Csurka, G.[Gabriela],
Perronnin, F.[Florent],
An Efficient Approach to Semantic Segmentation,
IJCV(95), No. 2, November 2011, pp. 198-212.
WWW Link.
1109
BibRef
Earlier:
A Simple High Performance Approach to Semantic Segmentation,
BMVC08(xx-yy).
PDF File.
0809
Assign each pixel to a semantic class.
A local appearance model, a local consistency model and a global
consistency model.
See also Universal and Adapted Vocabularies for Generic Visual Categorization.
BibRef
Perronnin, F.[Florent],
Dance, C.R.[Christopher R.],
Fisher Kernels on Visual Vocabularies for Image Categorization,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Earlier:
Csurka, G.[Gabriela],
Bressan, M.[Marco],
Adapted Vocabularies for Generic Visual Categorization,
ECCV06(IV: 464-475).
Springer DOI
0608
BibRef
Csurka, G.[Gabriela],
Dance, C.R.[Christopher R.],
Perronnin, F.[Florent],
Willamowski, J.[Jutta],
Generic Visual Categorization Using Weak Geometry,
CLOR06(207-224).
Springer DOI
0711
BibRef
Earlier: A1, A4, A2, A3:
Incorporating Geometry Information with Weak Classifiers for Improved
Generic Visual Categorization,
CIAP05(612-620).
Springer DOI
0509
BibRef
Kemmler, M.[Michael],
Rodner, E.[Erik],
Wacker, E.S.[Esther-Sabrina],
Denzler, J.[Joachim],
One-Class Classification with Gaussian Processes,
PR(46), No. 12, 2013, pp. 3507-3518.
Elsevier DOI
1307
BibRef
Earlier: A1, A2, A4, Only:
ACCV10(II: 489-500).
Springer DOI
1011
BibRef
Earlier: A1, A2, A4, Only:
Global Context Extraction for Object Recognition Using a Combination of
Range and Visual Features,
Dyn3D09(96-109).
Springer DOI
0909
Combine range and visual, determine general class of scene.
One-class classification
BibRef
Bodesheim, P.[Paul],
Freytag, A.[Alexander],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Approximations of Gaussian Process Uncertainties for Visual Recognition
Problems,
SCIA13(182-194).
Springer DOI
1311
BibRef
Earlier: A1, A3, A2, A4:
Divergence-Based One-Class Classification Using Gaussian Processes,
BMVC12(50).
DOI Link
1301
See also Classification of Microorganisms via Raman Spectroscopy Using Gaussian Processes.
BibRef
Käding, C.[Christoph],
Freytag, A.[Alexander],
Rodner, E.[Erik],
Perino, A.[Andrea],
Denzler, J.[Joachim],
Large-Scale Active Learning with Approximations of Expected Model
Output Changes,
GCPR16(179-191).
Springer DOI
1611
BibRef
Freytag, A.[Alexander],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Selecting Influential Examples: Active Learning with Expected Model
Output Changes,
ECCV14(IV: 562-577).
Springer DOI
1408
BibRef
Rodner, E.[Erik],
Freytag, A.[Alexander],
Bodesheim, P.[Paul],
Fröhlich, B.[Björn],
Denzler, J.[Joachim],
Large-Scale Gaussian Process Inference with Generalized Histogram
Intersection Kernels for Visual Recognition Tasks,
IJCV(121), No. 2, January 2017, pp. 253-280.
Springer DOI
1702
BibRef
Freytag, A.[Alexander],
Rodner, E.[Erik],
Bodesheim, P.[Paul],
Denzler, J.[Joachim],
Labeling Examples That Matter:
Relevance-Based Active Learning with Gaussian Processes,
GCPR13(282-291).
Springer DOI
1311
BibRef
Earlier:
Rapid Uncertainty Computation with Gaussian Processes and Histogram
Intersection Kernels,
ACCV12(II:511-524).
Springer DOI
1304
BibRef
Freytag, A.[Alexander],
Frohlich, B.[Bjorn],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Efficient semantic segmentation with Gaussian processes and histogram
intersection kernels,
ICPR12(3313-3316).
WWW Link.
1302
BibRef
Rodner, E.[Erik],
Freytag, A.[Alexander],
Bodesheim, P.[Paul],
Denzler, J.[Joachim],
Large-Scale Gaussian Process Classification with Flexible Adaptive
Histogram Kernels,
ECCV12(IV: 85-98).
Springer DOI
1210
BibRef
Rodner, E.[Erik],
Hegazy, D.,
Denzler, J.[Joachim],
Multiple kernel Gaussian process classification for generic 3D object
recognition,
IVCNZ10(1-8).
IEEE DOI
1203
BibRef
Pei, D.L.[De-Li],
Li, Z.G.[Zhen-Guo],
Ji, R.R.[Rong-Rong],
Sun, F.C.[Fu-Chun],
Efficient semantic image segmentation with multi-class ranking prior,
CVIU(120), No. 1, 2014, pp. 81-90.
Elsevier DOI
1403
Computer vision
BibRef
Osuna-Enciso, V.[Valentín],
Bioinspired metaheuristics for image segmentation,
ELCVIA(13), No. 2, 2014, pp. xx-yy.
DOI Link
1407
Ph.D.. Thesis.
BibRef
Wang, L.[Le],
Hua, G.[Gang],
Xue, J.R.[Jian-Ru],
Gao, Z.N.[Zhan-Ning],
Zheng, N.N.[Nan-Ning],
Joint Segmentation and Recognition of Categorized Objects From Noisy
Web Image Collection,
IP(23), No. 9, September 2014, pp. 4070-4086.
IEEE DOI
1410
image retrieval
BibRef
Gould, S.[Stephen],
He, X.M.[Xu-Ming],
Scene Understanding by Labeling Pixels,
CACM(57), No. 11, November 2014, pp. 68-77.
DOI Link
1411
Pixels labeled with a scene's semantics and geometry let computers
describe what they see.
BibRef
Liu, Z.[Zhi],
Xu, S.Q.[Shu-Qiong],
Zhang, Y.[Yun],
Chen, C.L.P.,
A Multiple-Feature and Multiple-Kernel Scene Segmentation Algorithm
for Humanoid Robot,
Cyber(44), No. 11, November 2014, pp. 2232-2241.
IEEE DOI
1411
Gabor filters
BibRef
Kang, H.,
Hebert, M.,
Efros, A.A.,
Kanade, T.,
Data-Driven Objectness,
PAMI(37), No. 1, January 2015, pp. 189-195.
IEEE DOI
1412
Databases. Is it an object, not a specific object.
BibRef
Wang, L.L.[Li-Li],
Yung, N.H.C.[Nelson H.C.],
Hybrid graphical model for semantic image segmentation,
JVCIR(28), No. 1, 2015, pp. 83-96.
Elsevier DOI
1503
Semantic segmentation
BibRef
Wang, L.L.[Li-Li],
Yung, N.H.C.[Nelson H. C.],
Improved hierarchical conditional random field model for object
segmentation,
MVA(26), No. 7-8, November 2015, pp. 1027-1043.
WWW Link.
1511
BibRef
Xia, W.[Wei],
Domokos, C.[Csaba],
Cheong, L.F.[Loong-Fah],
Yan, S.C.[Shui-Cheng],
Background Context Augmented Hypothesis Graph for Object Segmentation,
CirSysVideo(25), No. 4, April 2015, pp. 582-594.
IEEE DOI
1504
Context
BibRef
Xia, W.[Wei],
Domokos, C.[Csaba],
Xiong, J.,
Cheong, L.F.[Loong-Fah],
Yan, S.C.[Shui-Cheng],
Segmentation Over Detection via Optimal Sparse Reconstructions,
CirSysVideo(25), No. 8, August 2015, pp. 1295-1308.
IEEE DOI
1508
Bismuth
BibRef
Xia, W.[Wei],
Domokos, C.[Csaba],
Dong, J.[Jian],
Cheong, L.F.[Loong-Fah],
Yan, S.C.[Shui-Cheng],
Semantic Segmentation without Annotating Segments,
ICCV13(2176-2183)
IEEE DOI
1403
Given object bounding box.
BibRef
Kumar, M.P.,
Turki, H.,
Preston, D.,
Koller, D.,
Parameter Estimation and Energy Minimization for Region-Based
Semantic Segmentation,
PAMI(37), No. 7, July 2015, pp. 1373-1386.
IEEE DOI
1506
Biological system modeling
BibRef
Korner, M.[Marco],
Krishna, M.V.[Mahesh V.],
Susse, H.[Herbert],
Ortmann, W.[Wolfang],
Denzler, J.[Joachim],
Regularized Geometric Hulls for Bio-medical Image Segmentation,
BMVA(2015), No. 4, 2015, pp. 1-12.
PDF File.
1509
BibRef
Mottaghi, R.[Roozbeh],
Fidler, S.[Sanja],
Yuille, A.L.,
Urtasun, R.[Raquel],
Parikh, D.[Devi],
Human-Machine CRFs for Identifying Bottlenecks in Scene Understanding,
PAMI(38), No. 1, January 2016, pp. 74-87.
IEEE DOI
1601
Analytical models
BibRef
Mottaghi, R.[Roozbeh],
Fidler, S.[Sanja],
Yao, J.[Jian],
Urtasun, R.[Raquel],
Parikh, D.[Devi],
Analyzing Semantic Segmentation Using Hybrid Human-Machine CRFs,
CVPR13(3143-3150)
IEEE DOI
1309
Explore effects by using humans in loop for parts of the problem.
BibRef
Ravě, D.,
Bober, M.,
Farinella, G.M.,
Guarnera, M.,
Battiato, S.,
Semantic segmentation of images exploiting DCT based features and
random forest,
PR(52), No. 1, 2016, pp. 260-273.
Elsevier DOI
1601
Semantic segmentation
BibRef
Tung, F.[Frederick],
Little, J.J.[James J.],
Scene parsing by nonparametric label transfer of content-adaptive
windows,
CVIU(143), No. 1, 2016, pp. 191-200.
Elsevier DOI
1601
BibRef
Earlier:
CollageParsing:
Nonparametric Scene Parsing by Adaptive Overlapping Windows,
ECCV14(VI: 511-525).
Springer DOI
1408
Image parsing
BibRef
Zarchi, M.S.,
Tan, R.T.,
van Gemeren, C.[Coert],
Monadjemi, A.,
Veltkamp, R.C.[Remco C.],
Understanding image concepts using ISTOP model,
PR(53), No. 1, 2016, pp. 174-183.
Elsevier DOI
1602
Visual term. Image parsing.
BibRef
Jiang, J.,
Song, X.,
An Optimized Higher Order CRF for Automated Labeling and Segmentation
of Video Objects,
CirSysVideo(26), No. 3, March 2016, pp. 506-516.
