Sayre, K.M.[Kenneth M.],
Machine Recognition of Handwritten Words: A Project Report,
PR(5), No. 3, September 1973, pp. 213-228.
Elsevier DOI
BibRef
7309
Farag, R.F.H.,
Word-Level Recognition of Cursive Script,
TC(28), No. 2, February 1979, pp. 172-175.
BibRef
7902
Hayes, K.C.,
Reading Handwritten Words Using Hierarchical Relaxation,
CGIP(14), No. 4, December 1980, pp. 344-364.
Elsevier DOI
BibRef
8012
And:
Understanding Handwriting,
UMD-TR, 1981.
BibRef
Ph.D.Thesis.
BibRef
Brown, M.K., and
Ganapathy, S.,
Preprocessing Techniques for Cursive Script Word Recognition,
PR(16), No. 5, 1983, pp. 447-458.
Elsevier DOI
Skew Correction. Skew correction. First skew then slant.
BibRef
8300
Kundu, A.[Amlan],
He, Y.[Yang],
Bahl, P.[Paramvir],
Recognition of Handwritten Words:
First and Second Order Hidden Markov Model Based Approach,
PR(22), No. 3, 1989, pp. 283-297.
Elsevier DOI
0309
BibRef
Earlier:
CVPR88(457-462).
IEEE DOI
BibRef
Kundu, A.,
Beach, R.,
Machine reading of handwritten text information in field technician's
maps,
ICIP98(II: 943-947).
IEEE DOI
9810
BibRef
Simon, J.C.,
Off-Line Cursive Word Recognition,
PIEEE(80), No. 7, July 1992, pp. 1150-yy.
IEEE Top Reference.
BibRef
9207
Paquet, T.[Thierry],
Lecourtier, Y.[Yves],
Recognition of handwritten sentences using a restricted lexicon,
PR(26), No. 3, March 1993, pp. 391-407.
Elsevier DOI
0401
BibRef
Chen, M.Y.[Mou-Yen],
Kundu, A.[Amlan], and
Zhou, J.,
Off-Line Handwritten Word Recognition Using a Hidden Markov
Model Type Stochastic Network,
PAMI(16), No. 5, May 1994, pp. 481-496.
IEEE DOI
BibRef
9405
Earlier:
Off-line handwritten word recognition (HWR) using a single contextual
hidden Markov model,
CVPR92(669-672).
IEEE DOI
0403
BibRef
He, Y.[Yang],
Chen, M.Y.[Mou-Yen],
Kundu, A.,
Off-line handwritten word recognition using HMM with adaptive length
Viterbi algorithm,
ICPR94(B:460-462).
IEEE DOI
9410
BibRef
Chen, M.Y.[Mou-Yen],
Kundu, A.[Amlan], and
Srihari, S.N.,
Variable Duration Hidden Markov Model and Morphological
Segmentation for Handwritten Word Recognition,
IP(4), No. 12, December 1995, pp. 1675-1688.
IEEE DOI
BibRef
9512
Earlier:
CVPR93(600-601).
IEEE DOI
BibRef
Chen, M.Y.[Mou-Yen],
Kundu, A.,
A complement to variable duration hidden Markov model in handwritten
word recognition,
ICIP94(I: 174-178).
IEEE DOI
9411
BibRef
Kundu, A.[Amlan],
He, Y.[Yang],
Chen, M.Y.[Mou-Yen],
Alternatives to Variable Duration HMM in Handwriting Recognition,
PAMI(20), No. 11, November 1998, pp. 1275-1280.
IEEE DOI
9811
BibRef
Kundu, A.,
Hines, T.,
Huyck, B.,
Phillips, J.,
van Guilder, L.,
Arabic Handwriting Recognition Using Variable Duration HMM,
ICDAR07(644-648).
IEEE DOI
0709
BibRef
Gilloux, M.,
Leroux, M.,
Bertille, J.M.,
Strategies for Cursive Script Recognition Using Hidden Markov-Models,
MVA(8), No. 4, 1995, pp. 197-205.
Springer DOI
BibRef
9500
Gilloux, M.,
Writer adaptation for handwritten word recognition using hidden Markov
models,
ICPR94(B:135-139).
IEEE DOI
9410
BibRef
Leroux, M.,
Salome, J.C., and
Badard, J.,
Recognition of Cursive Script Words in a Small Lexicon,
ICDAR91(774-xx).
BibRef
9100
El-Yacoubi, M.A.[Mounim A.],
Gilloux, M.[Michel],
Sabourin, R.,
Suen, C.Y.,
An HMM-Based Approach for Off-Line Unconstrained Handwritten Word
Modeling and Recognition,
PAMI(21), No. 8, August 1999, pp. 752-760.
IEEE DOI Generate models of the written words -- shape, segmentation, shape, seg...
BibRef
9908
Koerich, A.L.,
Sabourin, R.[Robert],
Suen, C.Y.,
Recognition and Verification of Unconstrained Handwritten Words,
PAMI(27), No. 10, October 2005, pp. 1509-1522.
IEEE DOI
0509
Verify words from a large vocabulary.
Start with segments then combine for words probabilities.
BibRef
Koerich, A.L.[Alessandro L.],
Sabourin, R.[Robert],
Suen, C.Y.[Ching Y.],
Lexicon-driven HMM decoding for large vocabulary handwriting
recognition with multiple character models,
IJDAR(6), No. 2, 2003, pp. 126-144.
Springer DOI
0310
BibRef
Earlier:
A distributed scheme for lexicon-driven handwritten word recognition
and its application to large vocabulary problems,
ICDAR01(660-664).
IEEE DOI
0109
BibRef
Koerich, A.L.,
Leydier, Y.,
Sabourin, R.,
Suen, C.Y.,
A hybrid large vocabulary handwritten word recognition system using
neural networks with hidden markov models,
FHR02(99-104).
IEEE Top Reference.
0209
BibRef
Suen, C.Y.[Ching Y.],
Sabourin, R.[Robert],
El-Yacoubi, A.[Abdenaim],
Improved Model Architecture and Training Phase in an
Off-Line HMM-Based Word Recognition System,
ICPR98(Vol II: 1521-1525).
IEEE DOI
9808
BibRef
Morita, M.,
Sabourin, R.,
Bortolozzi, F.,
Suen, C.Y.,
Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms
for Handwritten Word Recognition,
ICDAR03(666-670).
IEEE DOI
0311
See also Automatic Recognition of Handwritten Numerical Strings: A Recognition and Verification Strategy.
BibRef
Clergeautournemire, S.,
Plamondon, R.,
Integration of Lexical and Syntactic Knowledge in a
Handwriting-Recognition System,
MVA(8), No. 4, 1995, pp. 249-259.
Springer DOI
BibRef
9500
Kim, G.H.[Gyeong-Hwan],
Govindaraju, V.[Venu],
A Lexicon Driven Approach to Handwritten Word Recognition
for Real-Time Applications,
PAMI(19), No. 4, April 1997, pp. 366-379.
IEEE DOI
9705
Preprocessing is done on a chain code representing the word contour.
Recognition on a lexicon of 10 words.
BibRef
Kim, G.H.[Gyeong-Hwan],
Govindaraju, V.[Venu],
Handwritten Phrase Recognition As Applied To Street Name Images,
PR(31), No. 1, January 1998, pp. 41-51.
Elsevier DOI
9802
BibRef
Earlier:
Recognition of Handwritten Phrases as Applied to Street Name Images,
CVPR96(459-464).
IEEE DOI
BibRef
And:
Efficient Chain Code Based Image Manipulation for
Handwritten Word Recognition,
SPIE(2660), 1996, pp. 262-272.
BibRef
Govindaraju, V.,
Krishnamurthy, R.K.,
Holistic Handwritten Word Recognition Using Temporal Features
Derived from Off-Line Images,
PRL(17), No. 5, May 1 1996, pp. 537-540.
9606
BibRef
Madhvanath, S.[Sriganesh],
Kleinberg, E.[Evelyn],
Govindaraju, V.[Venu],
Holistic Verification of Handwritten Phrases,
PAMI(21), No. 12, December 1999, pp. 1344-1356.
IEEE DOI
0001
Word verification, as for street names.
See also Local reference lines for handwritten phrase recognition.
BibRef
Madhvanath, S.,
Kleinberg, E.,
Govindaraju, V.,
Srihari, S.N.,
The Hover System for Rapid Holistic Verification of
Off-Line Handwritten Phrases,
ICDAR97(855-859).
IEEE DOI
9708
BibRef
Madhvanath, S.,
Govindaraju, V.,
Srihari, S.N.,
Reading Handwritten Phrases on US Census Forms,
IJIST(7), No. 4, Winter 1996, pp. 312-319.
9612
BibRef
Madhvanath, S.,
Kim, G.H.[Gyeong-Hwan],
Govindaraju, V.,
Chaincode Contour Processing for Handwritten Word Recognition,
PAMI(21), No. 9, September 1999, pp. 928-932.
IEEE DOI
Chain Codes. Processing exterior contour of the signatures.
BibRef
9909
Madhvanath, S.[Sriganesh],
Govindaraju, V.[Venu],
The Role of Holistic Paradigms in Handwritten Word Recognition,
PAMI(23), No. 2, February 2001, pp. 149-164.
IEEE DOI
0102
BibRef
Earlier:
Contour-Based Image Preprocessing for
Holistic Handwritten Word Recognition,
ICDAR97(536-539).
IEEE DOI
9708
BibRef
And:
Pruning Large Lexicons Using Generalized Word Shape Descriptors,
ICDAR97(552-555).
IEEE DOI
9708
The word is the entity, recognize words.
See also Local reference lines for handwritten phrase recognition.
BibRef
Madhvanath, S.,
Krpasundar, V.,
Govindaraju, V.,
Syntactic methodology of pruning large lexicons in cursive script
recognition,
PR(34), No. 1, January 2001, pp. 37-46.
Elsevier DOI
0010
BibRef
Kim, G.H.[Gyeong-Hwan],
Govindaraju, V.,
Srihari, S.N.,
A Segmentation and Recognition Strategy for Handwritten Phrases,
ICPR96(IV: 510-514).
IEEE DOI
9608
(State Univ. of NY-Buffalo, USA)
BibRef
Dewaard, W.P.,
An Optimized Minimal Edit Distance for Hand-Written Word Recognition,
PRL(16), No. 10, October 1995, pp. 1091-1096.
BibRef
9510
Eliaz, A.,
Geiger, D.,
Word-Level Recognition of Small Sets of Hand-Written Words,
PRL(16), No. 10, October 1995, pp. 999-1009.
