19.3.4.1.1 Semi-Supervised Video Object Segmentation

Chapter Contents (Back)
Object Segmentation. Object Detection. Video Segmentation. Video Object Segmentation. Semi-Supervised Segmentation. Unsupervised Segmentation.
See also Semantic Segmentation, Label and Segment Together.
See also Video Instance Segmentation.

Koh, Y.J., Kim, C.S.,
Unsupervised Primary Object Discovery in Videos Based on Evolutionary Primary Object Modeling With Reliable Object Proposals,
IP(26), No. 11, November 2017, pp. 5203-5216.
IEEE DOI 1709
BibRef
And:
Primary Object Segmentation in Videos Based on Region Augmentation and Reduction,
CVPR17(7417-7425)
IEEE DOI 1711
Color, Motion segmentation, Object segmentation, Proposals, Target tracking, Video sequences, Videos. POD algorithm, evolutionary primary object modeling technique, foreground confidence, motion-based object proposals, BibRef

Koh, Y.J., Kim, C.S.,
CDTS: Collaborative Detection, Tracking, and Segmentation for Online Multiple Object Segmentation in Videos,
ICCV17(3621-3629)
IEEE DOI 1802
image segmentation, image sequences, object detection, object tracking, video signal processing, CDTS, Videos BibRef

Jang, W.D.[Won-Dong], Kim, C.S.[Chang-Su],
Semi-supervised Video Object Segmentation Using Multiple Random Walkers,
BMVC16(xx-yy).
HTML Version. 1805
BibRef

Koh, Y.J.[Yeong Jun], Lee, Y.Y.[Young-Yoon], Kim, C.S.[Chang-Su],
Sequential Clique Optimization for Video Object Segmentation,
ECCV18(XIV: 537-556).
Springer DOI 1810
BibRef

Koh, Y.J., Jang, W.D.[Won-Dong], Kim, C.S.[Chang-Su],
POD: Discovering Primary Objects in Videos Based on Evolutionary Refinement of Object Recurrence, Background, and Primary Object Models,
CVPR16(1068-1076)
IEEE DOI 1612
BibRef

Jang, W.D.[Won-Dong], Kim, C.S.[Chang-Su],
Online Video Object Segmentation via Convolutional Trident Network,
CVPR17(7474-7483)
IEEE DOI 1711
Decoding, Feature extraction, Image segmentation, Motion segmentation, Object segmentation, Streaming media, Target, tracking BibRef

Lee, S.H., Jang, W.D.[Won-Dong], Kim, C.S.[Chang-Su],
Contour-Constrained Superpixels for Image and Video Processing,
CVPR17(5863-5871)
IEEE DOI 1711
Cost function, Image color analysis, Image segmentation, Labeling, Linear programming, Pattern, matching BibRef

Jang, W.D.[Won-Dong], Lee, C., Kim, C.S.[Chang-Su],
Primary Object Segmentation in Videos via Alternate Convex Optimization of Foreground and Background Distributions,
CVPR16(696-704)
IEEE DOI 1612
BibRef

Jang, W.D.[Won-Dong], Kim, C.S.[Chang-Su],
Streaming Video Segmentation via Short-Term Hierarchical Segmentation and Frame-by-Frame Markov Random Field Optimization,
ECCV16(VI: 599-615).
Springer DOI 1611
BibRef

Liu, W.D.[Wei-De], Lin, G.S.[Guo-Sheng], Zhang, T.Y.[Tian-Yi], Liu, Z.C.[Zi-Chuan],
Guided Co-Segmentation Network for Fast Video Object Segmentation,
CirSysVideo(31), No. 4, April 2021, pp. 1607-1617.
IEEE DOI 2104
Feature extraction, Object segmentation, Task analysis, Motion segmentation, Pipelines, Decoding, Search problems, semi-supervised BibRef

Wang, M.G.[Min-Gui], Cui, D.[Di], Wu, L.F.[Li-Fang], Jian, M.[Meng], Chen, Y.K.[Yu-Kun], Wang, D.[Dong], Liu, X.[Xu],
Weakly-supervised video object localization with attentive spatio-temporal correlation,
PRL(145), 2021, pp. 232-239.
Elsevier DOI 2104
Video object localization, Spatio-temporal correlation, Weakly-supervised BibRef

Zhu, W.C.[Wen-Cheng], Li, J.H.[Jia-Hao], Lu, J.W.[Ji-Wen], Zhou, J.[Jie],
Separable Structure Modeling for Semi-Supervised Video Object Segmentation,
CirSysVideo(32), No. 1, January 2022, pp. 330-344.
IEEE DOI 2201
Object segmentation, Feature extraction, Target tracking, Data models, Object tracking, Video sequences, Task analysis, semi-supervised learning BibRef

Li, Y.X.[Yu-Xi], Xu, N.[Ning], Yang, W.J.[Wen-Jie], See, J.[John], Lin, W.Y.[Wei-Yao],
Exploring the Semi-Supervised Video Object Segmentation Problem from a Cyclic Perspective,
IJCV(130), No. 10, October 2022, pp. 2408-2424.
Springer DOI 2209
BibRef

Fan, J.Q.[Jia-Qing], Liu, B.[Bo], Zhang, K.[Kaihua], Liu, Q.S.[Qing-Shan],
Semi-Supervised Video Object Segmentation via Learning Object-Aware Global-Local Correspondence,
CirSysVideo(32), No. 12, December 2022, pp. 8153-8164.
IEEE DOI 2212
Adaptation models, Benchmark testing, Object segmentation, Deep learning, Semantics, Semi-supervised learning BibRef