IEEE DOI
1603
Color
BibRef
Diebold, J.[Julia],
Nieuwenhuis, C.[Claudia],
Cremers, D.[Daniel],
Midrange Geometric Interactions for Semantic Segmentation,
IJCV(117), No. 3, May 2016, pp. 199-225.
Springer DOI
1605
See also Convex Optimization for Scene Understanding.
See also Proximity Priors for Variational Semantic Segmentation and Recognition.
BibRef
Nieuwenhuis, C.[Claudia],
Strekalovskiy, E.[Evgeny],
Cremers, D.[Daniel],
Proportion Priors for Image Sequence Segmentation,
ICCV13(2328-2335)
IEEE DOI
1403
BibRef
Earlier: A2, A1, A3:
Nonmetric Priors for Continuous Multilabel Optimization,
ECCV12(VII: 208-221).
Springer DOI
1210
BibRef
Hazirbas, C.[Caner],
Diebold, J.[Julia],
Cremers, D.[Daniel],
Optimizing the Relevance-Redundancy Tradeoff for Efficient Semantic
Segmentation,
SSVM15(243-255).
Springer DOI
1506
BibRef
Zand, M.,
Doraisamy, S.,
Halin, A.A.[A. Abdul],
Mustaffa, M.R.,
Ontology-Based Semantic Image Segmentation Using Mixture Models and
Multiple CRFs,
IP(25), No. 7, July 2016, pp. 3233-3248.
IEEE DOI
1606
image segmentation
BibRef
Pont-Tuset, J.[Jordi],
Arbeláez, P.[Pablo],
Barron, J.T.[Jon T.],
Marques, F.[Ferran],
Malik, J.[Jitendra],
Multiscale Combinatorial Grouping for Image Segmentation and Object
Proposal Generation,
PAMI(39), No. 1, January 2017, pp. 128-140.
IEEE DOI
1612
BibRef
Earlier: A2, A1, A3, A4, A5:
Multiscale Combinatorial Grouping,
CVPR14(328-335)
IEEE DOI
1409
Detectors.
Image Segmentation; Object Candidates
BibRef
Hu, R.,
Dollár, P.,
He, K.,
Darrell, T.J.,
Girshick, R.[Ross],
Learning to Segment Every Thing,
CVPR18(4233-4241)
IEEE DOI
1812
Training, Task analysis, Visualization, Transfer functions,
Predictive models, Image segmentation, Genomics
BibRef
Hariharan, B.[Bharath],
Arbeláez, P.[Pablo],
Girshick, R.[Ross],
Malik, J.[Jitendra],
Simultaneous Detection and Segmentation,
ECCV14(VII: 297-312).
Springer DOI
1408
See also Indoor Scene Understanding with RGB-D Images: Bottom-up Segmentation, Object Detection and Semantic Segmentation.
BibRef
Arbelaez, P.[Pablo],
Hariharan, B.[Bharath],
Gu, C.H.[Chun-Hui],
Gupta, S.[Saurabh],
Bourdev, L.[Lubomir],
Malik, J.[Jitendra],
Semantic segmentation using regions and parts,
CVPR12(3378-3385).
IEEE DOI
1208
BibRef
Li, Y.,
Guo, Y.,
Kao, Y.,
He, R.,
Image Piece Learning for Weakly Supervised Semantic Segmentation,
SMCS(47), No. 4, April 2017, pp. 648-659.
IEEE DOI
1704
Correlation
BibRef
Wang, L.T.[Lian-Tao],
Meng, D.,
Hu, X.L.[Xue-Lei],
Lu, J.F.[Jian-Feng],
Zhao, J.[Ji],
Instance Annotation via Optimal BoW for Weakly Supervised Object
Localization,
Cyber(47), No. 5, May 2017, pp. 1313-1324.
IEEE DOI
1704
BibRef
Earlier: A1, A5, A3, A4, Only:
Weakly supervised object localization via maximal entropy randomwalk,
ICIP14(1614-1617)
IEEE DOI
1502
Birds. Entropy
BibRef
Czúni, L.[László],
Rashad, M.[Metwally],
The use of IMUs for video object retrieval in lightweight devices,
JVCIR(48), No. 1, 2017, pp. 30-42.
Elsevier DOI
1708
BibRef
Earlier:
View centered video-based object recognition for lightweight devices,
WSSIP16(1-4)
IEEE DOI
1608
Video object retrieval.
image recognition
BibRef
Czuni, L.[Laszlo],
Kiss, P.J.[Peter Jozsef],
Lipovits, A.[Agnes],
Gal, M.[Monika],
Lightweight mobile object recognition,
ICIP14(3426-3428)
IEEE DOI
1502
Cameras
CEDD (Color and Edge Directivity Descriptor).
BibRef
Marmanis, D.,
Schindler, K.,
Wegner, J.D.,
Galliani, S.,
Datcu, M.,
Stilla, U.,
Classification with an edge:
Improving semantic image segmentation with boundary detection,
PandRS(135), No. Supplement C, 2018, pp. 158-172.
Elsevier DOI
1712
BibRef
Zhang, Y.[Yu],
Chen, X.W.[Xiao-Wu],
Li, J.[Jia],
Wang, C.[Chen],
Xia, C.Q.[Chang-Qun],
Li, J.[Jun],
Semantic Object Segmentation in Tagged Videos via Detection,
PAMI(40), No. 7, July 2018, pp. 1741-1754.
IEEE DOI
1806
Image segmentation, Motion segmentation, Object segmentation,
Proposals, Semantics, Spatiotemporal phenomena, Videos,
weakly supervised segmentation
BibRef
Zhang, Y.[Yu],
Chen, X.W.[Xiao-Wu],
Li, J.[Jia],
Teng, W.[Wei],
Song, H.[Haokun],
Exploring Weakly Labeled Images for Video Object Segmentation With
Submodular Proposal Selection,
IP(27), No. 9, September 2018, pp. 4245-4259.
IEEE DOI
1807
computer vision, data mining, image matching, image segmentation,
learning (artificial intelligence), video signal processing,
weakly labeled video
BibRef
Zhang, Y.[Yu],
Chen, X.W.[Xiao-Wu],
Li, J.[Jia],
Wang, C.[Chen],
Xia, C.Q.[Chang-Qun],
Semantic object segmentation via detection in weakly labeled video,
CVPR15(3641-3649)
IEEE DOI
1510
BibRef
Zhang, J.[Jing],
Mu, Y.[Yakun],
Feng, S.W.[Sheng-Wei],
Li, K.H.[Ke-Huang],
Yuan, Y.[Yubo],
Lee, C.H.[Chin-Hui],
Image region annotation based on segmentation and semantic correlation
analysis,
IET-IPR(12), No. 8, August 2018, pp. 1331-1337.
DOI Link
1808
BibRef
Shi, H.,
Li, H.,
Meng, F.,
Wu, Q.,
Xu, L.,
Ngan, K.N.,
Hierarchical Parsing Net:
Semantic Scene Parsing From Global Scene to Objects,
MultMed(20), No. 10, October 2018, pp. 2670-2682.
IEEE DOI
1810
backpropagation, feature extraction, image classification,
image coding, local appearance features, contextual feature,
context learning
BibRef
Noormohamadi, N.[Neda],
Adibi, P.[Peyman],
Ehsani, S.M.S.[Sayyed Mohammad Saeed],
Semantic image segmentation using an improved hierarchical graphical
model,
IET-IPR(12), No. 11, November 2018, pp. 1943-1950.
DOI Link
1810
BibRef
Ates, H.F.[Hasan F.],
Sunetci, S.[Sercan],
Multi-hypothesis contextual modeling for semantic segmentation,
PRL(117), 2019, pp. 104-110.
Elsevier DOI
1901
Image parsing, Segmentation, Superpixel, MRF
BibRef
Zhou, H.[Hao],
Han, A.[Anqi],
Yang, H.D.[Hao-Dong],
Zhang, J.[Jun],
Edge gradient feature and long distance dependency for image semantic
segmentation,
IET-CV(13), No. 1, February 2019, pp. 53-60.
DOI Link
1902
BibRef
Joy, T.[Thomas],
Desmaison, A.[Alban],
Ajanthan, T.[Thalaiyasingam],
Bunel, R.[Rudy],
Salzmann, M.[Mathieu],
Kohli, P.[Pushmeet],
Torr, P.H.S.[Philip H. S.],
Kumar, M.P.[M. Pawan],
Efficient Relaxations for Dense CRFs with Sparse Higher-Order
Potentials,
SIIMS(12), No. 1, 2019, pp. 287-318.
DOI Link
1904
Segmentation and stereo matching.
BibRef
Blott, G.[Gregor],
Takami, M.[Masato],
Heipke, C.[Christian],
Semantic Segmentation of Fisheye Images,
CVRoads18(I:181-196).
Springer DOI
1905
BibRef
Li, X.,
Ma, H.,
Luo, X.,
Weaklier Supervised Semantic Segmentation With Only One Image Level
Annotation per Category,
IP(29), No. 1, 2020, pp. 128-141.
IEEE DOI
1910
image recognition, image segmentation, object recognition,
supervised learning, weaklier supervised semantic segmentation,
dual-branch iterative learning
BibRef
Song, Y.,
Ou, Z.,
Semi-Supervised Seq2seq Joint-Stochastic-Approximation Autoencoders
With Applications to Semantic Parsing,
SPLetters(27), 2020, pp. 31-35.
IEEE DOI
2001
Semi-supervised learning, seq2seq, semantic parsing,
joint stochastic approximation, variational auto-encoder
BibRef
Shimoda, W.[Wataru],
Yanai, K.[Keiji],
Weakly supervised semantic segmentation using distinct class specific
saliency maps,
CVIU(191), 2020, pp. 102712.
Elsevier DOI
2002
BibRef
Earlier:
Distinct Class-Specific Saliency Maps for Weakly Supervised Semantic
Segmentation,
ECCV16(IV: 218-234).
Springer DOI
1611
Semantic segmentation, Weakly supervised learning,
Weakly supervised segmentation, Visualization, Deep learning
BibRef
Shimoda, W.[Wataru],
Yanai, K.[Keiji],
Self-Supervised Difference Detection for Weakly-Supervised Semantic
Segmentation,
ICCV19(5207-5216)
IEEE DOI
2004
estimation theory, image denoising, image segmentation,
iterative methods, learning (artificial intelligence),
Predictive models
BibRef
Toldo, M.[Marco],
Michieli, U.[Umberto],
Agresti, G.[Gianluca],
Zanuttigh, P.[Pietro],
Unsupervised domain adaptation for mobile semantic segmentation based
on cycle consistency and feature alignment,
IVC(95), 2020, pp. 103889.