BibRef
9510
Cho, W.Y.,
Lee, S.W.,
Kim, J.H.,
Modeling and Recognition of Cursive Words with Hidden Markov-Models,
PR(28), No. 12, December 1995, pp. 1941-1953.
Elsevier DOI
BibRef
9512
Gader, P.D.,
Mohamed, M.A.,
Keller, J.M.,
Dynamic-Programming-Based Handwritten Word Recognition Using the
Choquet Fuzzy Integral as the Match Function,
JEI(5), No. 1, January 1996, pp. 15-24.
BibRef
9601
Gader, P.D.,
Mohamed, M.A.,
Chinag, J.H.,
Comparison of Crisp and Fuzzy Character Neural Networks in
Handwritten Word Recognition,
Fuzzy(3), No. 3, August 1995, pp. 357-364.
BibRef
9508
Gader, P.D.,
Mohamed, M.A.,
Chiang, J.H.,
Handwritten Word Recognition with Character and Inter-Character
Neural Networks,
SMC-B(27), No. 1, February 1997, pp. 158-164.
IEEE Top Reference.
9702
Compare to a given lexicon of words.
BibRef
Mohamed, M.A.,
Gader, P.D.,
Handwritten Word Recognition Using Segmentation-Free Hidden Markov Modeling
and Segmentation-Based Dynamic-Programming Techniques,
PAMI(18), No. 5, May 1996, pp. 548-554.
IEEE DOI
9606
Recognize words, not letters.
BibRef
Gader, P.D.,
Whalen, M.,
Ganzberger, M.,
Hepp, D.,
Handprinted Word Recognition on a NIST Data Set,
MVA(8), No. 1, 1995, pp. 31-40.
Springer DOI
Performance Analysis.
BibRef
9500
Gader, P.D.,
Mohamed, M.A.,
Keller, J.M.,
Fusion of Handwritten Word Classifiers,
PRL(17), No. 6, May 15 1996, pp. 577-584.
9607
BibRef
Chiang, J.H.,
A Hybrid Neural Network Model in Handwritten Word Recognition,
NeurNet(11), No. 2, March 1998, pp. 337-346.
9806
BibRef
Parisse, C.,
Global Word Shape Processing in Off-Line Recognition of Handwriting,
PAMI(18), No. 4, April 1996, pp. 460-464.
IEEE DOI
9605
Large lexicon (16000 words). Recognition by words, not letter by letter.
Uses profiles (fine and coarse).
BibRef
Powalka, R.K.,
Sherkat, N.,
Whitrow, R.J.,
Word Shape-Analysis for a Hybrid Recognition System,
PR(30), No. 3, March 1997, pp. 421-445.
Elsevier DOI
9705
BibRef
Sherkat, N.,
Influence of zoning on whole word recognition,
ICDAR05(II: 1085-1089).
IEEE DOI
0508
BibRef
Saon, G.[George],
Cursive word recognition using a random field based hidden Markov model,
IJDAR(1), No. 4 1999, pp. 199-208.
BibRef
9900
Zimmermann, M.[Matthias],
Mao, J.[Jianchang],
Lexicon reduction using key characters in cursive handwritten words,
PRL(20), No. 11-13, November 1999, pp. 1297-1304.
0001
BibRef
Vinciarelli, A.[Alessandro],
Luettin, J.[Juergen],
A new normalization technique for cursive handwritten words,
PRL(22), No. 9, July 2001, pp. 1043-1050.
Elsevier DOI
0106
BibRef
Verma, B.,
Gader, P.D.,
Chen, W.T.,
Fusion of multiple handwritten word recognition techniques,
PRL(22), No. 9, July 2001, pp. 991-998.
Elsevier DOI
0106
BibRef
Liu, J.H.[Jin-Hui],
Gader, P.D.[Paul D.],
Neural networks with enhanced outlier rejection ability for off-line
handwritten word recognition,
PR(35), No. 10, October 2002, pp. 2061-2071.
Elsevier DOI
0206
BibRef
Earlier:
Outlier Rejection with MLPs and Variants of RBF Networks,
ICPR00(Vol II: 680-683).
IEEE DOI
0009
BibRef
Marti, U.V.,
Bunke, H.,
The IAM-database: an English sentence database for offline handwriting
recognition,
IJDAR(5), No. 1, 2002, pp. 39-46.
Springer DOI
0211
BibRef
Earlier:
On the influence of vocabulary size and language models in
unconstrained handwritten text recognition,
ICDAR01(260-265).
IEEE DOI
0109
BibRef
Marti, U.V.,
Messerli, R.,
Bunke, H.,
Writer identification using text line based features,
ICDAR01(101-105).
IEEE DOI
0109
BibRef
Marti, U.V.,
Bunke, H.,
Text line segmentation and word recognition in a system for general
writer independent handwriting recognition,
ICDAR01(159-163).
IEEE DOI
0109
BibRef
Marti, U.V.,
Bunke, H.,
Handwritten Sentence Recognition,
ICPR00(Vol III: 463-466).
IEEE DOI
0009
BibRef
Vinciarelli, A.[Alessandro],
A survey on off-line Cursive Word Recognition,
PR(35), No. 7, July 2002, pp. 1433-1446.
Elsevier DOI
0204
Survey, Handwriting.
BibRef
Vinciarelli, A.[Alessandro],
Bengio, S.[Samy],
Writer adaptation techniques in HMM based Off-Line Cursive Script
Recognition,
PRL(23), No. 8, June 2002, pp. 905-916.
Elsevier DOI
0204
BibRef
Earlier:
Writer adaptation techniques in off-line cursive word recognition,
FHR02(287-291).
IEEE Top Reference.
0209
BibRef
Earlier:
Offline cursive word recognition using continuous density hidden Markov
models trained with PCA or ICA features,
ICPR02(III: 81-84).
IEEE DOI
0211
BibRef
Vinciarelli, A.[Alessandro],
Bengio, S.[Samy],
Bunke, H.[Horst],
Offline Recognition of Unconstrained Handwritten Texts Using HMMs and
Statistical Language Models,
PAMI(26), No. 6, June 2004, pp. 709-720.
IEEE Abstract.
0404
BibRef
Earlier:
Offline Recognition of Large Vocabulary Cursive Handwritten Text,
ICDAR03(1101-1105).
IEEE DOI
0311
Use language models to improve recognition of cursive script.
BibRef
Zimmermann, M.,
Bunke, H.,
Optimizing the integration of a statistical language model in HMM based
offline handwritten text recognition,
ICPR04(II: 541-544).
IEEE DOI
0409
BibRef
Bertolami, R.[Roman],
Zimmermann, M.[Matthias],
Bunke, H.[Horst],
Rejection Strategies for Offline Handwritten Text Line Recognition,
PRL(27), No. 16, December 2006, pp. 2005-2012.
Elsevier DOI
0611
BibRef
Earlier: A2, A1, A3:
Rejection strategies for offline handwritten sentence recognition,
ICPR04(II: 550-553).
IEEE DOI
0409
Handwritten text recognition; Rejection strategies; Statistical language model
BibRef
Bertolami, R.[Roman],
Bunke, H.[Horst],
Hidden Markov Model-Based Ensemble Methods for Offline Handwritten Text
Line Recognition,
PR(41), No. 11, November 2008, pp. 3452-3460.
Elsevier DOI
0808
BibRef
Earlier:
Multiple Handwritten Text Line Recognition Systems Derived from
Specific Integration of a Language Model,
ICDAR05(I: 521-527).
IEEE DOI
0508
Offline handwritten text line recognition; Ensemble methods;
Confidence measures
BibRef
Bunke, H.,
Roth, M.,
Schukat-Talamazzini, E.G.,
Off-Line Cursive Handwriting Recognition Using Hidden Markov-Models,
PR(28), No. 9, September 1995, pp. 1399-1413.
Elsevier DOI
BibRef
9509
Earlier:
Off-line recognition of cursive script produced by a cooperative writer,
ICPR94(B:383-386).
IEEE DOI
9410
BibRef
Camastra, F.[Francesco],
Vinciarelli, A.[Alessandro],
Cursive character recognition by learning vector quantization,
PRL(22), No. 6-7, May 2001, pp. 625-629.
Elsevier DOI
0105
BibRef
Camastra, F.[Francesco],
Spinetti, M.[Marco],
Vinciarelli, A.[Alessandro],
Offline Cursive Character Challenge: a New Benchmark for Machine
Learning and Pattern Recognition Algorithms.,
ICPR06(II: 913-916).
IEEE DOI
0609
BibRef
Camastra, F.[Francesco],
A SVM-based cursive character recognizer,
PR(40), No. 12, December 2007, pp. 3721-3727.
Elsevier DOI
0709
Support vector machines; Neural gas; Learning vector quantization;
Multi-layer-perceptron; Crossvalidation; Cursive character recognition
BibRef
Pitrelli, J.F.[John F.],
Roy, A.[Amit],
Creating word-level language models for large-vocabulary handwriting
recognition,
IJDAR(5), No. 2-3, April 2003, pp. 126-137.
Springer DOI
0308
BibRef
Earlier:
Creating word-level language models for handwriting recognition,
ICDAR01(721-725).
IEEE DOI
0109
BibRef
Pitrelli, J.F.[John F.],
Subrahmonia, J.[Jayashree],
Perrone, M.P.[Michael P.],
Confidence modeling for handwriting recognition:
Algorithms and Applications,
IJDAR(8), No. 1, April 2006, pp. 35-46.
Springer DOI
0605
BibRef
Pitrelli, J.F.,
Perrone, M.P.,
Confidence-scoring post-processing for off-line handwritten-character
recognition verification,
ICDAR03(278-282).
IEEE DOI
0311
BibRef
Earlier:
Confidence modeling for verification post-processing for handwriting
recognition,
FHR02(30-35).
IEEE Top Reference.
0209
BibRef
Günter, S.[Simon],
Bunke, H.[Horst],
HMM-based handwritten word recognition: on the optimization of the
number of states, training iterations and Gaussian components,
PR(37), No. 10, October 2004, pp. 2069-2079.
Elsevier DOI
0409
BibRef
Earlier:
Optimizing the number of states, training iterations and Gaussians in
an HMM-based handwritten word recognizer,
ICDAR03(472-476).
IEEE DOI
0311
BibRef
Graves, A.[Alex],
Liwicki, M.[Marcus],
Fernández, S.[Santiago],
Bertolami, R.[Roman],
Bunke, H.[Horst],
Schmidhuber, J.[Jürgen],
A Novel Connectionist System for Unconstrained Handwriting Recognition,
PAMI(31), No. 5, May 2009, pp. 855-868.
