Kwan, C.,
Ayhan, B.,
Chen, G.,
Wang, J.,
Ji, B.,
Chang, C.I.,
A Novel Approach for Spectral Unmixing, Classification, and
Concentration Estimation of Chemical and Biological Agents,
GeoRS(44), No. 2, February 2006, pp. 409-419.
IEEE DOI
0602
BibRef
Rogge, D.M.,
Rivard, B.,
Zhang, J.,
Feng, J.,
Iterative Spectral Unmixing for Optimizing Per-Pixel Endmember Sets,
GeoRS(44), No. 12, December 2006, pp. 3725-3736.
IEEE DOI
0701
BibRef
Foody, G.M.[Giles M.],
Doan, H.T.X.,
Variability in Soft Classification Prediction and Its Implications for
Sub-pixel Scale Change Detection and Super Resolution Mapping,
PhEngRS(73), No. 8, August 2007, pp. 923-934.
WWW Link.
0709
The impacts of class spectral variability on unmixing the the implications
for analyses based on soft classification outputs.
BibRef
Silvan-Cardenas, J.L.,
Wang, L.,
Fully Constrained Linear Spectral Unmixing:
Analytic Solution Using Fuzzy Sets,
GeoRS(48), No. 11, November 2010, pp. 3992-4002.
IEEE DOI
1011
BibRef
Omachi, M.[Masako],
Omachi, S.[Shinichiro],
Pattern Recognition with Gaussian Mixture Models of Marginal
Distributions,
IEICE(E94-D), No. 2, February 2011, pp. 317-324.
WWW Link.
1102
BibRef
Yang, Z.Y.[Zu-Yuan],
Zhou, G.X.[Guo-Xu],
Xie, S.L.[Sheng-Li],
Ding, S.X.[Shu-Xue],
Yang, J.M.[Jun-Mei],
Zhang, J.[Jun],
Blind Spectral Unmixing Based on Sparse Nonnegative Matrix
Factorization,
IP(20), No. 4, April 2011, pp. 1112-1125.
IEEE DOI
1103
BibRef
Pu, H.Y.[Han-Ye],
Xia, W.[Wei],
Wang, B.[Bin],
Jiang, G.M.[Geng-Ming],
A Fully Constrained Linear Spectral Unmixing Algorithm Based on
Distance Geometry,
GeoRS(52), No. 2, February 2014, pp. 1157-1176.
IEEE DOI
1402
Monte Carlo methods
BibRef
Chen, X.H.[Xue-Hong],
Chen, J.[Jin],
Jia, X.P.[Xiu-Ping],
Somers, B.,
Wu, J.[Jin],
Coppin, P.,
A Quantitative Analysis of Virtual Endmembers' Increased Impact on the
Collinearity Effect in Spectral Unmixing,
GeoRS(49), No. 8, August 2011, pp. 2945-2956.
IEEE DOI
1108
BibRef
Li, H.[Hui],
Wang, Y.P.[Yun-Peng],
Li, Y.[Yan],
Wang, X.F.[Xing-Fang],
Pixel-Unmixing Moderate-Resolution Remote Sensing Imagery Using
Pairwise Coupling Support Vector Machines: A Case Study,
GeoRS(49), No. 11, November 2011, pp. 4298-4307.
IEEE DOI
1112
BibRef
Boardman, J.W.,
Kruse, F.A.,
Analysis of Imaging Spectrometer Data Using N-Dimensional Geometry and
a Mixture-Tuned Matched Filtering Approach,
GeoRS(49), No. 11, November 2011, pp. 4138-4152.
IEEE DOI
1112
partial linear unmixing.
BibRef
Lindblad, J.[Joakim],
Sladoje, N.[Nataša],
Coverage segmentation based on linear unmixing and minimization of
perimeter and boundary thickness,
PRL(33), No. 6, 15 April 2012, pp. 728-738.
Elsevier DOI
1203
Linear unmixing; Soft classification; Fuzzy segmentation; Pixel
coverage model; Energy minimization; Spatial constraints
BibRef
Karoui, M.S.[Moussa Sofiane],
Deville, Y.[Yannick],
Hosseini, S.[Shahram],
Ouamri, A.[Abdelaziz],
Blind spatial unmixing of multispectral images: New methods combining
sparse component analysis, clustering and non-negativity constraints,
PR(45), No. 12, December 2012, pp. 4263-4278.
Elsevier DOI
1208
Multispectral spatial unmixing; Blind source separation; Sparse
component analysis; Correlation; Clustering; Non-negativity
constraints
BibRef
Warren, R.E.,
Osher, S.J.,
Vanderbeek, R.G.,
Multiple Aerosol Unmixing by the Split Bregman Algorithm,
GeoRS(50), No. 9, September 2012, pp. 3271-3279.