Elsevier DOI
2004
Unsupervised domain adaptation, Semantic segmentation,
Adversarial learning, Transfer learning, Image-to-image translation
BibRef
Yang, Z.E.[Zheng-Eng],
Yu, H.S.[Hong-Shan],
Feng, M.T.[Ming-Tao],
Sun, W.[Wei],
Lin, X.F.[Xue-Fei],
Sun, M.G.[Min-Gui],
Mao, Z.H.[Zhi-Hong],
Mian, A.[Ajmal],
Small Object Augmentation of Urban Scenes for Real-Time Semantic
Segmentation,
IP(29), 2020, pp. 5175-5190.
IEEE DOI
2004
For driving application.
Convolution, Image segmentation, Semantics, Real-time systems,
Standards, Training, Computational modeling, Semantic segmentation,
synthetic dataset
BibRef
Valada, A.[Abhinav],
Mohan, R.[Rohit],
Burgard, W.[Wolfram],
Self-Supervised Model Adaptation for Multimodal Semantic Segmentation,
IJCV(128), No. 5, May 2020, pp. 1239-1285.
Springer DOI
2005
BibRef
Wang, X.[Xiang],
Liu, S.F.[Si-Fei],
Ma, H.M.[Hui-Min],
Yang, M.H.[Ming-Hsuan],
Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning,
IJCV(128), No. 6, June 2020, pp. 1736-1749.
Springer DOI
2006
BibRef
Li, R.[Rui],
Cao, W.M.[Wen-Ming],
Jiao, Q.[Qianfen],
Wu, S.[Si],
Wong, H.S.[Hau-San],
Simplified unsupervised image translation for semantic segmentation
adaptation,
PR(105), 2020, pp. 107343.
Elsevier DOI
2006
Domain adaptation, Image segmentation, Image translation
BibRef
El Houfi, S.[Safae],
Majda, A.[Aicha],
Efficient use of recent progresses for Real-time Semantic segmentation,
MVA(31), No. 6, August 2020, pp. Article45.
WWW Link.
2008
BibRef
Chen, Y.[Yifu],
Dapogny, A.[Arnaud],
Cord, M.[Matthieu],
SEMEDA: Enhancing segmentation precision with semantic edge aware
loss,
PR(108), 2020, pp. 107557.
Elsevier DOI
2008
Semantic segmentation, Loss function, Computer vision
BibRef
Vu, T.,
Jain, H.,
Bucher, M.,
Cord, M.,
Pérez, P.P.,
DADA: Depth-Aware Domain Adaptation in Semantic Segmentation,
ICCV19(7363-7372)
IEEE DOI
2004
data models, image segmentation, DADA,
depth-aware domain adaptation, unsupervised domain adaptation,
Benchmark testing
BibRef
Seed picking crossover optimisation algorithm for semantic segmentation
from images,
IET-IPR(14), No. 11, September 2020, pp. 2503-2511.
DOI Link
2009
No Authors Listed
BibRef
Oric, M.[Marin],
egvic, S.[Sinia],
Efficient semantic segmentation with pyramidal fusion,
PR(110), 2021, pp. 107611.
Elsevier DOI
2011
Semantic segmentation, Real-time inference,
Shared resolution pyramid, Computer vision, Deep learning
BibRef
Lian, X.[Xuhang],
Pang, Y.W.[Yan-Wei],
Han, J.G.[Jun-Gong],
Pan, J.[Jing],
Cascaded hierarchical atrous spatial pyramid pooling module for
semantic segmentation,
PR(110), 2021, pp. 107622.
Elsevier DOI
2011
Semantic segmentation, Atrous convolution,
Atrous spatial pyramid pooling(ASPP), Cascaded module
BibRef
Pemasiri, A.[Akila],
Nguyen, K.[Kien],
Sridharan, S.[Sridha],
Fookes, C.[Clinton],
Multi-modal semantic image segmentation,
CVIU(202), 2021, pp. 103085.
Elsevier DOI
2012
Segmentation, X-ray, Mask R-CNN, Neural networks
BibRef
Choi, H.[Hyunguk],
Ahn, H.[Hoyeon],
Kim, J.[Joonmo],
Jeon, M.[Moongu],
ADFNet:
Accumulated decoder features for real-time semantic segmentation,
IET-CV(14), No. 8, December 2020, pp. 555-563.
DOI Link
2012
BibRef
Zhang, Y.[Yifei],
Sidibé, D.[Désiré],
Morel, O.[Olivier],
Mériaudeau, F.[Fabrice],
Deep multimodal fusion for semantic image segmentation: A survey,
IVC(105), 2021, pp. 104042.
Elsevier DOI
2101
Survey, Semantic Segmentation. Image fusion, Multi-modal, Deep learning, Semantic segmentation
BibRef
Tasar, O.,
Giros, A.,
Tarabalka, Y.,
Alliez, P.,
Clerc, S.,
DAugNet: Unsupervised, Multisource, Multitarget, and Life-Long Domain
Adaptation for Semantic Segmentation of Satellite Images,
GeoRS(59), No. 2, February 2021, pp. 1067-1081.
IEEE DOI
2101
Satellites, Training, Semantics, Image segmentation,
Adaptation models, Remote sensing, Standardization,
semantic segmentation
BibRef
Zhou, W.,
Wang, Y.,
Chu, J.,
Yang, J.,
Bai, X.,
Xu, Y.,
Affinity Space Adaptation for Semantic Segmentation Across Domains,
IP(30), 2021, pp. 2549-2561.
IEEE DOI
2102
Semantics, Image segmentation, Cleaning, Annotations,
Adaptation models, Data models, Training,
affinity relationship
BibRef
Chan, L.[Lyndon],
Hosseini, M.S.[Mahdi S.],
Plataniotis, K.N.[Konstantinos N.],
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in
Different Image Domains,
IJCV(129), No. 2, February 2021, pp. 361-384.
Springer DOI
2102
BibRef
Zhang, T.Y.[Tian-Yi],
Lin, G.S.[Guo-Sheng],
Liu, W.D.[Wei-De],
Cai, J.F.[Jian-Fei],
Kot, A.[Alex],
Splitting Vs. Merging: Mining Object Regions with Discrepancy and
Intersection Loss for Weakly Supervised Semantic Segmentation,
ECCV20(XXII:663-679).
Springer DOI
2011
BibRef
Fan, J.S.[Jun-Song],
Zhang, Z.X.[Zhao-Xiang],
Tan, T.N.[Tie-Niu],
Employing Multi-estimations for Weakly-supervised Semantic Segmentation,
ECCV20(XVII:332-348).
Springer DOI
2011
BibRef
Chen, W.L.[Wan-Li],
Zhu, X.G.[Xin-Ge],
Sun, R.[Ruoqi],
He, J.[Junjun],
Li, R.[Ruiyu],
Shen, X.Y.[Xiao-Yong],
Yu, B.[Bei],
Tensor Low-rank Reconstruction for Semantic Segmentation,
ECCV20(XVII:52-69).
Springer DOI
2011
BibRef
Hu, H.Z.[Han-Zhe],
Ji, D.[Deyi],
Gan, W.H.[Wei-Hao],
Bai, S.[Shuai],
Wu, W.[Wei],
Yan, J.J.[Jun-Jie],
Class-wise Dynamic Graph Convolution for Semantic Segmentation,
ECCV20(XVII:1-17).
Springer DOI
2011
BibRef
Li, X.T.[Xiang-Tai],
Li, X.[Xia],
Zhang, L.[Li],
Cheng, G.L.[Guang-Liang],
Shi, J.P.[Jian-Ping],
Lin, Z.C.[Zhou-Chen],
Tan, S.H.[Shao-Hua],
Tong, Y.H.[Yun-Hai],
Improving Semantic Segmentation via Decoupled Body and Edge Supervision,
ECCV20(XVII:435-452).
Springer DOI
2011
BibRef
Yin, M.H.[Ming-Hao],
Yao, Z.L.[Zhu-Liang],
Cao, Y.[Yue],
Li, X.[Xiu],
Zhang, Z.[Zheng],
Lin, S.[Stephen],
Hu, H.[Han],
Disentangled Non-local Neural Networks,
ECCV20(XV:191-207).
Springer DOI
2011
Code, Segmentation.
WWW Link.
WWW Link.
BibRef
Huang, J.X.[Jia-Xing],
Lu, S.[Shijian],
Guan, D.[Dayan],
Zhang, X.B.[Xiao-Bing],
Contextual-relation Consistent Domain Adaptation for Semantic
Segmentation,
ECCV20(XV:705-722).
Springer DOI
2011
BibRef
Subhani, M.N.[M. Naseer],
Ali, M.[Mohsen],
Learning from Scale-invariant Examples for Domain Adaptation in
Semantic Segmentation,
ECCV20(XXII:290-306).
Springer DOI
2011
BibRef
Yang, J.[Jinyu],
An, W.Z.[Wei-Zhi],
Wang, S.[Sheng],
Zhu, X.L.[Xin-Liang],
Yan, C.C.[Chao-Chao],
Huang, J.Z.[Jun-Zhou],
Label-driven Reconstruction for Domain Adaptation in Semantic
Segmentation,
ECCV20(XXVII:480-498).
Springer DOI
2011
BibRef
Lehman, C.,
Temel, D.,
Alregib, G.,
On the Structures of Representation for the Robustness of Semantic
Segmentation to Input Corruption,
ICIP20(3239-3243)
IEEE DOI
2011
Robustness, Semantics, Entropy, Training, Estimation, Task analysis,
Machine learning, Robustness in Machine Learning,
Sigmoid
BibRef
Zhang, B.,
Zhao, S.,
Zhang, R.,
Towards Adaptive Semantic Segmentation By Progressive Feature
Refinement,
ICIP20(2221-2225)
IEEE DOI
2011
Image segmentation, Semantics, Task analysis, Adaptation models,
Machine learning, Computational modeling, Feature extraction,
deep learning
BibRef
Li, S.,
Zhou, Q.,
Liu, J.,
Wang, J.,
Fan, Y.,
Wu, X.,
Latecki, L.J.,
DCM: A Dense-Attention Context Module For Semantic Segmentation,
ICIP20(1431-1435)
IEEE DOI
2011
Convolution, Feature extraction, Semantics, Data mining,
Image segmentation, Kernel, Decoding, Semantic segmentation, Attention
BibRef
Chen, L.[Liyi],
Wu, W.W.[Wei-Wei],
Fu, C.C.[Chen-Chen],
Han, X.[Xiao],
Zhang, Y.T.[Yun-Tao],
Weakly Supervised Semantic Segmentation with Boundary Exploration,
ECCV20(XXVI:347-362).
Springer DOI
2011
BibRef
Liu, J.B.[Jian-Bo],
He, J.J.[Jun-Jun],
Zhang, J.W.[Jia-Wei],
Ren, J.S.[Jimmy S.],
Li, H.S.[Hong-Sheng],
Efficientfcn: Holistically-guided Decoding for Semantic Segmentation,
ECCV20(XXVI:1-17).