IEEE DOI
0903
Issues of segmentation and context.
NN for sequence labelling without segmentation.
BibRef
Indermuhle, E.[Emanuel],
Frinken, V.[Volkmar],
Bunke, H.[Horst],
Mode Detection in Online Handwritten Documents Using BLSTM Neural
Networks,
FHR12(302-307).
IEEE DOI
1302
BibRef
Indermuhle, E.[Emanuel],
Frinken, V.[Volkmar],
Fischer, A.[Andreas],
Bunke, H.[Horst],
Keyword Spotting in Online Handwritten Documents Containing Text and
Non-text Using BLSTM Neural Networks,
ICDAR11(73-77).
IEEE DOI
1111
BibRef
Frinken, V.[Volkmar],
Fischer, A.[Andreas],
Manmatha, R.,
Bunke, H.[Horst],
A Novel Word Spotting Method Based on Recurrent Neural Networks,
PAMI(34), No. 2, February 2012, pp. 211-224.
IEEE DOI
1112
Derived from NN approach for handwriting recognition. Not necessary for
keyword to appear in training set.
BibRef
Liwicki, M.,
Indermuhle, E.,
Bunke, H.,
On-Line Handwritten Text Line Detection Using Dynamic Programming,
ICDAR07(447-451).
IEEE DOI
0709
BibRef
Liwicki, M.[Marcus],
Scherz, M.[Mathias],
Bunke, H.[Horst],
Word Extraction from On-Line Handwritten Text Lines,
ICPR06(II: 929-933).
IEEE DOI
0609
BibRef
Frinken, V.[Volkmar],
Bunke, H.[Horst],
Self-training for Handwritten Text Line Recognition,
CIARP10(104-112).
Springer DOI
1011
BibRef
Varga, T.,
Bunke, H.,
Tree structure for word extraction from handwritten text lines,
ICDAR05(I: 352-356).
IEEE DOI
0508
BibRef
Earlier:
Off-line handwritten textline recognition using a mixture of natural
and synthetic training data,
ICPR04(II: 545-549).
IEEE DOI
0409
BibRef
Earlier:
Generation of synthetic training data for an HMM-based handwriting
recognition system,
ICDAR03(618-622).
IEEE DOI
0311
BibRef
Günter, S.[Simon],
Bunke, H.[Horst],
Feature selection algorithms for the generation of multiple classifier
systems and their application to handwritten word recognition,
PRL(25), No. 11, August 2004, pp. 1323-1336.
Elsevier DOI
0409
BibRef
Zimmermann, M.,
Chappelier, J.C.,
Bunke, H.,
Offline Grammar-Based Recognition of Handwritten Sentences,
PAMI(28), No. 5, May 2006, pp. 818-821.
IEEE DOI
0604
BibRef
Earlier:
Parsing N-best lists of handwritten sentences,
ICDAR03(572-576).
IEEE DOI
0311
BibRef
Rath, T.M.[Toni M.],
Manmatha, R.,
Word spotting for historical documents,
IJDAR(9), No. 2-4, April 2007, pp. 139-152.
Springer DOI
0704
BibRef
And:
IJDAR(9), No. 2-4, April 2007, pp. 299.
Springer DOI
0704
BibRef
Earlier:
Word image matching using dynamic time warping,
CVPR03(II: 521-527).
IEEE DOI
0307
BibRef
And:
Features for word spotting in historical manuscripts,
ICDAR03(218-222).
IEEE DOI
0311
BibRef
Lavrenko, V.,
Rath, T.M.[Toni M.],
Manmatha, R.,
Holistic word recognition for handwritten historical documents,
DIAL04(278-287).
IEEE DOI
0404
BibRef
Adamek, T.[Tomasz],
O'Connor, N.E.[Noel E.],
Smeaton, A.F.[Alan F.],
Word matching using single closed contours for indexing handwritten
historical documents,
IJDAR(9), No. 2-4, April 2007, pp. 153-165.
Springer DOI
0704
See also multiscale representation method for nonrigid shapes with a single closed contour, A.
BibRef
Konidaris, T.,
Gatos, B.,
Ntzios, K.,
Pratikakis, I.E.,
Theodoridis, S.,
Perantonis, S.J.,
Keyword-guided word spotting in historical printed documents using
synthetic data and user feedback,
IJDAR(9), No. 2-4, April 2007, pp. 167-177.
Springer DOI
0704
See also Handwritten character recognition through two-stage foreground sub-sampling.
BibRef
Gatos, B.[Basilis],
Pratikakis, I.E.[Ioannis E.],
Segmentation-Free Word Spotting in Historical Printed Documents,
ICDAR09(271-275).
IEEE DOI
0907
BibRef
Ruiz-Pinales, J.[Jose],
Jaime-Rivas, R.[Rene],
Castro-Bleda, M.J.[Maria Jose],
Holistic cursive word recognition based on perceptual features,
PRL(28), No. 13, 1 October 2007, pp. 1600-1609.
Elsevier DOI
0709
Holistic cursive script recognition; Perceptual features;
Convolutional feature extraction
BibRef
Farooq, F.[Faisal],
Jose, D.[Damien],
Govindaraju, V.[Venu],
Phrase-based correction model for improving handwriting recognition
accuracies,
PR(42), No. 12, December 2009, pp. 3271-3277.
Elsevier DOI
0909
Post-processing; Noisy channel; Handwriting recognition; Error
correction; Viterbi decoding
BibRef
Howe, N.R.[Nicholas R.],
Feng, S.L.[Shao-Lei],
Manmatha, R.,
Finding words in alphabet soup:
Inference on freeform character recognition for historical scripts,
PR(42), No. 12, December 2009, pp. 3338-3347.
Elsevier DOI
0909
Character recognition; Cursive text; Historical text
BibRef
Cao, H.G.[Huai-Gu],
Bhardwaj, A.[Anurag],
Govindaraju, V.[Venu],
A probabilistic method for keyword retrieval in handwritten document
images,
PR(42), No. 12, December 2009, pp. 3374-3382.
Elsevier DOI
0909
Word spotting; Information retrieval; Handwriting recognition
BibRef
Cao, H.G.[Huai-Gu],
Govindaraju, V.[Venu],
Bhardwaj, A.[Anurag],
Unconstrained handwritten document retrieval,
IJDAR(14), No. 2, June 2011, pp. 145-157.
WWW Link.
1106
See also Automatic recognition of handwritten medical forms for search engines.
BibRef
Li, Q.[Qing],
Chen, Y.Z.P.[Yuan-Zhu Peter],
Personalized text snippet extraction using statistical language models,
PR(43), No. 1, January 2010, pp. 378-386.
Elsevier DOI
0909
Text snippet extraction; Personalization; Language model; Information
retrieval; Natural language processing; Pattern discovery; Hidden
Markov Model
BibRef
Farooq, F.[Faisal],
Bhardwaj, A.[Anurag],
Govindaraju, V.[Venu],
Using topic models for OCR correction,
IJDAR(12), No. 3, September 2009, pp. xx-yy.
Springer DOI
0911
BibRef
Can, E.F.[Ethem Fatih],
Duygulu, P.[Pinar],
A line-based representation for matching words in historical
manuscripts,
PRL(32), No. 8, 1 June 2011, pp. 1126-1138.
Elsevier DOI
1101
Historical manuscripts; Word image matching; Word retrieval; Word
spotting; Line-based representation
BibRef
Can, E.F.[Ethem Fatih],
Duygulu, P.[Pinar],
Can, F.[Fazli],
Kalpakli, M.[Mehmet],
Redif Extraction in Handwritten Ottoman Literary Texts,
ICPR10(1941-1944).
IEEE DOI
1008
BibRef
Ataer, E.[Esra],
Duygulu, P.[Pinar],
Matching Ottoman Words:
An image retrieval approach to historical document indexing,
CIVR07(341-347).
DOI Link
0707
BibRef
Ataer, E.[Esra],
Duygulu, P.[Pinar],
Retrieval of Ottoman documents,
MIR06(155-162).
DOI Link
0707
BibRef
Bianne-Bernard, A.L.[Anne-Laure],
Menasri, F.[Fares],
Mohamad, R.A.H.[Rami Al-Hajj],
Mokbel, C.[Chafic],
Kermorvant, C.[Christopher],
Likforman-Sulem, L.[Laurence],
Dynamic and Contextual Information in HMM Modeling for Handwritten Word
Recognition,
PAMI(33), No. 10, October 2011, pp. 2066-2080.
IEEE DOI
1109
Word recognition by combining 3 separate handwritting techniques.
Contextual modeling and dynamic modeling improves recognition.
BibRef
Kermorvant, C.,
Menasri, F.,
Bianne-Bernard, A.L.[Anne-Laure],
Mohamad, R.A.H.[Rami Al-Hajj],
Mokbel, C.,
Likforman-Sulem, L.,
The A2iA-Telecom ParisTech-UOB System for the ICDAR 2009 Handwriting
Recognition Competition,
FHR10(247-252).
IEEE DOI
1011
BibRef
Fischer, A.[Andreas],
Keller, A.[Andreas],
Frinken, V.[Volkmar],
Bunke, H.[Horst],
Lexicon-free handwritten word spotting using character HMMs,
PRL(33), No. 7, 1 May 2012, pp. 934-942.
Elsevier DOI
1203
BibRef
HMM-based Word Spotting in Handwritten Documents Using Subword Models,
ICPR10(3416-3419).
IEEE DOI
1008
Award, ICPR. Handwriting recognition; Keyword spotting; Hidden Markov Models
BibRef
Frinken, V.[Volkmar],
Baumgartner, M.[Markus],
Fischer, A.[Andreas],
Bunke, H.[Horst],
Semi-supervised Learning for Cursive Handwriting Recognition Using
Keyword Spotting,
FHR12(49-54).
IEEE DOI
1302
BibRef
Stauffer, M.[Michael],
Fischer, A.[Andreas],
Riesen, K.[Kaspar],
A Novel Graph Database for Handwritten Word Images,
SSSPR16(553-563).
Springer DOI
1611
BibRef
Scius-Bertrand, A.[Anna],
Studer, L.[Linda],
Fischer, A.[Andreas],
Bui, M.[Marc],
Annotation-Free Keyword Spotting in Historical Vietnamese Manuscripts
Using Graph Matching,
SSSPR22(22-32).
Springer DOI
2301
BibRef
Stauffer, M.[Michael],
Fischer, A.[Andreas],
Riesen, K.[Kaspar],
Speeding-Up Graph-Based Keyword Spotting by Quadtree Segmentations,
CAIP17(I: 304-315).
