Duerr, B.,
Haettich, W.,
Tropf, H., and
Winkler, G.,
A Combination of Statistical and Syntactical Pattern Recognition
Applied to Classification of Unconstrained Handwritten Numerals,
PR(12), No. 3, 1980, pp. 189-199.
Elsevier DOI
BibRef
8000
Kimura, M., and
Sridhar, M.,
Handwritten Numerical Recognition Based on Multiple Algorithms,
PR(24), No. 10, 1991, pp. 969-983.
Elsevier DOI Utilize heuristic decision rules for combinations.
BibRef
9100
Huang, Y.S.,
Suen, C.Y.,
Method of Combining Multiple Experts for the Recognition
of Unconstrained Handwritten Numerals,
PAMI(17), No. 1, January 1995, pp. 90-94.
IEEE DOI
BibRef
9501
Earlier:
A Method of Combining Multiple Classifiers: A Neural Network Approach,
ICPR94(B:473-475).
IEEE DOI
9410
Multistage Classification.
BibRef
Kim, K.K.[Kye Kyung],
Chung, Y.K.[Yun Koo],
Kim, J.H.[Jin Ho],
Suen, C.Y.,
Recognition of unconstrained handwritten numeral strings using decision
value generator,
ICDAR01(14-17).
IEEE DOI
0109
BibRef
Kim, K.K.[Kye Kyung],
Kim, J.H.[Jin Ho],
Suen, C.Y.,
Recognition of Unconstrained Handwritten Numeral Strings by Composite
Segmentation Method,
ICPR00(Vol II: 594-597).
IEEE DOI
0009
BibRef
Sadri, J.[Javad],
Suen, C.Y.[Ching Y.],
Bui, T.D.[Tien D.],
A genetic framework using contextual knowledge for segmentation and
recognition of handwritten numeral strings,
PR(40), No. 3, March 2007, pp. 898-919.
Elsevier DOI
0611
Genetic algorithm; Contextual knowledge
BibRef
Oliveira, L.S.,
Sabourin, R.,
Bortolozzi, F.,
Suen, C.Y.,
Impacts of verification on a numeral string recognition system,
PRL(24), No. 7, April 2003, pp. 1023-1031.
Elsevier DOI
0301
See also Feature selection for ensembles applied to handwriting recognition.
BibRef
Oliveira, L.S.[Luiz S.],
Sabourin, R.[Robert],
Bortolozzi, F.[Flávio],
Suen, C.Y.[Ching Y.],
Automatic Recognition of Handwritten Numerical Strings:
A Recognition and Verification Strategy,
PAMI(24), No. 11, November 2002, pp. 1438-1454.
IEEE Abstract.
0211
BibRef
Feature Selection Using Multi-Objective Genetic Algorithms for
Handwritten Digit Recognition,
ICPR02(I: 568-571).
IEEE DOI
0211
BibRef
Earlier:
A modular system to recognize numerical amounts on Brazilian bank
cheques,
ICDAR01(389-394).
IEEE DOI
0109
See also Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Word Recognition. Segmentation based recognition. Combine results of segemntation,
recognition and postprocessing.
BibRef
Morita, M.,
Sabourin, R.,
Bortolozzi, F.,
Suen, C.Y.,
A recognition and verification strategy for handwritten word
recognition,
ICDAR03(482-486).
IEEE DOI
0311
BibRef
de Souza Britto, Jr., A.[Alceu],
Sabourin, R.[Robert],
Bortolozzi, F.[Flavio],
Suen, C.Y.[Ching Y.],
The recognition of handwritten numeral strings using a two-stage
HMM-based method,
IJDAR(5), No. 2-3, April 2003, pp. 102-117.
Springer DOI
0308
BibRef
Earlier:
Complementary features combined in an HMM-based system to recognize
handwritten digits,
CIAP03(670-675).
IEEE DOI
0310
BibRef
Earlier:
A Two-Stage HMM-Based System for Recognizing Handwritten Numeral
Strings,
ICDAR01(396-400).
IEEE DOI
0109
BibRef
Oliveira, L.S.,
de Souza Britto, Jr., A.[Alceu],
Sabourin, R.,
Improving cascading classifiers with particle swarm optimization,
ICDAR05(II: 570-574).