Springer DOI
2011
BibRef
Wang, H.R.[Hao-Ran],
Shen, T.[Tong],
Zhang, W.[Wei],
Duan, L.Y.[Ling-Yu],
Mei, T.[Tao],
Classes Matter: A Fine-grained Adversarial Approach to Cross-domain
Semantic Segmentation,
ECCV20(XIV:642-659).
Springer DOI
2011
BibRef
Li, G.R.[Guang-Rui],
Kang, G.L.[Guo-Liang],
Liu, W.[Wu],
Wei, Y.C.[Yun-Chao],
Yang, Y.[Yi],
Content-consistent Matching for Domain Adaptive Semantic Segmentation,
ECCV20(XIV:440-456).
Springer DOI
2011
BibRef
Wang, Y.K.[Yu-Kang],
Zhou, W.[Wei],
Jiang, T.[Tao],
Bai, X.[Xiang],
Xu, Y.C.[Yong-Chao],
Intra-class Feature Variation Distillation for Semantic Segmentation,
ECCV20(VII:346-362).
Springer DOI
2011
BibRef
Michieli, U.[Umberto],
Borsato, E.[Edoardo],
Rossi, L.[Luca],
Zanuttigh, P.[Pietro],
Gmnet: Graph Matching Network for Large Scale Part Semantic
Segmentation in the Wild,
ECCV20(VIII:397-414).
Springer DOI
2011
BibRef
Yang, B.[Boyu],
Liu, C.[Chang],
Li, B.[Bohao],
Jiao, J.B.[Jian-Bin],
Ye, Q.X.[Qi-Xiang],
Prototype Mixture Models for Few-shot Semantic Segmentation,
ECCV20(VIII:763-778).
Springer DOI
2011
BibRef
Yuan, Y.H.[Yu-Hui],
Chen, X.L.[Xi-Lin],
Wang, J.D.[Jing-Dong],
Object-contextual Representations for Semantic Segmentation,
ECCV20(VI:173-190).
Springer DOI
2011
BibRef
Kamann, C.[Christoph],
Rother, C.[Carsten],
Increasing the Robustness of Semantic Segmentation Models with
Painting-by-numbers,
ECCV20(X:369-387).
Springer DOI
2011
BibRef
Liu, Y.F.[Yong-Fei],
Zhang, X.Y.[Xiang-Yi],
Zhang, S.Y.[Song-Yang],
He, X.M.[Xu-Ming],
Part-aware Prototype Network for Few-Shot Semantic Segmentation,
ECCV20(IX:142-158).
Springer DOI
2011
BibRef
Paul, S.[Sujoy],
Tsai, Y.H.[Yi-Hsuan],
Schulter, S.[Samuel],
Roy-Chowdhury, A.K.[Amit K.],
Chandraker, M.[Manmohan],
Domain Adaptive Semantic Segmentation Using Weak Labels,
ECCV20(IX:571-587).
Springer DOI
2011
BibRef
He, Y.[Yang],
Rahimian, S.[Shadi],
Schiele, B.[Bernt],
Fritz, M.[Mario],
Segmentations-leak: Membership Inference Attacks and Defenses in
Semantic Image Segmentation,
ECCV20(XXIII:519-535).
Springer DOI
2011
BibRef
Xia, Y.D.[Ying-Da],
Zhang, Y.[Yi],
Liu, F.Z.[Feng-Ze],
Shen, W.[Wei],
Yuille, A.L.[Alan L.],
Synthesize Then Compare: Detecting Failures and Anomalies for Semantic
Segmentation,
ECCV20(I:145-161).
Springer DOI
2011
BibRef
Sun, G.L.[Guo-Lei],
Wang, W.G.[Wen-Guan],
Dai, J.F.[Ji-Feng],
Van Gool, L.J.[Luc J.],
Mining Cross-image Semantics for Weakly Supervised Semantic
Segmentation,
ECCV20(II:347-365).
Springer DOI
2011
BibRef
Luo, W.F.[Wen-Feng],
Yang, M.[Meng],
Semi-supervised Semantic Segmentation via Strong-weak Dual-branch
Network,
ECCV20(V:784-800).
Springer DOI
2011
BibRef
Cheng, H.K.[Ho Kei],
Chung, J.H.[Ji-Hoon],
Tai, Y.W.[Yu-Wing],
Tang, C.K.[Chi-Keung],
CascadePSP: Toward Class-Agnostic and Very High-Resolution
Segmentation via Global and Local Refinement,
CVPR20(8887-8896)
IEEE DOI
2008
Image segmentation, Image resolution, Semantics,
Computational modeling, Task analysis, Adaptation models, Feature extraction
BibRef
Oberdiek, P.,
Rottmann, M.,
Fink, G.A.,
Detection and Retrieval of Out-of-Distribution Objects in Semantic
Segmentation,
SAIAD20(1331-1340)
IEEE DOI
2008
Image segmentation, Feature extraction, Semantics, Visualization,
Agriculture, Machine learning, Image retrieval
BibRef
Zhen, M.,
Wang, J.,
Zhou, L.,
Li, S.,
Shen, T.,
Shang, J.,
Fang, T.,
Quan, L.,
Joint Semantic Segmentation and Boundary Detection Using Iterative
Pyramid Contexts,
CVPR20(13663-13672)
IEEE DOI
2008
Computer vision, Pattern recognition
BibRef
Kamann, C.,
Rother, C.,
Benchmarking the Robustness of Semantic Segmentation Models,
CVPR20(8825-8835)
IEEE DOI
2008
Robustness, Semantics, Computer architecture, Image segmentation,
Feature extraction, Benchmark testing, Cameras
BibRef
Chang, Y.,
Wang, Q.,
Hung, W.,
Piramuthu, R.,
Tsai, Y.,
Yang, M.,
Weakly-Supervised Semantic Segmentation via Sub-Category Exploration,
CVPR20(8988-8997)
IEEE DOI
2008
Task analysis, Feature extraction, Semantics, Training,
Image segmentation, Computational modeling, Computer vision
BibRef
Siddiqui, Y.,
Valentin, J.,
Nießner, M.,
ViewAL: Active Learning With Viewpoint Entropy for Semantic
Segmentation,
CVPR20(9430-9440)
IEEE DOI
2008
Entropy, Uncertainty, Semantics, Labeling, Image segmentation,
Task analysis, Data models
BibRef
Zhang, Y.,
Qiu, Z.,
Yao, T.,
Ngo, C.,
Liu, D.,
Mei, T.,
Transferring and Regularizing Prediction for Semantic Segmentation,
CVPR20(9618-9627)
IEEE DOI
2008
Semantics, Image segmentation, Roads, Buildings, Visualization,
Labeling, Adaptation models
BibRef
Wang, Y.,
Zhang, J.,
Kan, M.,
Shan, S.,
Chen, X.,
Self-Supervised Equivariant Attention Mechanism for Weakly Supervised
Semantic Segmentation,
CVPR20(12272-12281)
IEEE DOI
2008
Image segmentation, Semantics, Phase change materials,
Task analysis, Correlation, Aggregates, Supervised learning
BibRef
Liu, X.,
Ji, W.,
You, J.,
El Fakhri, G.,
Woo, J.,
Severity-Aware Semantic Segmentation With Reinforced Wasserstein
Training,
CVPR20(12563-12572)
IEEE DOI
2008
Semantics, Autonomous vehicles, Measurement, Automobiles, Histograms,
Training, Roads
BibRef
Jaritz, M.,
Vu, T.,
de Charette, R.,
Wirbel, E.,
Pérez, P.,
xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3D Semantic
Segmentation,
CVPR20(12602-12611)
IEEE DOI
2008
Semantics,
Image segmentation, Task analysis, Laser radar, Training
BibRef
Araslanov, N.,
Roth, S.,
Single-Stage Semantic Segmentation From Image Labels,
CVPR20(4252-4261)
IEEE DOI
2008
Image segmentation, Training, Semantics, Task analysis, Logic gates,
Stochastic processes, Decoding
BibRef
Fan, J.,
Zhang, Z.,
Song, C.,
Tan, T.,
Learning Integral Objects With Intra-Class Discriminator for
Weakly-Supervised Semantic Segmentation,
CVPR20(4282-4291)
IEEE DOI
2008
Image segmentation, Semantics, Training, Task analysis, Manifolds,
Estimation, Benchmark testing
BibRef
Pan, F.,
Shin, I.,
Rameau, F.,
Lee, S.,
Kweon, I.S.,
Unsupervised Intra-Domain Adaptation for Semantic Segmentation
Through Self-Supervision,
CVPR20(3763-3772)
IEEE DOI
2008
Adaptation models, Entropy, Image segmentation, Semantics,
Generators, Data models, Task analysis
BibRef
Wang, L.,
Li, D.,
Zhu, Y.,
Tian, L.,
Shan, Y.,
Dual Super-Resolution Learning for Semantic Segmentation,
CVPR20(3773-3782)
IEEE DOI
2008
Semantics, Image segmentation, Spatial resolution, Task analysis,
Pose estimation, Convolution
BibRef
Li, Z.,
Bao, W.,
Zheng, J.,
Xu, C.,
Deep Grouping Model for Unified Perceptual Parsing,
CVPR20(4052-4062)
IEEE DOI
2008
Semantics, Task analysis, Computational modeling,
Image segmentation, Adaptation models, Context modeling, Message passing
BibRef
Yang, Y.,
Soatto, S.,
FDA: Fourier Domain Adaptation for Semantic Segmentation,
CVPR20(4084-4094)
IEEE DOI
2008
Semantics, Image segmentation, Training, Entropy, Adaptation models,
Task analysis, Frequency-domain analysis
BibRef
Lin, P.,
Sun, P.,
Cheng, G.,
Xie, S.,
Li, X.,
Shi, J.,
Graph-Guided Architecture Search for Real-Time Semantic Segmentation,
CVPR20(4202-4211)
IEEE DOI
2008
Computer architecture, Microprocessors, Semantics, Convolution,
Image segmentation, Real-time systems, Random variables
BibRef
Zareian, A.,
Karaman, S.,
Chang, S.,
Weakly Supervised Visual Semantic Parsing,
CVPR20(3733-3742)
IEEE DOI
2008
Semantics, Visualization, Proposals, Image edge detection,
Message passing, Task analysis, Computer vision
BibRef
Wang, Z.,
Wei, Y.,
Feris, R.,
Xiong, J.,
Hwu, W.,
Huang, T.S.,
Shi, H.,
Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation,
VL3W20(4043-4047)
IEEE DOI
2008
Semantics, Task analysis, Adaptation models, Image segmentation,
Training, Feature extraction, Urban areas
BibRef
Rai, S.N.,
Balasubramanian, V.N.,
Subramanian, A.,
Jawahar, C.V.,
Munich to Dubai: How far is it for Semantic Segmentation?,
WACV20(2988-2997)
IEEE DOI
2006
Image restoration, Image segmentation, Atmospheric modeling,
Meteorology, Semantics, Adaptation models, Training
BibRef
Stekovic, S.,
Fraundorfer, F.,
Lepetit, V.,
Casting Geometric Constraints in Semantic Segmentation as
Semi-Supervised Learning,
WACV20(1843-1852)
IEEE DOI
2006
Image segmentation, Semantics, Predictive models,
Semisupervised learning, Task analysis, Training,
BibRef
Sakaridis, C.[Christos],
Dai, D.X.[Deng-Xin],
Van Gool, L.J.[Luc J.],
Guided Curriculum Model Adaptation and Uncertainty-Aware Evaluation
for Semantic Nighttime Image Segmentation,
ICCV19(7373-7382)
IEEE DOI
2004
image annotation, image segmentation,
learning (artificial intelligence), Uncertainty
BibRef
Lin, H.[Hubert],
Upchurch, P.[Paul],
Bala, K.[Kavita],
Block Annotation:
Better Image Annotation With Sub-Image Decomposition,
ICCV19(5289-5299)
IEEE DOI
2004
Generate the data needed to do semantic segmentation.