Springer DOI
1708
BibRef
Earlier:
Speeding-Up Graph-Based Keyword Spotting in Historical Handwritten
Documents,
GbRPR17(83-93).
Springer DOI
1706
BibRef
Earlier:
Graph-Based Keyword Spotting in Historical Handwritten Documents,
SSSPR16(564-573).
Springer DOI
1611
BibRef
Riesen, K.[Kaspar],
Brodic, D.[Darko],
Milivojevic, Z.N.[Zoran N.],
Maluckov, C.A.[Cedomir A.],
Graph Based Keyword Spotting in Medieval Slavic Documents:
A Project Outline,
EuroMed14(724-731).
Springer DOI
1412
BibRef
Stauffer, M.[Michael],
Fischer, A.[Andreas],
Riesen, K.[Kaspar],
Keyword spotting in historical handwritten documents based on graph
matching,
PR(81), 2018, pp. 240-253.
Elsevier DOI
1806
Handwritten keyword spotting, Graph representation,
Bipartite graph matching, Ensemble methods
BibRef
Ameri, M.R.[Mohammad Reza],
Stauffer, M.[Michael],
Riesen, K.[Kaspar],
Bui, T.D.[Tien D.],
Fischer, A.[Andreas],
Graph-based keyword spotting in historical manuscripts using
Hausdorff edit distance,
PRL(121), 2019, pp. 61-67.
Elsevier DOI
1904
Keyword spotting, Handwriting graphs, Graph matching, Hausdorff edit distance
BibRef
Stauffer, M.[Michael],
Fischer, A.[Andreas],
Riesen, K.[Kaspar],
Filters for graph-based keyword spotting in historical handwritten
documents,
PRL(134), 2020, pp. 125-134.
Elsevier DOI
2005
Handwritten keyword spotting, Graph representation,
Bipartite graph matching, Filter methods, Fast rejection
BibRef
Frinken, V.[Volkmar],
Fischer, A.[Andreas],
Bunke, H.[Horst],
Manmatha, R.,
Adapting BLSTM Neural Network Based Keyword Spotting Trained on Modern
Data to Historical Documents,
FHR10(352-357).
IEEE DOI
1011
BibRef
Frinken, V.[Volkmar],
Bunke, H.[Horst],
Evaluating Retraining Rules for Semi-Supervised Learning in Neural
Network Based Cursive Word Recognition,
ICDAR09(31-35).
IEEE DOI
0907
BibRef
Fischer, A.[Andreas],
Indermuhle, E.[Emanuel],
Frinken, V.[Volkmar],
Bunke, H.[Horst],
HMM-Based Alignment of Inaccurate Transcriptions for Historical
Documents,
ICDAR11(53-57).
IEEE DOI
1111
BibRef
Frinken, V.[Volkmar],
Fischer, A.[Andreas],
Bunke, H.[Horst],
Foornes, A.[Alicia],
Co-training for Handwritten Word Recognition,
ICDAR11(314-318).
IEEE DOI
1111
BibRef
Jain, R.[Raman],
Frinken, V.[Volkmar],
Jawahar, C.V.,
Manmatha, R.,
BLSTM Neural Network Based Word Retrieval for Hindi Documents,
ICDAR11(83-87).
IEEE DOI
1111
BibRef
Khurshid, K.[Khurram],
Faure, C.[Claudie],
Vincent, N.[Nicole],
Word spotting in historical printed documents using shape and sequence
comparisons,
PR(45), No. 7, July 2012, pp. 2598-2609.
Elsevier DOI
1203
BibRef
Earlier:
Fusion of Word Spotting and Spatial Information for Figure Caption
Retrieval in Historical Document Images,
ICDAR09(266-270).
IEEE DOI
0907
BibRef
Earlier:
A Novel Approach for Word Spotting Using Merge-Split Edit Distance,
CAIP09(213-220).
Springer DOI
0909
Word spotting; Historical documents; Digital libraries; Dynamic Time
Warping; Segmentation-driven string matching; Information retrieval
BibRef
Liang, Y.,
Fairhurst, M.C.,
Guest, R.M.,
A synthesised word approach to word retrieval in handwritten documents,
PR(45), No. 12, December 2012, pp. 4225-4236.
Elsevier DOI
1208
BibRef
And: A1, A3, A2:
Implementing Word Retrieval in Handwritten Documents Using a Small
Dataset,
FHR12(728-733).
IEEE DOI
1302
Handwriting analysis; Digital archives; Handwritten word retrieval;
Word spotting; Information retrieval; Handwriting recognition;
Historical manuscript analysis
BibRef
Alabau, V.[Vicent],
Sanchis, A.[Alberto],
Casacuberta, F.[Francisco],
On the optimal decision rule for sequential interactive structured
prediction,
PRL(33), No. 16, 1 December 2012, pp. 2226-2231.
Elsevier DOI
1210
Interactive pattern recognition; Minimum Bayes risk; Human interaction;
Machine translation; Handwritten text recognition; Automatic speech
recognition
BibRef
Alabau, V.[Vicent],
Sanchis, A.[Alberto],
Casacuberta, F.[Francisco],
Improving on-line handwritten recognition in interactive machine
translation,
PR(47), No. 3, 2014, pp. 1217-1228.
Elsevier DOI
1312
Interactive pattern recognition
BibRef
Tarazón, L.[Lionel],
Pérez, D.[Daniel],
Serrano, N.[Nicolás],
Alabau, V.[Vicent],
Terrades, O.R.[Oriol Ramos],
Sanchis, A.[Alberto],
Juan, A.[Alfons],
Confidence Measures for Error Correction in Interactive Transcription
Handwritten Text,
CIAP09(567-574).
Springer DOI
0909
BibRef
Wshah, S.[Safwan],
Kumar, G.[Gaurav],
Govindaraju, V.[Venu],
Statistical script independent word spotting in offline handwritten
documents,
PR(47), No. 3, 2014, pp. 1039-1050.
Elsevier DOI
1312
BibRef
Earlier:
Multilingual word spotting in offline handwritten documents,
ICPR12(310-313).
WWW Link.
1302
Script independent
BibRef
van Oosten, J.P.[Jean-Paul],
Schomaker, L.[Lambert],
Separability versus prototypicality in handwritten word-image
retrieval,
PR(47), No. 3, 2014, pp. 1031-1038.
Elsevier DOI
1312
BibRef
Earlier:
Separability versus Prototypicality in Handwritten Word Retrieval,
FHR12(8-13).
IEEE DOI
1302
Image retrieval
BibRef
Rusiñol, M.[Marçal],
Lladós, J.[Josep],
Boosting the handwritten word spotting experience by including the
user in the loop,
PR(47), No. 3, 2014, pp. 1063-1072.
Elsevier DOI
1312
Handwritten word spotting
BibRef
Kessentini, Y.[Yousri],
Burger, T.[Thomas],
Paquet, T.[Thierry],
A Dempster-Shafer Theory based combination of handwriting recognition
systems with multiple rejection strategies,
PR(48), No. 2, 2015, pp. 534-544.
Elsevier DOI
1411
BibRef
Earlier: A2, A1, A3:
Dempster-Shafer Based Rejection Strategy for Handwritten Word
Recognition,
ICDAR11(528-532).
IEEE DOI
1111
BibRef
Earlier: A2, A1, A3:
Dealing with Precise and Imprecise Decisions with a Dempster-Shafer
Theory Based Algorithm in the Context of Handwritten Word Recognition,
FHR10(369-374).
IEEE DOI
1011
Handwriting recognition
BibRef
Kessentini, Y.[Yousri],
Paquet, T.[Thierry],
Ben-Hamadou, A.M.[Abdel Majid],
A Multi-Lingual Recognition System for Arabic and Latin Handwriting,
ICDAR09(1196-1200).
IEEE DOI
0907
BibRef
Earlier:
Multi-script handwriting recognition with N-streams low level features,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Zhang, X.[Xi],
Tan, C.L.[Chew Lim],
Handwritten word image matching based on Heat Kernel Signature,
PR(48), No. 11, 2015, pp. 3346-3356.
Elsevier DOI
1506
BibRef
Earlier:
CAIP13(II:42-49).
Springer DOI
1311
Handwritten documents
BibRef
Chen, J.Y.[Jin-Ying],
Cao, H.G.[Huai-Gu],
Natarajan, P.[Premkumar],
Integrating natural language processing with image document analysis:
what we learned from two real-world applications,
IJDAR(18), No. 3, September 2015, pp. 235-247.
Springer DOI
1509
BibRef
Roy, P.P.[Partha Pratim],
Rayar, F.[Frédéric],
Ramel, J.Y.[Jean-Yves],
Word spotting in historical documents using primitive codebook and
dynamic programming,
IVC(44), No. 1, 2015, pp. 15-28.
Elsevier DOI
1601
Word spotting
BibRef
Kumar, G.[Gaurav],
Govindaraju, V.[Venu],
Bayesian background models for keyword spotting in handwritten
documents,
PR(64), No. 1, 2017, pp. 84-91.
Elsevier DOI
1701
BibRef
Earlier:
Bayesian Active Learning for Keyword Spotting in Handwritten
Documents,
ICPR14(2041-2046)
IEEE DOI
1412
Handwriting recognition.
Bayes methods
BibRef
Wshah, S.[Safwan],
Kumar, G.[Gaurav],
Govindaraju, V.[Venu],
Script Independent Word Spotting in Offline Handwritten Documents Based
on Hidden Markov Models,
FHR12(14-19).
IEEE DOI
1302
BibRef
Giotis, A.P.[Angelos P.],
Sfikas, G.[Giorgos],
Gatos, B.[Basilis],
Nikou, C.[Christophoros],
A survey of document image word spotting techniques,
PR(68), No. 1, 2017, pp. 310-332.
Elsevier DOI
1704
Survey, Word Spotting.
BibRef
Earlier: A1, A2, A4, A3:
Shape-based word spotting in handwritten document images,
ICDAR15(561-565)
IEEE DOI
1511
Word spotting
handwritten text
BibRef
Mhiri, M.[Mohamed],
Abuelwafa, S.[Sherif],
Desrosiers, C.[Christian],
Cheriet, M.[Mohamed],
Hierarchical representation learning using spherical k-means for
segmentation-free word spotting,
PRL(101), No. 1, 2018, pp. 52-59.