IEEE DOI
0508
BibRef
Zhou, J.[Jun],
Suen, C.Y.,
Liu, K.[Ke],
A feedback-based approach for segmenting handwritten legal amounts on
bank cheques,
ICDAR01(887-891).
IEEE DOI
0109
BibRef
Cao, J.,
Ahmadi, M.,
Shridhar, M.,
Recognition of Handwritten Numerals with Multiple Feature
and Multistage Classifier,
PR(28), No. 2, February 1995, pp. 153-160.
Elsevier DOI
BibRef
9502
Beiraghi, S.,
Ahmadi, M.,
Shridhar, M.,
Sid-Ahmed, M.,
Application of Fuzzy Integrals in Fusion of Classifiers for Low Error
Rate Handwritten Numerals Recognition,
ICPR00(Vol II: 487-490).
IEEE DOI
0009
BibRef
Liu, C.L.,
Kim, J.H.,
Dai, R.W.,
Multiresolution Locally Expanded Honn for
Handwritten Numeral Recognition,
PRL(18), No. 10, October 1997, pp. 1019-1025.
9802
BibRef
Rahman, A.F.R.,
Fairhurst, M.C.,
A New Hybrid Approach in Combining Multiple Experts
to Recognize Handwritten Numerals,
PRL(18), No. 8, August 1997, pp. 781-790.
9801
BibRef
And:
A novel pair-wise recognition scheme for handwritten characters in the
framework of a multi-expert configuration,
CIAP97(II: 624-631).
Springer DOI
9709
BibRef
Rahman, A.F.R.,
Fairhurst, M.C.,
Introducing new multiple expert decision combination topologies: a case
study using recognition of handwritten characters,
ICDAR97(886-891).
IEEE DOI
9708
BibRef
Rahman, A.F.R.,
Fairhurst, M.C.,
An Evaluation of Multiexpert Configurations for the
Recognition of Handwritten Numerals,
PR(31), No. 9, September 1998, pp. 1255-1273.
Elsevier DOI
Evaluation, OCR.
9808
See also Design Considerations in the Real-Time Implementation of Multiple Expert Image Classifiers within a Modular and Flexible Multiple-platform Design Environment.
BibRef
Cai, J.H.[Jin-Hai],
Liu, Z.Q.[Zhi-Qiang],
Integration of Structural and Statistical Information for Unconstrained
Handwritten Numeral Recognition,
PAMI(21), No. 3, March 1999, pp. 263-270.
IEEE DOI
BibRef
9903
Earlier:
ICPR98(Vol I: 378-380).
IEEE DOI
9808
BibRef
Salah, A.A.,
Alpaydin, E.,
Akarun, L.,
A Selective Attention-Based Method for Visual Pattern Recognition with
Application to Handwritten Digit Recognition and Face Recognition,
PAMI(24), No. 3, March 2002, pp. 420-425.
IEEE DOI
0202
BibRef
Alimoglu, F.,
Alpaydin, E.,
Combining Multiple Representations and Classifiers for
Pen-Based Handwritten Digit Recognition,
ICDAR97(637-640).
IEEE DOI
9708
BibRef
Kang, H.J.[Hee-Joong],
Combining multiple classifiers based on third-order dependency for
handwritten numeral recognition,
PRL(24), No. 16, December 2003, pp. 3027-3036.
Elsevier DOI
0310
BibRef
Kang, H.J.[Hee-Joong],
Doermann, D.S.,
Combining multiple classifiers based on third-order dependency,
ICDAR03(21-25).
IEEE DOI
0311
BibRef
Kang, H.J.[Hee-Joong],
Doermann, D.S.,
Selection of classifiers for the construction of multiple classifier
systems,
ICDAR05(II: 1194-1198).
IEEE DOI
0508
BibRef
Earlier:
Product Approximation by Minimizing the Upper Bound of Bayes Error Rate
for Bayesian Combination of Classifiers,
ICPR04(I: 252-255).
IEEE DOI
0409
BibRef
Earlier:
Evaluation of the information-theoretic construction of multiple
classifier systems,
ICDAR03(789-793).
IEEE DOI
0311
BibRef
Kang, H.J.[Hee-Joong],
Lee, S.W.[Seong-Whan],
Evaluation on selection criteria of multiple numeral recognizers with
the fixed number of recognizers,
ICPR02(III: 403-406).