image retrieval, image segmentation, image texture,
block annotation, high-quality pixel-level annotations, Quality control
BibRef
Yu, Z.,
Zhuge, Y.,
Lu, H.,
Zhang, L.,
Joint Learning of Saliency Detection and Weakly Supervised Semantic
Segmentation,
ICCV19(7222-7232)
IEEE DOI
2004
image classification, image coding, image recognition,
image segmentation, object detection, supervised learning, WSSS,
Computational modeling
BibRef
Kalluri, T.,
Varma, G.,
Chandraker, M.,
Jawahar, C.V.,
Universal Semi-Supervised Semantic Segmentation,
ICCV19(5258-5269)
IEEE DOI
2004
entropy, image segmentation, unsupervised learning,
cross-domain unsupervised losses, segmentation datasets, Roads
BibRef
Cheng, B.,
Chen, L.,
Wei, Y.,
Zhu, Y.,
Huang, Z.,
Xiong, J.,
Huang, T.,
Hwu, W.,
Shi, H.,
Uiuc, U.,
SPGNet: Semantic Prediction Guidance for Scene Parsing,
ICCV19(5217-5227)
IEEE DOI
2004
feature extraction, image coding, image segmentation,
learning (artificial intelligence), pose estimation, Feature extraction
BibRef
He, J.,
Deng, Z.,
Qiao, Y.,
Dynamic Multi-Scale Filters for Semantic Segmentation,
ICCV19(3561-3571)
IEEE DOI
2004
convolutional neural nets, image filtering, image representation,
image segmentation, Dynamic multiscale filters, Computational efficiency
BibRef
Pang, Y.,
Li, Y.,
Shen, J.,
Shao, L.,
Towards Bridging Semantic Gap to Improve Semantic Segmentation,
ICCV19(4229-4238)
IEEE DOI
2004
feature extraction, image enhancement, image fusion,
image representation, image segmentation, object detection, Convolution
BibRef
Zhang, C.,
Liwicki, S.,
Smith, W.,
Cipolla, R.,
Orientation-Aware Semantic Segmentation on Icosahedron Spheres,
ICCV19(3532-3540)
IEEE DOI
2004
convolutional neural nets, feature extraction,
image classification, image resolution, image segmentation, Task analysis
BibRef
Marin, D.,
He, Z.,
Vajda, P.,
Chatterjee, P.,
Tsai, S.,
Yang, F.,
Boykov, Y.,
Efficient Segmentation: Learning Downsampling Near Semantic
Boundaries,
ICCV19(2131-2141)
IEEE DOI
2004
image sampling, image segmentation,
learning (artificial intelligence), semantic boundaries, Image resolution
BibRef
Nakajima, Y.,
Kang, B.,
Saito, H.,
Kitani, K.,
Incremental Class Discovery for Semantic Segmentation With RGBD
Sensing,
ICCV19(972-981)
IEEE DOI
2004
image colour analysis, image representation, image segmentation,
learning (artificial intelligence), object recognition,
Image color analysis
BibRef
Shukla, S.,
Van Gool, L.J.,
Timofte, R.,
Extremely Weak Supervised Image-to-Image Translation for Semantic
Segmentation,
AIM19(3368-3377)
IEEE DOI
2004
image classification, image segmentation, supervised learning,
unsupervised learning, generative models, adversarial training,
semi supervised learning
BibRef
Luo, Y.,
Liu, P.,
Guan, T.,
Yu, J.,
Yang, Y.,
Significance-Aware Information Bottleneck for Domain Adaptive
Semantic Segmentation,
ICCV19(6777-6786)
IEEE DOI
2004
feature extraction, image classification, image segmentation,
neural nets, unsupervised learning,
Data mining
BibRef
Han, Q.Y.[Qiu-Yuan],
Zheng, J.[Jin],
Multi-scale Spatial Location Preference for Semantic Segmentation,
MMMod20(I:593-604).
Springer DOI
2003
BibRef
Shen, Y.H.[Yun-Hang],
Ji, R.R.[Rong-Rong],
Wang, Y.[Yan],
Wu, Y.J.[Yong-Jian],
Cao, L.J.[Liu-Juan],
Cyclic Guidance for Weakly Supervised Joint Detection and Segmentation,
CVPR19(697-707).
IEEE DOI
2002
BibRef
Jiao, J.B.[Jian-Bo],
Wei, Y.[Yunchao],
Jie, Z.[Zequn],
Shi, H.H.[Hong-Hui],
Lau, R.W.H.[Rynson W.H.],
Huang, T.S.[Thomas S.],
Geometry-Aware Distillation for Indoor Semantic Segmentation,
CVPR19(2864-2873).
IEEE DOI
2002
BibRef
Zhu, Y.[Yi],
Sapra, K.[Karan],
Reda, F.A.[Fitsum A.],
Shih, K.J.[Kevin J.],
Newsam, S.[Shawn],
Tao, A.[Andrew],
Catanzaro, B.[Bryan],
Improving Semantic Segmentation via Video Propagation and Label
Relaxation,
CVPR19(8848-8857).
IEEE DOI
2002
BibRef
Vu, T.H.[Tuan-Hung],
Jain, H.[Himalaya],
Bucher, M.[Maxime],
Cord, M.[Matthieu],
Perez, P.[Patrick],
ADVENT: Adversarial Entropy Minimization for Domain Adaptation in
Semantic Segmentation,
CVPR19(2512-2521).
IEEE DOI
2002
BibRef
Liu, Y.[Yifan],
Chen, K.[Ke],
Liu, C.[Chris],
Qin, Z.[Zengchang],
Luo, Z.[Zhenbo],
Wang, J.D.[Jing-Dong],
Structured Knowledge Distillation for Semantic Segmentation,
CVPR19(2599-2608).
IEEE DOI
2002
BibRef
Tian, Z.[Zhi],
He, T.[Tong],
Shen, C.H.[Chun-Hua],
Yan, Y.[Youliang],
Decoders Matter for Semantic Segmentation: Data-Dependent Decoding
Enables Flexible Feature Aggregation,
CVPR19(3121-3130).
IEEE DOI
2002
BibRef
Song, C.F.[Chun-Feng],
Huang, Y.[Yan],
Ouyang, W.L.[Wan-Li],
Wang, L.[Liang],
Box-Driven Class-Wise Region Masking and Filling Rate Guided Loss for
Weakly Supervised Semantic Segmentation,
CVPR19(3131-3140).
IEEE DOI
2002
BibRef
Zhou, Y.Z.[Yi-Zhou],
Sun, X.Y.[Xiao-Yan],
Zha, Z.J.[Zheng-Jun],
Zeng, W.J.[Wen-Jun],
Context-Reinforced Semantic Segmentation,
CVPR19(4041-4050).
IEEE DOI
2002
BibRef
Zhang, Z.Y.[Zhen-Yu],
Cui, Z.[Zhen],
Xu, C.Y.[Chun-Yan],
Yan, Y.[Yan],
Sebe, N.[Nicu],
Yang, J.[Jian],
Pattern-Affinitive Propagation Across Depth, Surface Normal and
Semantic Segmentation,
CVPR19(4101-4110).
IEEE DOI
2002
BibRef
Zhang, H.[Hang],
Zhang, H.[Han],
Wang, C.[Chenguang],
Xie, J.[Junyuan],
Co-Occurrent Features in Semantic Segmentation,
CVPR19(548-557).
IEEE DOI
2002
BibRef
He, T.[Tong],
Shen, C.H.[Chun-Hua],
Tian, Z.[Zhi],
Gong, D.[Dong],
Sun, C.M.[Chang-Ming],
Yan, Y.[Youliang],
Knowledge Adaptation for Efficient Semantic Segmentation,
CVPR19(578-587).
IEEE DOI
2002
BibRef
Chang, W.L.[Wei-Lun],
Wang, H.P.[Hui-Po],
Peng, W.H.[Wen-Hsiao],
Chiu, W.C.[Wei-Chen],
All About Structure: Adapting Structural Information Across Domains for
Boosting Semantic Segmentation,
CVPR19(1900-1909).
IEEE DOI
2002
BibRef
Schmitz, M.,
Brandenburger, W.,
Mayer, H.,
Semantic Segmentation of Airborne Images and Corresponding Digital
Surface Models - Additional Input Data Or Additional Task?,
PIA19(195-200).
DOI Link
1912
BibRef
Huang, Y.,
Proesmans, M.,
Georgoulis, S.,
Van Gool, L.J.,
Uncertainty based model selection for fast semantic segmentation,
MVA19(1-6)
DOI Link
1911
entropy, image segmentation, inference mechanisms, semantic labels,
baseline model, reasonable inference speeds,
Entropy
BibRef
Bevandic, P.[Petra],
Kreo, I.[Ivan],
Oric, M.[Marin],
egvic, S.[Sinia],
Simultaneous Semantic Segmentation and Outlier Detection in Presence of
Domain Shift,
GCPR19(33-47).
Springer DOI
1911
BibRef
Lin, Y.X.[Yong-Xiang],
Tan, D.S.[Daniel Stanley],
Cheng, W.H.[Wen-Huang],
Chen, Y.Y.[Yung-Yao],
Hua, K.L.[Kai-Lung],
Spatially-Aware Domain Adaptation for Semantic Segmentation of Urban
Scenes,
ICIP19(1870-1874)
IEEE DOI
1910
Semantic segmentation, Domain adaptation, Spatial Structure
BibRef
Russo, P.[Paolo],
Tommasi, T.[Tatiana],
Caputo, B.[Barbara],
Towards Multi-source Adaptive Semantic Segmentation,
CIAP19(I:292-301).
Springer DOI
1909
BibRef
Leonardi, M.[Marco],
Mazzini, D.[Davide],
Schettini, R.[Raimondo],
Training Efficient Semantic Segmentation CNNs on Multiple Datasets,
CIAP19(II:303-314).