IEEE DOI
1209
Not really mixed pixels, but close.
BibRef
Zare, A.,
Gader, P.D.,
Bchir, O.,
Frigui, H.,
Piecewise Convex Multiple-Model Endmember Detection and Spectral
Unmixing,
GeoRS(51), No. 5, May 2013, pp. 2853-2862.
IEEE DOI
1305
BibRef
Liu, J.,
Zhang, J.,
Spectral Unmixing via Compressive Sensing,
GeoRS(52), No. 11, November 2014, pp. 7099-7110.
IEEE DOI
1407
Algorithm design and analysis
BibRef
Luo, W.F.[Wen-Fei],
Gao, L.[Lianru],
Zhang, R.H.[Rui-Hao],
Marinoni, A.[Andrea],
Zhang, B.[Bing],
Bilinear normal mixing model for spectral unmixing,
IET-IPR(13), No. 2, February 2019, pp. 344-354.
DOI Link
1902
BibRef
Akhtar, N.[Naveed],
Shafait, F.[Faisal],
Mian, A.[Ajmal],
Efficient classification with sparsity augmented collaborative
representation,
PR(65), No. 1, 2017, pp. 136-145.
Elsevier DOI
1702
Multi-class classification
BibRef
Li, X.,
Jia, X.,
Wang, L.,
Zhao, K.,
On Spectral Unmixing Resolution Using Extended Support Vector
Machines,
GeoRS(53), No. 9, September 2015, pp. 4985-4996.
IEEE DOI
1506
Analytical models
BibRef
Kuo, C.Y.[Chun-Yen],
Lin, G.X.[Gang-Xuan],
Lu, C.S.[Chun-Shien],
A Necessary and Sufficient Condition for Generalized Demixing,
SPLetters(22), No. 11, November 2015, pp. 2049-2053.
IEEE DOI
1509
compressed sensing
BibRef
Doxani, G.[Georgia],
Mitraka, Z.[Zina],
Gascon, F.[Ferran],
Goryl, P.[Philippe],
Bojkov, B.R.[Bojan R.],
A Spectral Unmixing Model for the Integration of Multi-Sensor
Imagery: A Tool to Generate Consistent Time Series Data,
RS(7), No. 10, 2015, pp. 14000.
DOI Link
1511
BibRef
Uezato, T.,
Murphy, R.J.,
Melkumyan, A.,
Chlingaryan, A.,
A Novel Spectral Unmixing Method Incorporating Spectral Variability
Within Endmember Classes,
GeoRS(54), No. 5, May 2016, pp. 2812-2831.
IEEE DOI
1604
Gaussian processes
BibRef
Uezato, T.,
Murphy, R.J.,
Melkumyan, A.,
Chlingaryan, A.,
A Novel Endmember Bundle Extraction and Clustering Approach for
Capturing Spectral Variability Within Endmember Classes,
GeoRS(54), No. 11, November 2016, pp. 6712-6731.
IEEE DOI
1610
Data mining
BibRef
Uezato, T.,
Murphy, R.J.,
Melkumyan, A.,
Chlingaryan, A.,
Incorporating Spatial Information and Endmember Variability Into
Unmixing Analyses to Improve Abundance Estimates,
IP(25), No. 12, December 2016, pp. 5563-5575.
IEEE DOI
1612
Gaussian processes
BibRef
Xu, C.[Chao],
Liu, Z.L.[Zhao-Li],
Hou, G.L.[Guang-Lei],
Simulation of the Impact of a Sensor's PSF on Mixed Pixel
Decomposition: 1. Nonuniformity Effect,
RS(8), No. 5, 2016, pp. 437.
DOI Link
1606
BibRef
Pan, Z.W.,
Shen, H.L.,
Li, C.,
Chen, S.J.,
Xin, J.H.,
Fast Multispectral Imaging by Spatial Pixel-Binning and Spectral
Unmixing,
IP(25), No. 8, August 2016, pp. 3612-3625.
IEEE DOI
1608
image reconstruction
BibRef
Chen, F.,
Wang, K.,
Tang, T.F.,
Spectral Unmixing Using a Sparse Multiple-Endmember Spectral Mixture
Model,
GeoRS(54), No. 10, October 2016, pp. 5846-5861.