Elsevier DOI
1801
Segmentation-free and training-free word spotting
BibRef
Mhiri, M.[Mohamed],
Cheriet, M.[Mohamed],
Desrosiers, C.[Christian],
Query-by-example word spotting using multiscale features and
classification in the space of representation differences,
ICIP17(1112-1116)
IEEE DOI
1803
Encoding, Euclidean distance, Feature extraction, Robustness,
Support vector machines, Task analysis, Training,
word spotting
BibRef
Moghaddam, R.F.[Reza Farrahi],
Cheriet, M.[Mohamed],
Application of Multi-Level Classifiers and Clustering for Automatic
Word Spotting in Historical Document Images,
ICDAR09(511-515).
IEEE DOI
0907
See also multi-scale framework for adaptive binarization of degraded document images, A.
BibRef
Dong, X.,
Dong, J.,
The Visual Word Booster:
A Spatial Layout of Words Descriptor Exploiting Contour Cues,
IP(27), No. 8, August 2018, pp. 3904-3917.
IEEE DOI
1806
feature extraction, image classification, image matching,
image representation, image texture, SLoW descriptor,
spatial layout
BibRef
Mhiri, M.[Mohamed],
Desrosiers, C.[Christian],
Cheriet, M.[Mohamed],
Convolutional pyramid of bidirectional character sequences for the
recognition of handwritten words,
PRL(111), 2018, pp. 87-93.
Elsevier DOI
1808
Word recognition, Offline handwriting, Word representation,
Deep convolutional neural networks
BibRef
Gupta, J.D.[Jija Das],
Samanta, S.[Soumitra],
Chanda, B.[Bhabatosh],
Ensemble classifier-based off-line handwritten word recognition system
in holistic approach,
IET-IPR(12), No. 8, August 2018, pp. 1467-1474.
DOI Link
1808
BibRef
Sudholt, S.[Sebastian],
Fink, G.A.[Gernot A.],
Attribute CNNs for word spotting in handwritten documents,
IJDAR(21), No. 3, September 2018, pp. 199-218.
Springer DOI
1810
BibRef
Wu, X.,
Chen, Q.,
You, J.,
Xiao, Y.,
Unconstrained Offline Handwritten Word Recognition by Position
Embedding Integrated ResNets Model,
SPLetters(26), No. 4, April 2019, pp. 597-601.
IEEE DOI
1903
Hidden Markov models, Handwriting recognition,
Feature extraction, Text recognition, Training, Linguistics,
off-line handwritten word recognition
BibRef
Retsinas, G.[George],
Louloudis, G.[Georgios],
Stamatopoulos, N.[Nikolaos],
Gatos, B.[Basilis],
Efficient Learning-Free Keyword Spotting,
PAMI(41), No. 7, July 2019, pp. 1587-1600.
IEEE DOI
1906
BibRef
Earlier: A4, A2, A3, Only:
Greek Polytonic OCR Based on Efficient Character Class Number Reduction,
ICDAR11(1155-1159).
IEEE DOI
1111
Image segmentation, Feature extraction, Training,
Hidden Markov models, Writing, Euclidean distance, Task analysis,
sequence matching
BibRef
Stamatopoulos, N.[Nikolaos],
Louloudis, G.[Georgios],
Gatos, B.[Basilis],
Efficient Transcript Mapping to Ease the Creation of Document Image
Segmentation Ground Truth with Text-Image Alignment,
FHR10(226-231).
IEEE DOI
1011
Ground truth creation.
BibRef
Hou, J.,
Shi, Y.,
Ostendorf, M.,
Hwang, M.,
Xie, L.,
Region Proposal Network Based Small-Footprint Keyword Spotting,
SPLetters(26), No. 10, October 2019, pp. 1471-1475.
IEEE DOI
1909
Feature extraction, Hidden Markov models, Training, Proposals,
Object detection, Backpropagation, Vocabulary, Keyword spotting,
false alarm
BibRef
Barrere, K.[Killian],
Toselli, A.H.[Alejandro H.],
Vidal, E.[Enrique],
Line Segmentation Free Probabilistic Keyword Spotting and Indexing,
IbPRIA19(II:201-213).
Springer DOI
1910
BibRef
Krishnan, P.[Praveen],
Jawahar, C.V.,
HWNet v2: an efficient word image representation for handwritten
documents,
IJDAR(22), No. 4, December 2019, pp. 387-405.
Springer DOI
1911
BibRef
Dey, S.[Sounak],
Nicolaou, A.[Anguelos],
Lladós, J.[Josep],
Pal, U.[Umapada],
Evaluation of word spotting under improper segmentation scenario,
IJDAR(22), No. 4, December 2019, pp. 361-374.
Springer DOI
1911
BibRef
Bera, S.K.[Suman Kumar],
Chakrabarti, A.[Akash],
Lahiri, S.[Sagnik],
Smith, E.H.B.[Elisa H. Barney],
Sarkar, R.[Ram],
Normalization of unconstrained handwritten words in terms of Slope
and Slant Correction,
PRL(128), 2019, pp. 488-495.
Elsevier DOI
1912
BibRef
Das, D.[Dibyasundar],
Nayak, D.R.[Deepak Ranjan],
Dash, R.[Ratnakar],
Majhi, B.[Banshidhar],
Zhang, Y.D.[Yu-Dong],
H-WordNet: a holistic convolutional neural network approach for
handwritten word recognition,
IET-IPR(14), No. 9, 20 July 2020, pp. 1794-1805.
DOI Link
2007
BibRef
Mohammed, H.H.[Hanadi Hassen],
Subramanian, N.[Nandhini],
Al-Madeed, S.[Somaya],
Learning-free handwritten word spotting method for historical
handwritten documents,
IET-IPR(15), No. 10, 2021, pp. 2332-2341.
DOI Link
2108
BibRef
Boudraa, O.[Omar],
Michelucci, D.[Dominique],
Hidouci, W.K.[Walid Khaled],
PUNet: Novel and efficient deep neural network architecture for
handwritten documents word spotting,
PRL(155), 2022, pp. 19-26.
Elsevier DOI
2203
Deep learning, Word spotting, Information retrieval,
Transfer learning, Convolutional neural network,
Pyramidal histogram of characters
BibRef
Huang, X.H.[Xiang-Hong],
Yang, Q.[Qun],
Liu, S.H.[Shao-Han],
Depthwise-Separable Residual Capsule for Robust Keyword Spotting,
MMMod22(II:194-204).
Springer DOI
2203
BibRef
Kim, D.[Donghyeon],
Kim, G.[Gwantae],
Lee, B.[Bokyeung],
Ko, H.S.[Han-Seok],
Prototypical Knowledge Distillation for Noise Robust Keyword Spotting,
SPLetters(29), 2022, pp. 2298-2302.
IEEE DOI
2212
Computational modeling, Feature extraction, Training,
Mathematical models, Convolution, Convolutional neural networks,
prototypical learning
BibRef
Mhiri, M.[Mohamed],
Hamdan, M.[Mohammed],
Cheriet, M.[Mohamed],
Handwriting word spotting in the space of difference between
representations using vision transformers,
PRL(174), 2023, pp. 39-45.
Elsevier DOI
2310
Word spotting, Query-by-example, Query-by-string,
PBSC representation, CNN, Vision transformer
BibRef
Kim, Y.[Youkyum],
Jung, J.[Jaemin],
Park, J.[Jihwan],
Kim, B.Y.[Byeong-Yeol],
Chung, J.S.[Joon Son],
Bridging the Gap Between Audio and Text Using Parallel-Attention for
User-Defined Keyword Spotting,
SPLetters(31), 2024, pp. 2100-2104.
IEEE DOI
2408
Training, Feature extraction, Indexes, Convolution, Kernel, Vectors,
Benchmark testing, Attention mechanism, multi-modal fusion,
user-defined keyword spotting
BibRef
Prieto, J.R.[Jose Ramón],
Vidal, E.[Enrique],
Sánchez, J.A.[Joan Andreu],
Alonso, C.[Carlos],
Garrido, D.[David],
Extracting Descriptive Words from Untranscribed Handwritten Images,
IbPRIA22(540-551).
Springer DOI
2205
BibRef
Rosello, A.[Adrian],
Ayllon, E.[Eric],
Valero-Mas, J.J.[Jose J.],
Calvo-Zaragoza, J.[Jorge],
Test Sample Selection for Handwriting Recognition Through Language
Modeling,
IbPRIA22(3-13).
Springer DOI
2205
BibRef
Guo, J.J.[Jing-Jie],
Tian, K.[Kelang],
Ye, K.J.[Ke-Jiang],
Xu, C.Z.[Cheng-Zhong],
MA-LSTM: A Multi-Attention Based LSTM for Complex Pattern Extraction,
ICPR21(3605-3611)
IEEE DOI
2105
Deep learning, Handwriting recognition,
Recurrent neural networks, Computer architecture,
language model
BibRef
Chakraborty, A.[Anuran],
De, R.[Rajonya],
Malakar, S.[Samir],
Schwenker, F.[Friedhelm],
Sarkar, R.[Ram],
Handwritten Digit String Recognition using Deep Autoencoder based
Segmentation and ResNet based Recognition Approach,
ICPR21(7737-7742)
IEEE DOI
2105
Deep learning, Handwriting recognition,
Image recognition, Databases, Computational modeling, U-Net
BibRef
Bhattacharya, R.[Rajdeep],
Malakar, S.[Samir],
Schwenker, F.[Friedhelm],
Sarkar, R.[Ram],
Fuzzy-based Pseudo Segmentation Approach for Handwritten Word
Recognition Using a Sequence to Sequence Model with Attention,
DLPR20(582-596).
Springer DOI
2103
BibRef
Kang, L.,
Rusiñol, M.,
Fornés, A.,
Riba, P.,
Villegas, M.,
Unsupervised Adaptation for Synthetic-to-Real Handwritten Word
Recognition,
WACV20(3491-3500)
IEEE DOI
2006
Handwriting recognition, Feature extraction, Adaptation models,
Hidden Markov models, Target recognition, Training, Training data
BibRef
Kang, L.[Lei],
Toledo, J.I.[J. Ignacio],
Riba, P.[Pau],
Villegas, M.[Mauricio],
Fornés, A.[Alicia],
Rusiñol, M.[Marçal],
Convolve, Attend and Spell: An Attention-based Sequence-to-Sequence
Model for Handwritten Word Recognition,
GCPR18(459-472).
Springer DOI
1905
BibRef
Axler, G.,
Wolf, L.,
Toward a Dataset-Agnostic Word Segmentation Method,
ICIP18(2635-2639)
IEEE DOI
1809
Proposals, Heating systems, Task analysis, Image segmentation,
Training, Object detection, Integrated circuits, Object Detection,
Transfer Learning
BibRef
Wilkinson, T.,
Lindström, J.,
Brun, A.,
Neural Ctrl-F: Segmentation-Free Query-by-String Word Spotting in
Handwritten Manuscript Collections,
ICCV17(4443-4452)
IEEE DOI
1802
document image processing,
handwritten character recognition, image segmentation,
Text recognition
BibRef
Bolelli, F.[Federico],
Borghi, G.[Guido],
Grana, C.[Costantino],
Historical Handwritten Text Images Word Spotting Through Sliding Window
HOG Features,
CIAP17(I:729-738).