Springer DOI
1909
BibRef
Zhuang, P.C.[Peng-Cheng],
Sekikawa, Y.[Yusuke],
Hara, K.[Kosuke],
Saito, H.[Hideo],
Learning an Optimisable Semantic Segmentation Map with Image
Conditioned Variational Autoencoder,
CIAP19(II:379-389).
Springer DOI
1909
BibRef
Saha, S.[Sudipan],
Sudhakaran, S.[Swathikiran],
Banerjee, B.[Biplab],
Pendurkar, S.[Sumedh],
Semantic Guided Deep Unsupervised Image Segmentation,
CIAP19(II:499-510).
Springer DOI
1909
BibRef
Dias, P.A.[Philipe Ambrozio],
Medeiros, H.[Henry],
Semantic Segmentation Refinement by Monte Carlo Region Growing of High
Confidence Detections,
ACCV18(II:131-146).
Springer DOI
1906
BibRef
Falcăo, A.[Alexandre],
Bragantini, J.[Jordăo],
The Role of Optimum Connectivity in Image Segmentation:
Can the Algorithm Learn Object Information During the Process?,
DGCI19(180-194).
Springer DOI
1905
Feature space and image domain linkage.
BibRef
Lv, F.M.[Feng-Mao],
Lian, Q.[Qing],
Yang, G.[Guowu],
Lin, G.S.[Guo-Sheng],
Pan, S.J.[Sinno Jialin],
Duan, L.X.[Li-Xin],
Domain Adaptive Semantic Segmentation Through Structure Enhancement,
TASKCV18(II:172-179).
Springer DOI
1905
BibRef
Watanabe, K.[Kohei],
Saito, K.[Kuniaki],
Ushiku, Y.[Yoshitaka],
Harada, T.[Tatsuya],
Multichannel Semantic Segmentation with Unsupervised Domain Adaptation,
AutoNUE18(V:600-616).
Springer DOI
1905
BibRef
Guan, H.,
Zhang, Z.,
Tan, T.,
Inception Donut Convolution for Top-down Semantic Segmentation,
ICPR18(2492-2497)
IEEE DOI
1812
convolution, feature extraction, feedforward neural nets,
image representation, image segmentation, Streaming media
BibRef
Vallurupalli, N.,
Annamaneni, S.,
Varma, G.,
Jawahar, C.,
Mathew, M.,
Nagori, S.,
Efficient Semantic Segmentation Using Gradual Grouping,
ECVW18(711-7118)
IEEE DOI
1812
Training, Semantics, Computer architecture, Computational modeling,
Sparse matrices, Predictive models, Decoding
BibRef
Tsai, Y.,
Hung, W.,
Schulter, S.,
Sohn, K.,
Yang, M.,
Chandraker, M.,
Learning to Adapt Structured Output Space for Semantic Segmentation,
CVPR18(7472-7481)
IEEE DOI
1812
Image segmentation, Semantics, Adaptation models, Task analysis,
Training, Prediction algorithms, Layout
BibRef
Wei, Y.,
Xiao, H.,
Shi, H.,
Jie, Z.,
Feng, J.,
Huang, T.S.,
Revisiting Dilated Convolution: A Simple Approach for Weakly- and
Semi-Supervised Semantic Segmentation,
CVPR18(7268-7277)
IEEE DOI
1812
Image segmentation, Semantics, Convolution, Training, Kernel,
Standards, Head
BibRef
Muralikrishnan, S.,
Kim, V.G.,
Chaudhuri, S.,
Tags2Parts: Discovering Semantic Regions from Shape Tags,
CVPR18(2926-2935)
IEEE DOI
1812
Shape, Computer architecture, Image segmentation, Convolution,
Semantics, Training
BibRef
Bilinski, P.,
Prisacariu, V.,
Dense Decoder Shortcut Connections for Single-Pass Semantic
Segmentation,
CVPR18(6596-6605)
IEEE DOI
1812
Decoding, Semantics, Image segmentation, Architecture,
Computer architecture, Fuses, Spatial resolution
BibRef
Zhang, H.,
Dana, K.,
Shi, J.,
Zhang, Z.,
Wang, X.,
Tyagi, A.,
Agrawal, A.,
Context Encoding for Semantic Segmentation,
CVPR18(7151-7160)
IEEE DOI
1812
Encoding, Semantics, Convolution, Image segmentation, Training,
Image coding, Feature extraction
BibRef
Casanova, A.,
Cucurull, G.,
Drozdzal, M.,
Romero, A.,
Bengio, Y.,
On the Iterative Refinement of Densely Connected Representation
Levels for Semantic Segmentation,
AutoDrive18(1091-109109)
IEEE DOI
1812
Semantics, Spatial resolution, Computer architecture,
Convolutional codes, Computational modeling, Computer vision, Image segmentation
BibRef
Seifi, S.[Soroush],
Tuytelaars, T.[Tinne],
Attend and Segment: Attention Guided Active Semantic Segmentation,
ECCV20(XXV:305-321).
Springer DOI
2011
BibRef
Huang, Y.,
Jia, X.,
Georgoulis, S.,
Tuytelaars, T.,
Van Gool, L.J.,
Error Correction for Dense Semantic Image Labeling,
AutoDrive18(1111-11118)
IEEE DOI
1812
Image segmentation, Labeling, Task analysis, Semantics,
Error correction, Pipelines, Probability distribution
BibRef
Ahn, J.[Jiwoon],
Cho, S.[Sunghyun],
Kwak, S.[Suha],
Weakly Supervised Learning of Instance Segmentation With Inter-Pixel
Relations,
CVPR19(2204-2213).
IEEE DOI
2002
BibRef
Ahn, J.[Jiwoon],
Kwak, S.[Suha],
Learning Pixel-Level Semantic Affinity with Image-Level Supervision
for Weakly Supervised Semantic Segmentation,
CVPR18(4981-4990)
IEEE DOI
1812
Image segmentation, Semantics, Training, Shape, Visualization,
Pipelines, Motion segmentation
BibRef
Yang, M.,
Yu, K.,
Zhang, C.,
Li, Z.,
Yang, K.,
DenseASPP for Semantic Segmentation in Street Scenes,
CVPR18(3684-3692)
IEEE DOI
1812
Convolution, Semantics, Image resolution, Kernel, Image segmentation,
Neurons, Autonomous vehicles
BibRef
Matsuzuki, D.[Daisuke],
Hotta, K.[Kazuhiro],
Semantic Segmentation by Integrating Classifiers for Different
Difficulty Levels,
ISVC18(607-615).
Springer DOI
1811
BibRef
Huang, P.Y.[Po-Yu],
Hsu, W.T.[Wan-Ting],
Chiu, C.Y.[Chun-Yueh],
Wu, T.F.[Ting-Fan],
Sun, M.[Min],
Efficient Uncertainty Estimation for Semantic Segmentation in Videos,
ECCV18(I: 536-552).
Springer DOI
1810
BibRef
Ke, T.W.[Tsung-Wei],
Hwang, J.J.[Jyh-Jing],
Liu, Z.[Ziwei],
Yu, S.X.[Stella X.],
Adaptive Affinity Fields for Semantic Segmentation,
ECCV18(I: 605-621).
Springer DOI
1810
BibRef
Zhao, H.[Hengshuang],
Qi, X.J.[Xiao-Juan],
Shen, X.Y.[Xiao-Yong],
Shi, J.P.[Jian-Ping],
Jia, J.Y.[Jia-Ya],
ICNet for Real-Time Semantic Segmentation on High-Resolution Images,
ECCV18(III: 418-434).
Springer DOI
1810
BibRef
Lin, D.[Di],
Ji, Y.[Yuanfeng],
Lischinski, D.[Dani],
Cohen-Or, D.[Daniel],
Huang, H.[Hui],
Multi-scale Context Intertwining for Semantic Segmentation,
ECCV18(III: 622-638).
Springer DOI
1810
BibRef
Zou, Y.[Yang],
Yu, Z.D.[Zhi-Ding],
Kumar, B.V.K.V.[B. V. K. Vijaya],
Wang, J.S.[Jin-Song],
Unsupervised Domain Adaptation for Semantic Segmentation via
Class-Balanced Self-training,
ECCV18(III: 297-313).
Springer DOI
1810
BibRef
Zhu, X.G.[Xin-Ge],
Zhou, H.[Hui],
Yang, C.Y.[Ce-Yuan],
Shi, J.P.[Jian-Ping],
Lin, D.[Dahua],
Penalizing Top Performers:
Conservative Loss for Semantic Segmentation Adaptation,
ECCV18(VII: 587-603).
Springer DOI
1810
BibRef
Fan, R.C.[Ruo-Chen],
Hou, Q.[Qibin],
Cheng, M.M.[Ming-Ming],
Yu, G.[Gang],
Martin, R.R.[Ralph R.],
Hu, S.M.[Shi-Min],
Associating Inter-image Salient Instances for Weakly Supervised
Semantic Segmentation,
ECCV18(IX: 371-388).
Springer DOI
1810
BibRef
Zhang, Z.Y.[Zhen-Yu],
Cui, Z.[Zhen],
Xu, C.Y.[Chun-Yan],
Jie, Z.Q.[Ze-Qun],
Li, X.[Xiang],
Yang, J.[Jian],
Joint Task-Recursive Learning for Semantic Segmentation and Depth
Estimation,
ECCV18(X: 238-255).
Springer DOI
1810
BibRef
Dai, A.[Angela],
Nießner, M.[Matthias],
3DMV: Joint 3D-Multi-view Prediction for 3D Semantic Scene Segmentation,
ECCV18(X: 458-474).
Springer DOI
1810
BibRef
Mehta, S.[Sachin],
Rastegari, M.[Mohammad],
Caspi, A.[Anat],
Shapiro, L.[Linda],
Hajishirzi, H.[Hannaneh],
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic
Segmentation,
ECCV18(X: 561-580).
Springer DOI
1810
BibRef
Xiao, C.W.[Chao-Wei],
Deng, R.Z.[Rui-Zhi],
Li, B.[Bo],
Yu, F.[Fisher],
Liu, M.Y.[Ming-Yan],
Song, D.[Dawn],
Characterizing Adversarial Examples Based on Spatial Consistency
Information for Semantic Segmentation,
ECCV18(X: 220-237).
Springer DOI
1810
BibRef
Zhang, Z.L.[Zhen-Li],
Zhang, X.Y.[Xiang-Yu],
Peng, C.[Chao],
Xue, X.Y.[Xiang-Yang],
Sun, J.[Jian],
ExFuse: Enhancing Feature Fusion for Semantic Segmentation,
ECCV18(X: 273-288).