IEEE DOI
1610
geophysical image processing
BibRef
Qi, K.L.[Kun-Lun],
Liu, W.X.[Wen-Xuan],
Yang, C.[Chao],
Guan, Q.F.[Qing-Feng],
Wu, H.Y.[Hua-Yi],
Multi-Task Joint Sparse and Low-Rank Representation for the Scene
Classification of High-Resolution Remote Sensing Image,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Qi, K.L.[Kun-Lun],
Yang, C.[Chao],
Guan, Q.F.[Qing-Feng],
Wu, H.Y.[Hua-Yi],
Gong, J.Y.[Jian-Ya],
A Multiscale Deeply Described Correlatons-Based Model for Land-Use
Scene Classification,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Williams, M.D.[McKay D.],
Parody, R.J.[Robert J.],
Fafard, A.J.[Alexander J.],
Kerekes, J.P.[John P.],
van Aardt, J.[Jan],
Validation of Abundance Map Reference Data for Spectral Unmixing,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Williams, M.D.[McKay D.],
Kerekes, J.P.[John P.],
van Aardt, J.[Jan],
Application of Abundance Map Reference Data for Spectral Unmixing,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Berman, M.,
Bischof, L.,
Lagerstrom, R.,
Guo, Y.,
Huntington, J.,
Mason, P.,
Green, A.A.,
A Comparison Between Three Sparse Unmixing Algorithms Using a Large
Library of Shortwave Infrared Mineral Spectra,
GeoRS(55), No. 6, June 2017, pp. 3588-3610.
IEEE DOI
1706
Absorption, Algorithm design and analysis, Australia,
Frequency selective surfaces, Geologic measurements, Libraries,
Minerals, Canonical variates (CVs), cubic spline, linear unmixing,
shortwave infrared (SWIR) spectra, sparse unmixing, spectral, library
BibRef
Ahmed, A.M.[Asmau M.],
Duran, O.[Olga],
Zweiri, Y.[Yahya],
Smith, M.[Mike],
Hybrid Spectral Unmixing: Using Artificial Neural Networks for
Linear/Non-Linear Switching,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Ma, J.H.[Jian-Hang],
Zhang, W.J.[Wen-Juan],
Marinoni, A.[Andrea],
Gao, L.[Lianru],
Zhang, B.[Bing],
An Improved Spatial and Temporal Reflectance Unmixing Model to
Synthesize Time Series of Landsat-Like Images,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Huang, R.S.[Ri-Sheng],
Li, X.R.[Xiao-Run],
Lu, H.Q.[Hai-Qiang],
Li, J.[Jing],
Zhao, L.Y.[Liao-Ying],
Parameterized Nonlinear Least Squares for Unsupervised Nonlinear
Spectral Unmixing,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Li, Z.[Zeng],
Chen, J.[Jie],
Rahardja, S.[Susanto],
Kernel-Based Nonlinear Spectral Unmixing with Dictionary Pruning,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Granero-Belinchon, C.[Carlos],
Michel, A.[Aurelie],
Lagouarde, J.P.[Jean-Pierre],
Sobrino, J.A.[Jose A.],
Briottet, X.[Xavier],
Multi-Resolution Study of Thermal Unmixing Techniques over Madrid
Urban Area: Case Study of TRISHNA Mission,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Deng, Y.B.[Ying-Bin],
Chen, R.R.[Ren-Rong],
Wu, C.S.[Chang-Shan],
Examining the Deep Belief Network for Subpixel Unmixing with Medium
Spatial Resolution Multispectral Imagery in Urban Environments,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Yang, L.[Lei],
Song, J.L.[Jin-Ling],
Han, L.J.[Li-Juan],
Wang, X.[Xin],
Wang, J.[Jing],
Reconstruction of High-Temporal- and High-Spatial-Resolution
Reflectance Datasets Using Difference Construction and Bayesian
Unmixing,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Jia, P.Y.[Pei-Yuan],
Zhang, M.[Miao],
Shen, Y.[Yi],
Deep spectral unmixing framework via 3D denoising convolutional
autoencoder,
IET-IPR(15), No. 7, 2021, pp. 1399-1409.
DOI Link
2106
BibRef
Cerra, D.[Daniele],
Pato, M.[Miguel],
Alonso, K.[Kevin],
Köhler, C.[Claas],
Schneider, M.[Mathias],
de los Reyes, R.[Raquel],
Carmona, E.[Emiliano],
Richter, R.[Rudolf],
Kurz, F.[Franz],
Reinartz, P.[Peter],
Müller, R.[Rupert],
DLR HySU: A Benchmark Dataset for Spectral Unmixing,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
Dataset, Unmixing.
BibRef
Nalepa, J.[Jakub],
Myller, M.[Michal],
Tulczyjew, L.[Lukasz],
Kawulok, M.[Michal],
Deep Ensembles for Hyperspectral Image Data Classification and
Unmixing,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Li, H.S.[Hai-Shan],
Wu, K.[Ke],
Xu, Y.[Ying],
An Integrated Change Detection Method Based on Spectral Unmixing and
the CNN for Hyperspectral Imagery,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Cavalli, R.M.[Rosa Maria],
Spatial Validation of Spectral Unmixing Results:
A Case Study of Venice City,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Cavalli, R.M.[Rosa Maria],
Spatial Validation of Spectral Unmixing Results: A Systematic Review,
RS(15), No. 11, 2023, pp. 2822.