IEEE DOI
0211
BibRef
Earlier:
Experimental results on the construction of multiple classifiers
recognizing handwritten numerals,
ICDAR01(1026-1030).
IEEE DOI
0109
BibRef
Earlier:
An Information-theoretic Strategy for Constructing Multiple Classifier
Systems,
ICPR00(Vol II: 483-486).
IEEE DOI
0009
BibRef
Earlier:
A Dependency-based Framework of Combining Multiple Experts for the
Recognition of Unconstrained Handwritten Numerals,
CVPR99(II: 124-129).
IEEE DOI
BibRef
Suen, C.Y.[Ching Y.],
Tan, J.[Jinna],
Analysis of errors of handwritten digits made by a multitude of
classifiers,
PRL(26), No. 3, February 2005, pp. 369-379.
Elsevier DOI
0501
BibRef
Silva, T.C.[Thiago C.],
Zhao, L.[Liang],
Cupertino, T.H.[Thiago H.],
Handwritten Data Clustering Using Agents Competition in Networks,
JMIV(45), No. 3, March 2013, pp. 264-276.
Springer DOI
1301
Learning on networks. Solve handwritten digit recognition.
BibRef
Mozafari, M.[Milad],
Ganjtabesh, M.[Mohammad],
Nowzari-Dalini, A.[Abbas],
Thorpe, S.J.[Simon J.],
Masquelier, T.[Timothée],
Bio-inspired digit recognition using reward-modulated
spike-timing-dependent plasticity in deep convolutional networks,
PR(94), 2019, pp. 87-95.
Elsevier DOI
1906
Spiking neural networks, Deep architecture, Digit recognition,
STDP, Reward-modulated STDP, Latency coding
BibRef
Jiang, W.W.[Wei-Wei],
Zhang, L.[Le],
Edge-SiamNet and Edge-TripleNet: New Deep Learning Models for
Handwritten Numeral Recognition,
IEICE(E103-D), No. 3, March 2020, pp. 720-723.
WWW Link.
2003
BibRef
Mukarambi, G.[Gururaj],
Dhandra, B.V.,
Energy-based features for Kannada handwritten digit recognition,
IJCVR(10), No. 2, 2020, pp. 156-166.
DOI Link
2003
BibRef
Zhan, H.J.[Hong-Jian],
Lyu, S.[Shujing],
Lu, Y.[Yue],
Pal, U.[Umapada],
DenseNet-CTC: An end-to-end RNN-free architecture for context-free
string recognition,
CVIU(204), 2021, pp. 103168.
Elsevier DOI
2102
Handwritten digit string recognition, End-to-end, RNN-free,
Connectionist temporal classification
BibRef
Rababaah, A.R.[Aaron Rasheed],
A comparative study between convolution neural networks and multi-layer
perceptron networks for hand-written digits recognition,
IJCVR(13), No. 4, 2023, pp. 420-436.
DOI Link
2307
BibRef
Kenia, R.[Roshan],
Mendil, J.[Jihane],
Jasim, A.[Ahmed],
Al-Dahhan, M.[Muthanna],
Yin, Z.Z.[Zhao-Zheng],
Robust TRISO-fueled Pebble Identification by Digit Recognition,
WACV24(8142-8150)
IEEE DOI
2404
Real-time systems, Climate change, Visualization,
Nuclear power generation, Inductors, Visualization
BibRef
Rim, P.[Patrick],
Saha, S.[Snigdha],
Rim, M.[Marcus],
Caltechfn: Distorted and Partially Occluded Digits,
MLCSA22(195-212).