Springer DOI
1810
BibRef
Sulimowicz, L.,
Ahmad, I.,
Aved, A.,
Superpixel-Enhanced Pairwise Conditional Random Field for Semantic
Segmentation,
ICIP18(271-275)
IEEE DOI
1809
Image segmentation, Semantics, Kernel, Labeling, Robustness,
Visualization, Image color analysis,
and Higher-order CRFs
BibRef
Lu, L.H.[Li-Hsien],
Hsu, C.T.[Chiou-Ting],
Semantic Segmentation for Real-World Data by Jointly Exploiting
Supervised andxs Transferrable Knowledge,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Chaurasia, A.,
Culurciello, E.,
LinkNet: Exploiting encoder representations for efficient semantic
segmentation,
VCIP17(1-4)
IEEE DOI
1804
computer vision, image resolution, image segmentation,
learning (artificial intelligence), neural nets, LinkNet,
Training
BibRef
Zhang, Y.[Yu],
Ngan, K.N.[King Ngi],
Huynh, C.P.[Cong Phuoc],
Habili, N.[Nariman],
Learning Deep Spatial-Spectral Features for Material Segmentation in
Hyperspectral Images,
DICTA17(1-7)
IEEE DOI
1804
feature extraction, geophysical image processing,
image classification, image segmentation,
Training
BibRef
Cui, Z.,
Zhang, Q.,
Geng, S.,
Niu, X.,
Yang, J.,
Qiao, Y.,
Semantic segmentation with multi-path refinement and pyramid pooling
dilated-resnet,
ICIP17(3100-3104)
IEEE DOI
1803
Computer architecture, Convolution, Feature extraction,
Image segmentation, Semantics, Task analysis, Training,
Segmentation
BibRef
Xie, C.,
Wang, J.,
Zhang, Z.,
Zhou, Y.,
Xie, L.,
Yuille, A.L.[Alan L.],
Adversarial Examples for Semantic Segmentation and Object Detection,
ICCV17(1378-1387)
IEEE DOI
1802
image classification, image segmentation, object detection,
pattern clustering, adversarial perturbations,
Semantics
BibRef
Luc, P.[Pauline],
Couprie, C.[Camille],
Le Cun, Y.[Yann],
Verbeek, J.[Jakob],
Predicting Future Instance Segmentation by Forecasting Convolutional
Features,
ECCV18(IX: 593-608).
Springer DOI
1810
BibRef
Luc, P.[Pauline],
Neverova, N.,
Couprie, C.[Camille],
Verbeek, J.[Jakob],
Le Cun, Y.[Yann],
Predicting Deeper into the Future of Semantic Segmentation,
ICCV17(648-657)
IEEE DOI
1802
feedforward neural nets, image colour analysis, image resolution,
image segmentation, image sequences,
Training
BibRef
Zhu, Y.,
Tian, Y.,
Metaxas, D.,
Dollár, P.,
Semantic Amodal Segmentation,
CVPR17(3001-3009)
IEEE DOI
1711
Image edge detection, Image segmentation, Object detection,
Semantics, Tools, Visualization
BibRef
Vernaza, P.,
Chandraker, M.,
Learning Random-Walk Label Propagation for Weakly-Supervised Semantic
Segmentation,
CVPR17(2953-2961)
IEEE DOI
1711
Image edge detection, Image segmentation, Labeling, Semantics,
Training, Uncertainty
BibRef
Li, Y.,
Qi, H.,
Dai, J.,
Ji, X.,
Wei, Y.,
Fully Convolutional Instance-Aware Semantic Segmentation,
CVPR17(4438-4446)
IEEE DOI
1711
Convolution, Convolutional codes, Image segmentation,
Object segmentation, Proposals, Semantics
BibRef
Shen, F.,
Gan, R.,
Yan, S.,
Zeng, G.,
Semantic Segmentation via Structured Patch Prediction, Context CRF
and Guidance CRF,
CVPR17(5178-5186)
IEEE DOI
1711
Complexity theory, Image segmentation, Message passing,
Predictive models, Semantics, Training
BibRef
Luo, P.[Ping],
Wang, G.R.[Guang-Run],
Lin, L.[Liang],
Wang, X.G.[Xiao-Gang],
Deep Dual Learning for Semantic Image Segmentation,
ICCV17(2737-2745)
IEEE DOI
1802
BibRef
Earlier: A2, A1, A3, A4:
Learning Object Interactions and Descriptions for Semantic Image
Segmentation,
CVPR17(5235-5243)
IEEE DOI
1711
image reconstruction, image segmentation,
learning (artificial intelligence), neural nets, DIS,
Cleaning, Cows, Feature extraction, Image segmentation, Semantics,
Streaming media.
BibRef
Wigness, M.,
Rogers, J.G.,
Unsupervised Semantic Scene Labeling for Streaming Data,
CVPR17(5910-5919)
IEEE DOI
1711
Adaptation models, Data models, Image segmentation, Labeling,
Semantics, Streaming media, Visualization
BibRef
Bulň, S.R.,
Neuhold, G.,
Kontschieder, P.,
Loss Max-Pooling for Semantic Image Segmentation,
CVPR17(7082-7091)
IEEE DOI
1711
Benchmark testing, Image segmentation, Semantics, Standards,
Training, Upper, bound
BibRef
He, Y.[Yang],
Keuper, M.[Margret],
Schiele, B.[Bernt],
Fritz, M.[Mario],
Learning Dilation Factors for Semantic Segmentation of Street Scenes,
GCPR17(41-51).
Springer DOI
1711
BibRef
He, Y.[Yang],
Chiu, W.C.,
Keuper, M.[Margret],
Fritz, M.[Mario],
STD2P:
RGBD Semantic Segmentation Using Spatio-Temporal Data-Driven Pooling,
CVPR17(7158-7167)
IEEE DOI
1711
Image segmentation, Indexes, Optical imaging, Semantics,
Training, Videos
BibRef
Jégou, S.[Simon],
Drozdzal, M.[Michal],
Vazquez, D.[David],
Romero, A.[Adriana],
Bengio, Y.[Yoshua],
The One Hundred Layers Tiramisu:
Fully Convolutional DenseNets for Semantic Segmentation,
CVVT17(1175-1183)
IEEE DOI
1709
Benchmark testing, Computer architecture, Image segmentation,
Semantics, Spatial resolution, Standards
BibRef
Derue, F.X.[François-Xavier],
Dahmane, M.[Mohamed],
Lalonde, M.[Marc],
Foucher, S.[Samuel],
Exploiting Semantic Segmentation for Robust Camera Motion
Classification,
ICIAR17(173-181).
Springer DOI
1706
BibRef
Namin, S.R.,
Alvarez, J.M.,
Petersson, L.,
2D-3D semantic segmentation using cardinality as higher-order loss,
ICPR16(3775-3780)
IEEE DOI
1705
Image edge detection, Image segmentation, Labeling, Sensors,
Training.
BibRef
Wang, H.L.[Hui-Ling],
Raiko, T.[Tapani],
Lensu, L.[Lasse],
Wang, T.H.[Ting-Huai],
Karhunen, J.[Juha],
Semi-supervised Domain Adaptation for Weakly Labeled Semantic Video
Object Segmentation,
ACCV16(I: 163-179).
Springer DOI
1704
BibRef
Huang, Q.[Qin],
Xia, C.Y.[Chun-Yang],
Zheng, W.[Wenchao],
Song, Y.H.[Yu-Hang],
Xu, H.[Hao],
Kuo, C.C.J.[C.C. Jay],
Object Boundary Guided Semantic Segmentation,
ACCV16(I: 197-212).
Springer DOI
1704
BibRef
Hazirbas, C.[Caner],
Ma, L.[Lingni],
Domokos, C.[Csaba],
Cremers, D.[Daniel],
FuseNet: Incorporating Depth into Semantic Segmentation via
Fusion-Based CNN Architecture,
ACCV16(I: 213-228).
Springer DOI
1704
BibRef
Bouachir, W.,
Torabi, A.,
Bilodeau, G.A.,
Blais, P.,
A bag of words approach for semantic segmentation of monitored scenes,
ISIVC16(88-93)
IEEE DOI
1704
Bayes methods
BibRef
Souly, N.[Nasim],
Shah, M.[Mubarak],
Scene Labeling Using Sparse Precision Matrix,
CVPR16(3650-3658)
IEEE DOI
1612
BibRef
Xu, C.,
Corso, J.J.[Jason J.],
Actor-Action Semantic Segmentation with Grouping Process Models,
CVPR16(3083-3092)
IEEE DOI
1612
BibRef
Gao, Y.[Yang],
Beijbom, O.[Oscar],
Zhang, N.[Ning],
Darrell, T.J.[Trevor J.],
Compact Bilinear Pooling,
CVPR16(317-326)
IEEE DOI
1612
BibRef
Bearman, A.[Amy],
Russakovsky, O.[Olga],
Ferrari, V.[Vittorio],
Fei-Fei, L.[Li],
What's the Point: Semantic Segmentation with Point Supervision,
ECCV16(VII: 549-565).
Springer DOI
1611
BibRef
Ghiasi, G.[Golnaz],
Fowlkes, C.C.[Charless C.],
Laplacian Pyramid Reconstruction and Refinement for Semantic
Segmentation,
ECCV16(III: 519-534).
Springer DOI
1611
BibRef
Fourure, D.[Damien],
Emonet, R.[Rémi],
Fromont, E.[Elisa],
Muselet, D.[Damien],
Trémeau, A.[Alain],
Wolf, C.[Christian],
Semantic Segmentation via Multi-task, Multi-domain Learning,
SSSPR16(333-343).
Springer DOI
1611
BibRef
Krapac, J.[Josip],
egvic, I.K.S.[I.K. Sinia],
Ladder-Style DenseNets for Semantic Segmentation of Large Natural
Images,
CVRoads17(238-245)
IEEE DOI
1802
BibRef
Earlier:
Weakly-Supervised Semantic Segmentation by Redistributing Region Scores
Back to the Pixels,
GCPR16(377-388).
Springer DOI
1611
Convolution, Image segmentation, Semantics, Spatial resolution,
Tensile stress, Training
BibRef
Kreo, I.[Ivan],
Cauevic, D.[Denis],
Krapac, J.[Josip],
egvic, I.K.S.[I.K. Sinia],
Convolutional Scale Invariance for Semantic Segmentation,
GCPR16(64-75).
Springer DOI
1611
BibRef
Xing, F.Z.,
Cambria, E.,
Huang, W.B.,
Xu, Y.,
Weakly supervised semantic segmentation with superpixel embedding,
ICIP16(1269-1273)
IEEE DOI
1610
Context
BibRef
Tarashima, S.,
Pan, J.,
Irie, G.,
Kurozumi, T.,
Kinebuchi, T.,
Joint object discovery and segmentation with image-wise
reconstruction error,
ICIP16(849-853)
IEEE DOI
1610
Airplanes
BibRef
Zhou, H.,
Zhang, J.[Jun],
Lei, J.[Jun],
Li, S.[Shuohao],
Tu, D.[Dan],
Image semantic segmentation based on FCN-CRF model,
ICIVC16(9-14)
IEEE DOI
1610
feature extraction
BibRef
Li, W.[Weihao],
Yang, M.Y.[Michael Ying],
Efficient Semantic Segmentation Of Man-made Scenes Using
Fully-connected Conditional Random Field,
ISPRS16(B3: 633-640).