Springer DOI
1711
BibRef
Wicht, B.,
Fischer, A.,
Hennebert, J.,
Deep learning features for handwritten keyword spotting,
ICPR16(3434-3439)
IEEE DOI
1705
Computational modeling, Feature extraction, Hidden Markov models,
Image segmentation, Machine learning, Training, Writing
BibRef
Stuner, B.,
Chatelain, C.,
Paquet, T.,
Cascading BLSTM networks for handwritten word recognition,
ICPR16(3416-3421)
IEEE DOI
1705
Character recognition, Databases, Decoding,
Handwriting recognition, Hidden Markov models,
Recurrent neural networks, Training
BibRef
Poznanski, A.,
Wolf, L.B.[Lior B.],
CNN-N-Gram for Handwriting Word Recognition,
CVPR16(2305-2314)
IEEE DOI
1612
BibRef
Toledo, J.I.[J. Ignacio],
Sudholt, S.[Sebastian],
Fornés, A.[Alicia],
Cucurull, J.[Jordi],
Fink, G.A.[Gernot A.],
Lladós, J.[Josep],
Handwritten Word Image Categorization with Convolutional Neural
Networks and Spatial Pyramid Pooling,
SSSPR16(543-552).
Springer DOI
1611
BibRef
Chen, G.,
Li, Y.,
Srihari, S.N.,
Word recognition with deep conditional random fields,
ICIP16(1928-1932)
IEEE DOI
1610
Character recognition
BibRef
Wilkinson, T.[Tomas],
Brun, A.[Anders],
A Novel Word Segmentation Method Based on Object Detection and Deep
Learning,
ISVC15(I: 231-240).
Springer DOI
1601
BibRef
Hamdani, M.[Mahdi],
Shaik, M.A.B.[M. Ali Basha],
Doetsch, P.[Patrick],
Ney, H.[Hermann],
Investigation of Segmental Conditional Random Fields for large
vocabulary handwriting recognition,
ICDAR15(261-265)
IEEE DOI
1511
BibRef
Noya-García, E.[Ernesto],
Toselli, A.H.[Alejandro H.],
Vidal, E.[Enrique],
Simple and Effective Multi-word Query Spotting in Handwritten Text
Images,
IbPRIA17(76-84).
Springer DOI
1706
BibRef
Puigcerver, J.[Joan],
Toselli, A.H.[Alejandro H.],
Vidal, E.[Enrique],
ICDAR2015 Competition on Keyword Spotting for Handwritten Documents,
ICDAR15(1176-1180)
IEEE DOI
1511
BibRef
Boukerma, H.[Hanene],
Choisy, C.[Christophe],
Benouareth, A.[Abdallah],
Farah, N.[Nadir],
A performance evaluation of NSHP-HMM based on conditional ZONE
observation probabilities application to offline handwriting word
recognition,
ICDAR15(1091-1095)
IEEE DOI
1511
Hidden Markov Model
BibRef
Riba, P.[Pau],
Llados, J.[Josep],
Fornes, A.[Alicia],
Handwritten word spotting by inexact matching of grapheme graphs,
ICDAR15(781-785)
IEEE DOI
1511
BibRef
Puigcerver, J.[Joan],
Toselli, A.H.[Alejandro H.],
Vidal, E.[Enrique],
Probabilistic interpretation and improvements to the HMM-filler for
handwritten keyword spotting,
ICDAR15(731-735)
IEEE DOI
1511
BibRef
Rusinol, M.[Marcal],
Aldavert, D.[David],
Toledo, R.[Ricardo],
Llados, J.[Josep],
Towards query-by-speech handwritten keyword spotting,
ICDAR15(501-505)
IEEE DOI
1511
BibRef
Ghorbel, A.[Adam],
Ogier, J.M.[Jean-Marc],
Vincent, N.[Nicole],
A segmentation free Word Spotting for handwritten documents,
ICDAR15(346-350)
IEEE DOI
1511
Haar Features
BibRef
Yao, S.[Shunyi],
Wen, Y.[Ying],
Lu, Y.[Yue],
HoG based two-directional Dynamic Time Warping for handwritten word
spotting,
ICDAR15(161-165)
IEEE DOI
1511
handwritten documents
BibRef
Bideault, G.[Gautier],
Mioulet, L.[Luc],
Chatelain, C.[Clement],
Paquet, T.[Thierry],
Benchmarking discriminative approaches for word spotting in
handwritten documents,
ICDAR15(201-205)
IEEE DOI
1511
BLSTM/CTC
BibRef
Kessentini, Y.[Yousri],
Paquet, T.[Thierry],
Keyword spotting in handwritten documents based on a generic text
line HMM and a SVM verification,
ICDAR15(41-45)
IEEE DOI
1511
BibRef
Ruan, X.[Xiang],
Fukuda, K.,
Yamashita, T.,
Living without Menu Bar: A Shape Retrieval Based Word Editor,
ACPR13(746-746)
IEEE DOI
1408
feature extraction
BibRef
Bluche, T.[Theodore],
Ney, H.[Hermann],
Louradour, J.[Jerome],
Kermorvant, C.[Christopher],
Framewise and CTC training of Neural Networks for handwriting
recognition,
ICDAR15(81-85)
IEEE DOI
1511
BibRef
Earlier: A1, A2, A4, Only:
Feature Extraction with Convolutional Neural Networks for Handwritten
Word Recognition,
ICDAR13(285-289)
IEEE DOI
1312
feature extraction
BibRef
Bluche, T.[Theodore],
Ney, H.[Hermann],
Kermorvant, C.[Christopher],
The LIMSI handwriting recognition system for the HTRtS 2014 contest,
ICDAR15(86-90)
IEEE DOI
1511
BibRef
Zhu, B.[Bilan],
Shivram, A.,
Setlur, S.,
Govindaraju, V.,
Nakagawa, M.,
Online Handwritten Cursive Word Recognition Using Segmentation-Free
MRF in Combination with P2DBMN-MQDF,
ICDAR13(349-353)
IEEE DOI
1312
Markov processes
BibRef
Toselli, A.H.[Alejandro Hector],
Puigcerver, J.[Joan],
Vidal, E.[Enrique],
Context-aware lattice based filler approach for key word spotting in
handwritten documents,
ICDAR15(736-740)
IEEE DOI
1511
BibRef
Earlier: A2, A1, A3:
A New Smoothing Method for Lexicon-Based Handwritten Text Keyword
Spotting,
IbPRIA15(23-30).
Springer DOI
1506
BibRef
Earlier: A1, A3, Only:
Fast HMM-Filler Approach for Key Word Spotting in Handwritten
Documents,
ICDAR13(501-505)
IEEE DOI
1312
Viterbi decoding
BibRef
Wang, P.[Peng],
Eglin, V.,
Garcia, C.,
Largeron, C.,
McKenna, A.,
A Comprehensive Representation Model for Handwriting Dedicated to
Word Spotting,
ICDAR13(450-454)
IEEE DOI
1312
document image processing
BibRef
Howe, N.R.,
Part-Structured Inkball Models for One-Shot Handwritten Word Spotting,
ICDAR13(582-586)
IEEE DOI
1312
document image processing
BibRef
Zhang, H.[Heng],
Zhou, X.D.[Xiang-Dong],
Liu, C.L.[Cheng-Lin],
Keyword Spotting in Online Chinese Handwritten Documents with
Candidate Scoring Based on Semi-CRF Model,
ICDAR13(567-571)
IEEE DOI
1312
Markov processes
BibRef
Kessentini, Y.,
Chatelain, C.,
Paquet, T.,
Word Spotting and Regular Expression Detection in Handwritten
Documents,
ICDAR13(516-520)
IEEE DOI
1312
document image processing
BibRef
Zhang, X.[Xi],
Tan, C.L.[Chew Lim],
Unconstrained Handwritten Word Recognition Based on Trigrams Using
BLSTM,
ICPR14(2914-2919)
IEEE DOI
1412
BibRef
Earlier:
Segmentation-Free Keyword Spotting for Handwritten Documents Based on
Heat Kernel Signature,
ICDAR13(827-831)
IEEE DOI
1312
Dictionaries.
document image processing
BibRef
Shivram, A.,
Zhu, B.[Bilan],
Setlur, S.,
Nakagawa, M.,
Govindaraju, V.,
Segmentation Based Online Word Recognition:
A Conditional Random Field Driven Beam Search Strategy,
ICDAR13(852-856)
IEEE DOI
1312
handwritten character recognition
BibRef
Pantke, W.,
Margner, V.,
Fingscheidt, T.,
On Evaluation of Segmentation-Free Word Spotting Approaches without
Hard Decisions,
ICDAR13(1300-1304)
IEEE DOI
1312
document image processing
BibRef
Sudholt, S.[Sebastian],
Fink, G.A.[Gernot A.],
A Modified Isomap Approach to Manifold Learning in Word Spotting,
GCPR15(529-539).
Springer DOI
1511
BibRef
Rothacker, L.[Leonard],
Fink, G.A.[Gernot A.],
Segmentation-free query-by-string word spotting with Bag-of-Features
HMMs,
ICDAR15(661-665)
IEEE DOI
1511
BibRef
Rothacker, L.[Leonard],
Rusinol, M.,
Fink, G.A.[Gernot A.],
Bag-of-Features HMMs for Segmentation-Free Word Spotting in
Handwritten Documents,
ICDAR13(1305-1309)
IEEE DOI
1312
document image processing
BibRef
Malagon, C.,
Rizky, R.,
Kim, Y.,
Marzal, F.,
Izquierdo, L.,
Automatic Abbreviation Detection in Medieval Medical Documents,
FHR12(337-342).
IEEE DOI
1302
BibRef
Devlin, J.[Jacob],
Kamali, M.[Matin],
Subramanian, K.[Krishna],
Prasad, R.[Rohit],
Natarajan, P.[Prem],
Statistical Machine Translation as a Language Model for Handwriting
Recognition,
FHR12(291-296).
IEEE DOI
1302
BibRef
Haji, M.[Mehdi],
Sahoo, K.A.[Kalyan Asis],
Bui, T.D.[Tien D.],
Suen, C.Y.[Ching Y.],
Ponson, D.[Dominique],
Statistical Hypothesis Testing for Handwritten Word Segmentation
Algorithms,
FHR12(114-119).