Springer DOI
2307
BibRef
Guo, J.[Jun],
Wei, W.J.[Wen-Jing],
Ma, Y.F.[Yi-Feng],
Peng, C.[Cong],
A Fast and Accurate Object Detector for Handwritten Digit String
Recognition,
ICPR21(787-794)
IEEE DOI
2105
Handwriting recognition, Image resolution, Databases,
Target recognition, Graphics processing units, Detectors, Encoding
BibRef
Chi, D.,
Handwritten Digit Recognition Application Based on Improved Naive
Bayes Method,
CVIDL20(622-624)
IEEE DOI
2102
Bayes methods, handwritten character recognition,
image classification, improved naive Bayes method, classification
BibRef
Zhan, H.,
Lyu, S.,
Lu, Y.,
Handwritten Digit String Recognition using Convolutional Neural
Network,
ICPR18(3729-3734)
IEEE DOI
1812
Feature extraction, Training, Recurrent neural networks,
Text recognition, Task analysis, Computer architecture, Testing
BibRef
Meier, U.[Ueli],
Ciresan, D.C.[Dan Claudiu],
Gambardella, L.M.[Luca Maria],
Schmidhuber, J.[Jurgen],
Better Digit Recognition with a Committee of Simple Neural Nets,
ICDAR11(1250-1254).
IEEE DOI
1111
BibRef
Štrba, M.[Miroslav],
Herout, A.[Adam],
Havel, J.[Jirí],
Handwritten Digits Recognition Improved by Multiresolution Classifier
Fusion,
IbPRIA11(726-733).
Springer DOI
1106
BibRef
Boto, F.[Fernando],
Cortés, A.[Andoni],
Rodríguez, C.[Clemente],
Cut Digits Classification with k-NN Multi-specialist,
DAS06(496-505).
Springer DOI
0602
BibRef
Gupta, M.D.[Mithun Das],
Rajaram, S.[Shyamsundar],
Petrovic, N.[Nemanja],
Huang, T.S.[Thomas S.],
Restoration and Recognition in a Loop,
CVPR05(I: 638-644).
IEEE DOI
0507
Restoration of blurred digits with recognition.
BibRef
Tomai, C.I.,
Srihari, S.N.,
Combination of type III digit recognizers using the Dempster-Shafer
theory of evidence,
ICDAR03(854-858).
IEEE DOI
0311
BibRef
Bhattacharya, U.,
Chaudhuri, B.B.,
A majority voting scheme for multiresolution recognition of handprinted
numerals,
ICDAR03(16-20).
IEEE DOI
0311
BibRef
Rodriguez, C.,
Boto, F.,
Soraluze, I.,
Perez, A.,
An incremental and hierarchical K-NN classifier for handwritten
characters,
ICPR02(III: 98-101).
IEEE DOI
0211
BibRef
Soraluze, I.,
Rodriguez, C.,
Boto, F.,
Perez, A.,
Multidimensional multistage K-NN classifiers for handwritten digit
recognition,
FHR02(19-23).
IEEE Top Reference.
0209
BibRef
Rodriguez, C.,
Muguerza, J.[Javier],
Navarro, M.,
Zarate, A.,
Martin, J.I.[Jose Ignacio],
Perez, J.,
A Two-Stage Classifier for Broken and Blurred Digits in Forms,
ICPR98(Vol II: 1101-1105).
IEEE DOI
9808
BibRef
Teo, R.Y.M.,
Shinghal, R.,
A Hybrid Classifier for Recognizing Handwritten Numerals,
ICDAR97(283-287).
IEEE DOI
9708
BibRef
Kim, J.,
Seo, K.,
Chung, K.,
A Systematic Approach to Classifier Selection on Combining
Multiple Classifiers for Handwritten Digit Recognition,
ICDAR97(459-462).
IEEE DOI
9708
BibRef
Bottou, L.,
Cortes, C.,
Denker, J.S.,
Drucker, H.,
Guyon, I.,
Jackel, L.D.,
Le Cun, Y.L.,
Muller, U.A.,
Sackinger, E.,
Simard, P.Y.,
Vapnik, V.,
Comparison of classifier methods: a case study in handwritten digit
recognition,
ICPR94(B:77-82).
IEEE DOI
9410
BibRef
Simard, P.Y.,
Le Cun, Y.L.[Yann L.],
Denker, J.S.,
Memory-based character recognition using a transformation invariant
metric,
ICPR94(B:262-267).
IEEE DOI
9410
BibRef
Sabourin, M.,
Mitiche, A.,
Thomas, D.,
Nagy, G.,
Classifier Combination for Handprinted Digit Recognition,
ICDAR93(163-166).
BibRef
9300
Chapter on OCR, Document Analysis and Character Recognition Systems continues in
Numbers, Digits, Zip (Postal) Codes .