templates,
ICIP22(506-510)
IEEE DOI 2211
Printing, Industries, Visualization, Inspection, Benchmark testing, Kernel, Anomaly detection, dataset, printed product, template BibRef

Tan, D.S.[Daniel Stanley], Chen, Y.C.[Yi-Chun], Chen, T.P.C.[Trista Pei-Chun], Chen, W.C.[Wei-Chao],
TrustMAE: A Noise-Resilient Defect Classification Framework using Memory-Augmented Auto-Encoders with Trust Regions,
WACV21(276-285)
IEEE DOI 2106
Training, Data collection, Noise robustness, Anomaly detection, Image reconstruction BibRef

Barata, A.P.[António Pereira], Takes, F.W.[Frank W.], van den Herik, H.J.[H. Jaap], Veenman, C.J.[Cor J.],
The eXPose Approach to Crosslier Detection,
ICPR21(2312-2319)
IEEE DOI 2105
Used for inspections of loads of waste for disposal. Supervised learning, Europe, Transportation, Companies, Tools, Task analysis, crosslier, anomaly, detection, visualisation BibRef

Racki, D., Tomazevic, D., Skocaj, D.,
A Compact Convolutional Neural Network for Textured Surface Anomaly Detection,
WACV18(1331-1339)
IEEE DOI 1806
cellular neural nets, feature extraction, feedforward neural nets, image classification, Visualization BibRef

Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Inspection -- Glass, Panes, Panels, Bottles .


Last update:Oct 6, 2025 at 14:07:43