IEEE DOI
1302
BibRef
Yuan, A.[Aiquan],
Bai, G.[Gang],
Yang, P.[Po],
Guo, Y.[Yanni],
Zhao, X.T.[Xin-Ting],
Handwritten English Word Recognition Based on Convolutional Neural
Networks,
FHR12(207-212).
IEEE DOI
1302
BibRef
Rusinol, M.[Marcal],
Llados, J.[Josep],
The Role of the Users in Handwritten Word Spotting Applications: Query
Fusion and Relevance Feedback,
FHR12(55-60).
IEEE DOI
1302
BibRef
Simistira, F.[Fotini],
Papavassiliou, V.[Vassilis],
Stafylakis, T.[Themos],
Katsouros, V.[Vassilis],
Enhancing Handwritten Word Segmentation by Employing Local Spatial
Features,
ICDAR11(1314-1318).
IEEE DOI
1111
BibRef
Guichard, L.[Laurent],
Chazalon, J.[Joseph],
Couasnon, B.[Bertrand],
Exploiting Collection Level for Improving Assisted Handwritten Word
Transcription of Historical Documents,
ICDAR11(875-879).
IEEE DOI
1111
BibRef
Hamamura, T.[Tomoyuki],
Irie, B.[Bunpei],
Nishimoto, T.[Takuya],
Ono, N.[Nobutaka],
Sagayama, S.[Shigeki],
Concurrent Optimization of Context Clustering and GMM for Offline
Handwritten Word Recognition Using HMM,
ICDAR11(523-527).
IEEE DOI
1111
BibRef
Roy, P.P.[Partha Pratim],
Bhowmick, S.[Souvik],
Pal, U.[Umapada],
Ramel, J.Y.[Jean Yves],
Signature Based Document Retrieval Using GHT of Background Information,
FHR12(225-230).
IEEE DOI
1302
BibRef
Roy, P.P.[Partha Pratim],
Ramel, J.Y.[Jean-Yves],
Ragot, N.[Nicolas],
Word Retrieval in Historical Document Using Character-Primitives,
ICDAR11(678-682).
IEEE DOI
1111
BibRef
Chowriappa, A.[Ashirwad],
Rodrigues, R.N.[Ricardo N.],
Kesavadas, T.[Thenkurussi],
Govindaraju, V.[Venu],
Bisantz, A.[Ann],
Generation of Handwriting by Active Shape Modeling and Global Local
Approximation (GLA) Adaptation,
FHR10(206-211).
IEEE DOI
1011
BibRef
Chen, Q.[Qi],
Gong, T.X.[Tian-Xia],
Li, L.L.[Lin-Lin],
Tan, C.L.[Chew Lim],
Pang, B.C.[Boon Chuan],
A Medical Knowledge Based Postprocessing Approach for Doctor's
Handwriting Recognition,
FHR10(45-50).
IEEE DOI
1011
BibRef
Sarkar, A.[Aisharjya],
Biswas, A.[Arindam],
Bhowmick, P.[Partha],
Bhattacharya, B.B.[Bhargab B.],
Word Segmentation and Baseline Detection in Handwritten Documents Using
Isothetic Covers,
FHR10(445-450).
IEEE DOI
1011
BibRef
Guichard, L.[Laurent],
Toselli, A.H.[Alejandro H.],
Couasnon, B.[Bertrand],
Handwritten Word Verification by SVM-Based Hypotheses Re-scoring and
Multiple Thresholds Rejection,
FHR10(57-62).
IEEE DOI
1011
BibRef
And:
A Novel Verification System for Handwritten Words Recognition,
ICPR10(2869-2872).
IEEE DOI
1008
BibRef
Koerich, A.L.[Alessandro L.],
de Souza Britto, Jr., A.[Alceu],
Soares de Oliveira, L.E.[Luiz Eduardo],
Verification of Unconstrained Handwritten Words at Character Level,
FHR10(39-44).
IEEE DOI
1011
BibRef
Tran, D.C.[De Cao],
Franco, P.[Patrick],
Ogier, J.M.[Jean-Marc],
Accented Handwritten Character Recognition Using SVM:
Application to French,
FHR10(65-71).
IEEE DOI
1011
BibRef
Bui, Q.A.[Quang Anh],
Visani, M.,
Mullot, R.,
Invariants Extraction Method Applied in an Omni-language Old Document
Navigating System,
ICDAR13(1325-1329)
IEEE DOI
1312
document handling
BibRef
Bui, Q.A.[Quang Anh],
Visani, M.[Muriel],
Prum, S.[Sophea],
Ogier, J.M.[Jean-Marc],
Writer Identification Using TF-IDF for Cursive Handwritten Word
Recognition,
ICDAR11(844-848).
IEEE DOI
1111
BibRef
Prum, S.[Sophea],
Visani, M.[Muriel],
Ogier, J.M.[Jean-Marc],
Cursive On-line Handwriting Word Recognition Using a Bi-character Model
for Large Lexicon Applications,
FHR10(194-199).
IEEE DOI
1011
BibRef
And:
On-Line Handwriting Word Recognition Using a Bi-character Model,
ICPR10(2700-2703).
IEEE DOI
1008
BibRef
Sarkar, K.[Kamal],
Automatic Keyphrase Extraction from Medical Documents,
PReMI09(273-278).
Springer DOI
0912
BibRef
de Oliveira, Jr., J.J.,
de A. Freitas, C.O.[Cinthia O.],
de Carvalho, J.M.,
Sabourin, R.,
Handwritten Word Recognition Using Multi-view Analysis,
CIARP09(371-378).
Springer DOI
0911
BibRef
Wüthrich, M.[Markus],
Liwicki, M.[Marcus],
Fischer, A.[Andreas],
Indermühle, E.[Emanuel],
Bunke, H.[Horst],
Viehhauser, G.[Gabriel],
Stolz, M.[Michael],
Language Model Integration for the Recognition of Handwritten Medieval
Documents,
ICDAR09(211-215).
IEEE DOI
0907
BibRef
Ahmad, A.R.[Abdul Rahim],
Viard-Gaudin, C.[Christian],
Khalid, M.[Marzuki],
Lexicon-Based Word Recognition Using Support Vector Machine and Hidden
Markov Model,
ICDAR09(161-165).
IEEE DOI
0907
BibRef
Imura, H.[Hajime],
Tanaka, Y.[Yuzuru],
A Full-Text Search System for Images of Hand-Written Cursive Documents,
FHR10(640-645).
IEEE DOI
1011
BibRef
Imura, H.[Hajime],
Tanaka, Y.[Yuzuru],
Compression and String Matching Method for Printed Document Images,
ICDAR09(291-295).
IEEE DOI
0907
BibRef
Terasawa, K.[Kengo],
Imura, H.[Hajime],
Tanaka, Y.[Yuzuru],
Automatic Evaluation Framework for Word Spotting,
ICDAR09(276-280).
IEEE DOI
0907
BibRef
Andreev, A.[Andrey],
Kirov, N.[Nikolay],
Word Image Matching Based on Hausdorff Distances,
ICDAR09(396-400).
IEEE DOI
0907
BibRef
Impedovo, S.[Sebastiano],
Ferrante, A.[Anna],
Modugno, R.[Raffaele],
HMM Based Handwritten Word Recognition System by Using Singularities,
ICDAR09(783-787).
IEEE DOI
0907
BibRef
Terasawa, K.[Kengo],
Tanaka, Y.[Yuzuru],
Slit Style HOG Feature for Document Image Word Spotting,
ICDAR09(116-120).
IEEE DOI
0907
BibRef
Roy, A.[Anandarup],
Parui, S.K.[Swapan Kumar],
Paul, A.[Amitav],
Roy, U.[Utpal],
A Color Based Image Segmentation and its Application to Text
Segmentation,
ICCVGIP08(313-319).
IEEE DOI
0812
BibRef
Bhowmik, T.K.[Tapan K.],
Parui, S.K.[Swapan K.],
Roy, U.[Utpal],
Discriminative HMM training with GA for handwritten word recognition,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Bhowmik, T.K.[Tapan K.],
Parui, S.K.[Swapan K.],
Kar, M.[Manika],
Roy, U.[Utpal],
HMM Parameter Estimation with Genetic Algorithm for Handwritten Word
Recognition,
PReMI07(536-544).
Springer DOI
0712
BibRef
Almaksour, A.[Abdullah],
Anquetil, E.[Eric],
Fast Incremental Learning Strategy Driven by Confusion Reject for
Online Handwriting Recognition,
ICDAR09(81-85).
IEEE DOI
0907
BibRef
Quiniou, S.[Solen],
Anquetil, E.[Eric],
Use of a Confusion Network to Detect and Correct Errors in an On-Line
Handwritten Sentence Recognition System,
ICDAR07(382-386).
IEEE DOI
0709
BibRef
Shetty, S.,
Srinivasan, H.,
Srihari, S.,
Handwritten Word Recognition Using Conditional Random Fields,
ICDAR07(1098-1102).
IEEE DOI
0709
BibRef
Hirayama, J.[Junichi],
Nakayama, H.[Hidehisa],
Kato, N.[Nei],
A Classifier of Similar Characters using Compound Mahalanobis Function
based on Difference Subspace,
ICDAR07(432-436).
IEEE DOI
0709
BibRef
Inoue, R.[Ryo],
Nakayama, H.[Hidehisa],
Kato, N.[Nei],
Historical Hand-Written String Recognition by Non-linear Discriminant
Analysis using Kernel Feature Selection,
ICPR06(II: 1094-1097).
IEEE DOI
0609
BibRef
Gatos, B.[Basilios],
Pratikakis, I.E.[Ioannis E.],
Perantonis, S.J.[Stavros J.],
Hybrid Off-Line Cursive Handwriting Word Recognition,
ICPR06(II: 998-1002).
IEEE DOI
0609
BibRef
Cheng, C.K.[Chun Ki],
Blumenstein, M.,
The neural-based segmentation of cursive words using enhanced
heuristics,
ICDAR05(II: 650-654).
IEEE DOI
0508
BibRef
Rusu, A.,
Govindaraju, V.,
A human interactive proof algorithm using handwriting recognition,
ICDAR05(II: 967-971).
IEEE DOI
0508
BibRef
Jaeger, S.,
Ma, H.,
Doermann, D.S.,
Identifying script on word-level with informational confidence,
ICDAR05(I: 416-420).
IEEE DOI
0508
BibRef
Sas, J.[Jerzy],
Markowska-Kaczmar, U.[Urszula],
Semi-automatic Training Sets Acquisition for Handwriting Recognition,
CAIP07(531-538).