Haller, E.[Emanuela], Florea, A.M.[Adina Magda], Leordeanu, M.[Marius],
Iterative Knowledge Exchange Between Deep Learning and Space-Time Spectral Clustering for Unsupervised Segmentation in Videos,
PAMI(44), No. 11, November 2022, pp. 7638-7656.
IEEE DOI 2210
Videos, Clustering algorithms, Task analysis, Object segmentation, Mathematical models, Deep learning, Convergence, deep learning BibRef

Burceanu, E.[Elena], Leordeanu, M.[Marius],
Learning a fast 3D spectral approach to object segmentation and tracking over space and time,
AI(340), 2025, pp. 104281.
Elsevier DOI 2502
Video object segmentation, Tracking, Spectral clustering, Power iteration, 3D convolution, Graph optimization BibRef

Marcu, A.[Alina], Licaret, V.[Vlad], Costea, D.[Dragos], Leordeanu, M.[Marius],
Semantics Through Time: Semi-supervised Segmentation of Aerial Videos with Iterative Label Propagation,
ACCV20(I:537-552).
Springer DOI 2103
BibRef

Lan, M.[Meng], Zhang, J.[Jing], Wang, Z.[Zengmao],
Coherence-aware context aggregator for fast video object segmentation,
PR(136), 2023, pp. 109214.
Elsevier DOI 2301
Video object segmentation, Semi-supervised learning, Spatio-temporal representation, Context BibRef

Sun, J.[Jiadai], Mao, Y.X.[Yu-Xin], Dai, Y.C.[Yu-Chao], Zhong, Y.[Yiran], Wang, J.Y.[Jian-Yuan],
MUNet: Motion uncertainty-aware semi-supervised video object segmentation,
PR(138), 2023, pp. 109399.
Elsevier DOI 2303
Video object segmentation, Uncertainty, Motion estimation, Self-supervised BibRef

Chen, Y.D.[Ya-Dang], Ji, C.J.[Chuan-Jun], Yang, Z.X.[Zhi-Xin], Wu, E.[Enhua],
Spatial constraint for efficient semi-supervised video object segmentation,
CVIU(237), 2023, pp. 103843.
Elsevier DOI 2311
Video object segmentation, Memory-based methods, Redundant information, Semantically similar objects BibRef

Chen, Y.D.[Ya-Dang], Zhang, D.W.[Ding-Wei], Zheng, Y.H.[Yu-Hui], Yang, Z.X.[Zhi-Xin], Wu, E.[Enhua], Zhao, H.X.[Hai-Xing],
Boosting Video Object Segmentation via Robust and Efficient Memory Network,
CirSysVideo(34), No. 5, May 2024, pp. 3340-3352.
IEEE DOI 2405
Memory management, Task analysis, Termination of employment, Redundancy, Feature extraction, Training, Video sequences, semi-supervised learning BibRef

Kim, J.[Jiyun], Kim, J.[JooHo], Hong, S.[Sungeun],
G-TRACE: Grouped temporal recalibration for video object segmentation,
IVC(147), 2024, pp. 105050.
Elsevier DOI 2406
Semi-supervised video object segmentation, Memory attention, Hierarchical grouping BibRef


Yang, D.[Dejie], Liu, Y.[Yang],
Active Object Detection with Knowledge Aggregation and Distillation from Large Models,
CVPR24(16624-16633)
IEEE DOI Code:
WWW Link. 2410
Visualization, Shape, Semantics, Decision making, Object detection, Detectors BibRef

Mahmud, T.[Tanvir], Liu, C.H.[Chun-Hao], Yaman, B.[Burhaneddin], Marculescu, D.[Diana],
SSVOD: Semi-Supervised Video Object Detection with Sparse Annotations,
WACV24(6759-6768)
IEEE DOI Code:
WWW Link. 2404
Uncertainty, Annotations, Dynamics, Noise, Estimation, Object detection, Detectors, Algorithms, Autonomous Driving BibRef

Park, H.[Hyojin], Yoo, J.[Jayeon], Jeong, S.[Seohyeong], Venkatesh, G.[Ganesh], Kwak, N.[Nojun],
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation,
CVPR21(8401-8410)
IEEE DOI 2111
Degradation, Codes, Computational modeling, Object segmentation, Logic gates BibRef

Zheng, X.Y.[Xiao-Yang], Tan, X.[Xin], Guo, J.M.[Jian-Ming], Ma, L.Z.[Li-Zhuang],
Learning Object Deformation and Motion Adaption for Semi-supervised Video Object Segmentation,
ICPR21(8655-8662)
IEEE DOI 2105
Training, Adaptation models, Shape, Annotations, Video sequences, Training data, Object segmentation, video object segmentation, semi-supervision BibRef

Li, W.J.[Wen-Jing], Zhang, X.[Xiang], Hu, Y.J.[Yu-Jie], Tang, Y.Q.[Ying-Qi],
Mask-ranking Network for Semi-supervised Video Object Segmentation,
ACCV20(I:620-636).
Springer DOI 2103
BibRef

Duarte, K., Rawat, Y., Shah, M.,
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing,
ICCV19(8479-8488)
IEEE DOI 2004
Code, Video Segmentation.
WWW Link. image motion analysis, image segmentation, image sequences, object tracking, video signal processing, CapsuleVOS, Computer architecture BibRef

Misra, I.[Ishan], Shrivastava, A.[Abhinav], Hebert, M.[Martial],
Watch and learn: Semi-supervised learning of object detectors from videos,
CVPR15(3593-3602)
IEEE DOI 1510
BibRef

Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Video Semantic Object Segmentation .


Last update:Mar 17, 2025 at 20:02:03