DOI Link
2306
BibRef
Zhang, J.H.[Jin-Hua],
Zhang, X.H.[Xiao-Hua],
Meng, H.Y.[Hong-Yun],
Sun, C.H.[Cai-Hao],
Wang, L.[Li],
Cao, X.H.[Xiang-Hai],
Nonlinear Unmixing via Deep Autoencoder Networks for Generalized
Bilinear Model,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Sahoo, M.M.[Maitreya Mohan],
Kalimuthu, R.,
PV, A.[Arun],
Porwal, A.[Alok],
Mathew, S.K.[Shibu K.],
Modelling Spectral Unmixing of Geological Mixtures: An Experimental
Study Using Rock Samples,
RS(15), No. 13, 2023, pp. 3300.
DOI Link
2307
BibRef
Ke, J.,
Guo, Y.,
Sowmya, A.,
A Fast Approximate Spectral Unmixing Algorithm Based on Segmentation,
PBVS17(260-266)
IEEE DOI
1709
Algorithm design and analysis, Approximation algorithms,
Classification algorithms, Computational modeling, Estimation,
Image segmentation, Libraries
BibRef
Neumayer, S.[Sebastian],
Nimmer, M.[Max],
Steidl, G.[Gabriele],
Stephani, H.[Henrike],
On a Projected Weiszfeld Algorithm,
SSVM17(486-497).
Springer DOI
1706
Spectral demixing.
BibRef
Figliuzzi, B.[Bruno],
Velasco-Forero, S.[Santiago],
Bilodeau, M.[Michel],
Angulo, J.[Jesus],
A Bayesian Approach to Linear Unmixing in the Presence of Highly Mixed
Spectra,
ACIVS16(263-274).
Springer DOI
1611
BibRef
Ziemann, A.K.,
Local spectral unmixing for target detection,
Southwest16(77-80)
IEEE DOI
1605
Clutter
BibRef
Pang, Q.Y.[Qing-Yu],
Yu, J.[Jing],
Sun, W.D.[Wei-Dong],
A spectral unmixing method based on wavelet weighted similarity,
ICIP15(1865-1869)
IEEE DOI
1512
nonnegative matrix factorization
BibRef
Ramak, R.,
Valadan Zouj, M.J.,
Mojaradi, B.,
Improving Linear Spectral Unmixing Through Local Endmember Detection,
PIA15(177-181).
DOI Link
1504
BibRef
Legendre, M.[Maxime],
Moussaoui, S.[Said],
Chouzenoux, E.[Emilie],
Idier, J.[Jerome],
Primal-dual interior-point optimization based on
majorization-minimization for edge-preserving spectral unmixing,
ICIP14(4161-4165)
IEEE DOI
1502
Approximation algorithms
BibRef
Jenzri, H.[Hamdi],
Frigui, H.[Hichem],
Gader, P.[Paul],
Robust Context Dependent Spectral Unmixing,
ICPR14(643-647)
IEEE DOI
1412
Clustering algorithms
BibRef
Wemmert, C.[Cedric],
Kruger, J.M.[Juliane M.],
Forestier, G.[Germain],
Sternberger, L.[Ludovic],
Feuerhake, F.[Friedrich],
Gancarski, P.[Pierre],
Stain unmixing in brightfield multiplexed immunohistochemistry,
ICIP13(1125-1129)
IEEE DOI
1402
Deconvolution
BibRef
Xi, L.,
Xiaoling, C.,
Spatial Interpolation As A Tool For Spectral Unmixing Of Remotely
Sensed Images,
ISPRS12(XXXIX-B7:209-212).
DOI Link
1209
BibRef
Michishita, R.,
Jiang, Z.,
Xu, B.,
Spectral Unmixing Of Blended Reflectance For Denser Time-series Mapping
Of Wetlands,
ISPRS12(XXXIX-B8:491-496).
DOI Link
1209
BibRef
Howard, A.M.,
Bernardes, S.,
Nibbelink, N.,
Biondi, L.,
Presotto, A.,
Fragaszy, D.M.,
Madden, M.,
A Maximum Entropy Model Of The Bearded Capuchin Monkey Habitat
Incorporating Topography And Spectral Unmixing Analysis,
AnnalsPRS(I-2), No. 2012, pp. 7-11.
DOI Link
1209
BibRef
Alterman, M.,
Schechner, Y.Y.,
Weiss, A.,
Multiplexed fluorescence unmixing,
ICCP10(1-8).
IEEE DOI
1208
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Mixed Pixels, Subpixel Classification .