Springer DOI
0708
BibRef
Kurzynski, M.[Marek],
Sas, J.[Jerzy],
Combining Character Level Classifier and Probabilistic Lexicons in
Handwritten Word Recognition: Comparative Analysis of Methods,
CAIP05(330).
Springer DOI
0509
BibRef
Günter, S.[Simon],
Bunke, H.[Horst],
Ensembles of Classifiers for Handwritten Word Recognition Specialized
on Individual Handwriting Style,
DAS04(286-297).
Springer DOI
0505
BibRef
Ma, H.F.[Huan-Feng],
Doermann, D.S.,
Adaptive OCR with limited user feedback,
ICDAR05(II: 814-818).
IEEE DOI
0508
BibRef
Earlier:
Adaptive word style classification using a gaussian mixture model,
ICPR04(II: 606-609).
IEEE DOI
0409
BibRef
Dupre, X.,
Augustin, E.,
Hidden markov models for couples of letters applied to handwriting
recognition,
ICPR04(II: 618-621).
IEEE DOI
0409
BibRef
Azzabou, N.,
Likforman-Sulem, L.,
Neural network-based proper names extraction in fax images,
ICPR04(I: 421-424).
IEEE DOI
0409
BibRef
Likforman-Sulem, L.,
Vaillant, P.,
Yvon, F.,
Proper names extraction from fax images combining textual and image
features,
ICDAR03(545-549).
IEEE DOI
0311
BibRef
Liu, X.[Xia],
Shi, Z.X.[Zhi-Xin],
A format-driven handwritten word recognition system,
ICDAR03(1118-1122).
IEEE DOI
0311
BibRef
Quiniou, S.,
Anquetil, E.,
Carbonnel, S.,
Statistical language models for on-line handwritten sentence
recognition,
ICDAR05(I: 516-520).
IEEE DOI
0508
BibRef
Carbonnel, S.,
Anquetil, E.,
Lexical post-processing optimization for handwritten word recognition,
ICDAR03(477-481).
IEEE DOI
0311
BibRef
Schambach, M.P.[Marc-Peter],
Reviewing Performance Metrics for Handwriting Recognition:
Must-Rejects and Recognition Graph Scores,
FHR10(457-462).
IEEE DOI
1011
BibRef
Schambach, M.P.[Marc-Peter],
Recurrent HMMs and Cursive Handwriting Recognition Graphs,
ICDAR09(1146-1150).
IEEE DOI
0907
BibRef
Schambach, M.P.,
Fast script word recognition with very large vocabulary,
ICDAR05(I: 9-13).
IEEE DOI
0508
BibRef
Earlier:
Determination of the number of writing variants with an HMM based
cursive word recognition system,
ICDAR03(119-123).
IEEE DOI
0311
BibRef
And:
Model length adaptation of an HMM based cursive word recognition system,
ICDAR03(109-113).
IEEE DOI
0311
BibRef
Ishidera, E.[Eiki],
Lucas, S.M.[Simon M.],
Downton, A.C.[Andrew C.],
Top-Down Likelihood Word Image Generation Model for Holistic Word
Recognition,
DAS02(82 ff.).
Springer DOI
0303
BibRef
And:
Likelihood word image generation model for word recognition,
ICPR02(III: 172-175).
IEEE DOI
0211
BibRef
Ishidera, E.,
Nishiwaki, D.,
A study on top-down word image generation for handwritten word
recognition,
ICDAR03(1173-1177).
IEEE DOI
0311
BibRef
Wang, W.W.[Wen-Wei],
Brakensiek, A.,
Rigoll, G.,
Combining HMM-based two-pass classifiers for off-line word recognition,
ICPR02(III: 151-154).
IEEE DOI
0211
BibRef
And:
Combination of multiple classifiers for handwritten word recognition,
FHR02(117-122).
IEEE Top Reference.
0209
See also Evaluation of Confidence Measures for On-Line Handwriting Recognition.
BibRef
Wang, W.W.[Wen-Wei],
Brakensiek, A.,
Kosmala, A.,
Rigoll, G.,
Multi-branch and two-pass HMM modeling approaches for off-line cursive
handwriting recognition,
ICDAR01(231-235).
IEEE DOI
0109
BibRef
Schuessler, M.,
Automating performance optimization for script word recognition systems,
FHR02(139-144).
IEEE Top Reference.
0209
BibRef
Al-Ohali, Y.,
Cheriet, M.,
Suen, C.Y.,
Dynamic observations and dynamic state termination for off-line
handwritten word recognition using HMM,
FHR02(314-319).
IEEE Top Reference.
0209
BibRef
And:
Introducing termination probabilities to HMM,
ICPR02(III: 319-322).
IEEE DOI
0211
BibRef
Al-Ohali, Y.,
Cheriet, M.,
Suen, C.Y.,
Efficient estimation of pen trajectory from off-line handwritten words,
ICPR02(III: 323-326).
IEEE DOI
0211
BibRef
de Oliveira, J.J.,
de Carvalho, J.M.,
de A. Freitas, C.O.,
Sabourin, R.,
Feature sets evaluation for handwritten word recognition,
FHR02(446-451).
IEEE Top Reference.
0209
BibRef
de A. Freitas, C.O.,
Bortolozzi, F.,
Sabourin, R.,
Handwritten isolated word recognition: an approach based on Mutual
Information for feature set validation,
ICDAR01(665-669).
IEEE DOI
0109
BibRef
Tay, Y.H.[Yong Haur],
Lallican, P.M.,
Khalid, M.,
Knerr, S.,
Viard-Gaudin, C.,
An analytical handwritten word recognition system with word-level
discriminant training,
ICDAR01(726-730).
IEEE DOI
0109
BibRef
Lucas, S.M.,
Tams, A.C.,
Cho, S.J.,
Ryu, S.,
Downton, A.C.,
Robust word recognition for museum archive card indexing,
ICDAR01(144-148).
IEEE DOI
0109
BibRef
Koshinaka, T.,
Nishiwaki, D.,
Yamada, K.,
A stochastic model for handwritten word recognition using context
dependency between character patterns,
ICDAR01(154-158).
IEEE DOI
0109
BibRef
Kwok, T.Y.,
Perrone, M.P.,
Adaptive N-best-list handwritten word recognition,
ICDAR01(168-172).
IEEE DOI
0109
BibRef
Loo, P.K.[Poh Kok],
Tan, C.L.[Chew Lim],
Detection of word groups based on irregular pyramid,
ICDAR01(200-204).
IEEE DOI
0109
BibRef
Lu, Y.[Yue],
Tan, C.L.[Chew Lim],
Huang, W.H.[Wei-Hua],
Fan, L.Y.[Li-Ying],
An approach to word image matching based on weighted Hausdorff distance,
ICDAR01(921-925).
IEEE DOI
0109
BibRef
Bojovic, M.[Marija],
Savic, M.D.[Minan D.],
Training of Hidden Markov Models for Cursive Handwritten Word
Recognition,
ICPR00(Vol I: 973-976).
IEEE DOI
0009
BibRef
El-Nasan, A.,
Nagy, G.,
Ink-link,
ICPR00(Vol II: 573-576).
IEEE DOI
0009
Word matching using features of the curve
BibRef
Ding, Y.,
Kimura, F.,
Miyake, Y.,
Shridhar, M.,
Accuracy Improvement of Slant Estimation for Handwritten Words,
ICPR00(Vol IV: 527-530).
IEEE DOI
0009
BibRef
Kim, J.H.,
Kim, K.K.,
Nadal, C.P.,
Suen, C.Y.,
A Methodology of Combining HMM and MLP Classifiers for Cursive Word
Recognition,
ICPR00(Vol II: 319-322).
IEEE DOI
0009
BibRef
Augustin, E.,
Knerr, S.,
A Neural Network-Hidden Markov Model Hybrid for
Cursive Word Recognition,
ICPR98(Vol II: 1518-1520).
IEEE DOI
9808
BibRef
Manmatha, R.,
Han, C.F.[Cheng-Feng],
Riseman, E.M.,
Word Spotting: A New Approach to Indexing Handwriting,
CVPR96(631-637).
IEEE DOI
BibRef
9600
And:
Word Spotting,
UMassCS TR 95-105, December, 1995.
PS File. Template match on the extracted words.
BibRef
Manmatha, R.,
Han, C.F.[Cheng-Feng],
Riseman, E.M.,
Croft, W.B.,
Indexing Handwriting Using Word Matching,
UMassCS TR 95-89, December, 1995.
PS File.
BibRef
9512
Shridhar, M.,
Kartheepan, M.,
Houle, G.F.,
Kimura, F.,
Handwritten Word Recognition Using Lexicon Free and Lexicon Directed
Word Recognition Algorithms,
ICDAR97(861-865).
IEEE DOI
9708
BibRef
Hero, III, A.O.,
O'Neill, J.C.,
Williams, W.J.,
Moment Matrices for Recognition of Spatial Pattern in Noisy Images,
ICIP97(II: 378-381).
IEEE DOI
BibRef
9700
Earlier: A2, A1, A3:
Word spotting via spatial point processes,
ICIP96(II: 217-220).
IEEE DOI
9610
BibRef
Buse, R.,
Liu, Z.Q.[Zhi-Qiang],
Feature extraction and analysis of handwritten words in grey-scale
images using Gabor filters,
ICIP94(I: 164-168).
IEEE DOI
9411
BibRef
Le Cun, Y.L.[Yann L.],
Bengio, Y.[Yoshua],
Word-level training of a handwritten word recognizer based on
convolutional neural networks,
ICPR94(B:88-92).
IEEE DOI
9410
BibRef
Bengio, Y.[Yoshua],
Le Cun, Y.L.[Yann L.],
Word normalization for online handwritten word recognition,
ICPR94(B:409-413).
IEEE DOI
9410
BibRef
Plessis, B.,
Sicsu, A.,
Heute, L.,
Lecolinet, E.,
Debon, O., and
Moreau, J.V.,
A Multi-Classifier Strategy for the Recognition of
Handwritten Cursive Words,
ICDAR93(642-645).
BibRef
9300
Lecolinet, E.,
A New Model for Context Driven Word Recognition,
SDAIR93(135-xx).
BibRef
9300
Aoki, K.,
Yamaya, Y.,
Recognizer with Learning Mechanism for Hand-Written
Script English Words,
ICPR86(690-692).
BibRef
8600
Chapter on OCR, Document Analysis and Character Recognition Systems continues in
Cursive Script, Historical Documents, Text Line Segmentation, Script Line, Segmentation, Text Line Extraction .