DOI Link
1610
BibRef
Tian, Q.,
Li, B.,
Simultaneous semantic segmentation of a set of partially labeled
images,
WACV16(1-9)
IEEE DOI
1606
Computer science
BibRef
Najafi, M.[Mohammad],
Namin, S.T.[Sarah Taghavi],
Salzmann, M.[Mathieu],
Petersson, L.[Lars],
Sample and Filter: Nonparametric Scene Parsing via Efficient
Filtering,
CVPR16(607-615)
IEEE DOI
1612
BibRef
Earlier: A2, A1, A3, A4:
Cutting Edge: Soft Correspondences in Multimodal Scene Parsing,
ICCV15(1188-1196)
IEEE DOI
1602
Feature extraction. combine modalities.
BibRef
Qi, X.J.[Xiao-Juan],
Liu, Z.Z.[Zheng-Zhe],
Shi, J.P.[Jian-Ping],
Zhao, H.S.[Heng-Shuang],
Jia, J.Y.[Jia-Ya],
Augmented Feedback in Semantic Segmentation Under Image Level
Supervision,
ECCV16(VIII: 90-105).
Springer DOI
1611
BibRef
Qi, X.J.[Xiao-Juan],
Shi, J.P.[Jian-Ping],
Liu, S.,
Liao, R.,
Jia, J.Y.[Jia-Ya],
Semantic Segmentation with Object Clique Potential,
ICCV15(2587-2595)
IEEE DOI
1602
Computational modeling
BibRef
Varas, D.,
Alfaro, M.,
Marques, F.,
Multiresolution Hierarchy Co-Clustering for Semantic Segmentation in
Sequences with Small Variations,
ICCV15(4579-4587)
IEEE DOI
1602
Image resolution
BibRef
Deng, Z.,
Todorovic, S.,
Latecki, L.J.,
Semantic Segmentation of RGBD Images with Mutex Constraints,
ICCV15(1733-1741)
IEEE DOI
1602
Computational modeling
BibRef
Pourian, N.,
Karthikeyan, S.,
Manjunath, B.S.,
Weakly Supervised Graph Based Semantic Segmentation by Learning
Communities of Image-Parts,
ICCV15(1359-1367)
IEEE DOI
1602
Correlation
BibRef
Caesar, H.[Holger],
Uijlings, J.[Jasper],
Ferrari, V.[Vittorio],
Region-Based Semantic Segmentation with End-to-End Training,
ECCV16(I: 381-397).
Springer DOI
1611
BibRef
Earlier:
Joint Calibration for Semantic Segmentation,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Srivatsa, R.S.[R. Sai],
Babu, R.V.[R. Venkatesh],
Salient object detection via objectness measure,
ICIP15(4481-4485)
IEEE DOI
1512
Image Saliency; Image Segmentation; Objectness Proposals; Superpixels
BibRef
Ventura, C.[Carles],
Giro-i-Nieto, X.[Xavier],
Vilaplana, V.[Veronica],
McGuinness, K.[Kevin],
Marques, F.[Ferran],
O'Connor, N.E.[Noel E.],
Improving spatial codification in semantic segmentation,
ICIP15(3605-3609)
IEEE DOI
1512
Object recognition
BibRef
Zhao, N.[Nan],
Banerjee, C.[Chaity],
Liu, X.W.[Xiu-Wen],
Nano-scale context-sensitive semantic segmentation,
ICIP15(3062-3066)
IEEE DOI
1512
Nano-scale; context-sensitive; microvilli; semantic segmentation; spike
BibRef
Pieck, M.A.R.[Martin A.R.],
van der Sommen, F.[Fons],
Zinger, S.[Svitlana],
de With, P.H.N.[Peter H.N.],
Real-time semantic context labeling for image understanding,
ICIP15(3180-3184)
IEEE DOI
1512
Context classification; Gabor filtering; SVM; Segmentation
BibRef
Dai, J.F.[Ji-Feng],
He, K.M.[Kai-Ming],
Sun, J.[Jian],
Convolutional feature masking for joint object and stuff segmentation,
CVPR15(3992-4000)
IEEE DOI
1510
BibRef
Mostajabi, M.[Mohammadreza],
Yadollahpour, P.[Payman],
Shakhnarovich, G.[Gregory],
Feedforward semantic segmentation with zoom-out features,
CVPR15(3376-3385)
IEEE DOI
1510
BibRef
Zhang, W.[Wei],
Zeng, S.[Sheng],
Wang, D.[Dequan],
Xue, X.Y.[Xiang-Yang],
Weakly supervised semantic segmentation for social images,
CVPR15(2718-2726)
IEEE DOI
1510
BibRef
Ardeshir, S.[Shervin],
Collins-Sibley, K.M.[Kofi Malcolm],
Shah, M.[Mubarak],
Geo-semantic segmentation,
CVPR15(2792-2799)
IEEE DOI
1510
BibRef
Sharma, A.[Abhishek],
Tuzel, O.[Oncel],
Jacobs, D.W.[David W.],
Deep hierarchical parsing for semantic segmentation,
CVPR15(530-538)
IEEE DOI
1510
BibRef
Samrouth, K.,
Deforges, O.,
Liu, Y.[Yi],
Falou, W.,
Khalil, M.,
A joint 3D image semantic segmentation and scalable coding scheme
with ROI approach,
VCIP14(270-273)
IEEE DOI
1504
data compression
BibRef
Namin, S.T.[Sarah Taghavi],
Najafi, M.[Mohammad],
Salzmann, M.[Mathieu],
Petersson, L.[Lars],
A Multi-modal Graphical Model for Scene Analysis,
WACV15(1006-1013)
IEEE DOI
1503
Graphical models
2D-3D data. Semantic segmentation.
BibRef
Zhu, G.[Gao],
Ming, Y.S.[Yan-Sheng],
Li, H.D.[Hong-Dong],
Object category detection by incorporating mid-level grouping cues,
ICIP14(1604-1608)
IEEE DOI
1502
Computer vision
BibRef
Bassiouny, A.[Ahmed],
El-Saban, M.[Motaz],
Semantic segmentation as image representation for scene recognition,
ICIP14(981-985)
IEEE DOI
1502
Accuracy
BibRef
Tegen, A.[Agnes],
Weegar, R.[Rebecka],
Hammarlund, L.[Linus],
Oskarsson, M.[Magnus],
Jiang, F.Y.[Fang-Yuan],
Medved, D.[Dennis],
Nugues, P.[Pierre],
Astrom, K.[Kalle],
Image Segmentation and Labeling Using Free-Form Semantic Annotation,
ICPR14(2281-2286)
IEEE DOI
1412
Context
BibRef
Kroeger, T.[Thorben],
Kappes, J.H.[Jörg H.],
Beier, T.[Thorsten],
Koethe, U.[Ullrich],
Hamprecht, F.A.[Fred A.],
Asymmetric Cuts: Joint Image Labeling and Partitioning,
GCPR14(199-211).
Springer DOI
1411
BibRef
Mustikovela, S.K.[Siva Karthik],
Yang, M.Y.[Michael Ying],
Rother, C.[Carsten],
Can Ground Truth Label Propagation from Video Help Semantic
Segmentation?,
VSeg16(III: 804-820).
Springer DOI
1611
BibRef
Zheng, S.[Shuai],
Cheng, M.M.[Ming-Ming],
Warrell, J.[Jonathan],
Sturgess, P.[Paul],
Vineet, V.[Vibhav],
Rother, C.[Carsten],
Torr, P.H.S.[Philip H.S.],
Dense Semantic Image Segmentation with Objects and Attributes,
CVPR14(3214-3221)
IEEE DOI
1409
Attributes; Image Segmentation; Object Recognition; Scene Understanding
BibRef
Ladicky, L.[Lubor],
Shi, J.B.[Jian-Bo],
Pollefeys, M.[Marc],
Pulling Things out of Perspective,
CVPR14(89-96)
IEEE DOI
1409
Depth Estimation; Object Recognition; Semantic Segmentation
BibRef
Chang, F.J.[Feng-Ju],
Lin, Y.Y.[Yen-Yu],
Hsu, K.J.[Kuang-Jui],
Multiple Structured-Instance Learning for Semantic Segmentation with
Uncertain Training Data,
CVPR14(360-367)
IEEE DOI
1409
BibRef
Mottaghi, R.[Roozbeh],
Chen, X.J.[Xian-Jie],
Liu, X.B.[Xiao-Bai],
Cho, N.G.[Nam-Gyu],
Lee, S.W.[Seong-Whan],
Fidler, S.[Sanja],
Urtasun, R.[Raquel],
Yuille, A.L.[Alan L.],
The Role of Context for Object Detection and Semantic Segmentation in
the Wild,
CVPR14(891-898)
IEEE DOI
1409
BibRef
Isola, P.[Phillip],
Zoran, D.[Daniel],
Krishnan, D.[Dilip],
Adelson, E.H.[Edward H.],
Crisp Boundary Detection Using Pointwise Mutual Information,
ECCV14(III: 799-814).
Springer DOI
1408
Between semantic objects.
BibRef
Li, Z.Y.[Zhen-Yang],
Gavves, E.[Efstratios],
Mensink, T.[Thomas],
Snoek, C.G.M.[Cees G.M.],
Attributes Make Sense on Segmented Objects,
ECCV14(VI: 350-365).
Springer DOI
1408
BibRef
Dong, J.[Jian],
Chen, Q.A.[Qi-Ang],
Yan, S.C.[Shui-Cheng],
Yuille, A.L.[Alan L.],
Towards Unified Object Detection and Semantic Segmentation,
ECCV14(V: 299-314).
Springer DOI
1408
Joint detect and segment.
BibRef
Kundu, A.[Abhijit],
Li, Y.[Yin],
Dellaert, F.[Frank],
Li, F.X.[Fu-Xin],
Rehg, J.M.[James M.],
Joint Semantic Segmentation and 3D Reconstruction from Monocular Video,
ECCV14(VI: 703-718).
Springer DOI
1408
BibRef
Riemenschneider, H.[Hayko],
Bódis-Szomorú, A.[András],
Weissenberg, J.[Julien],
Van Gool, L.J.[Luc J.],
Learning Where to Classify in Multi-view Semantic Segmentation,
ECCV14(V: 516-532).
Springer DOI
1408
BibRef
Tao, L.L.[Ling-Ling],
Porikli, F.M.[Fatih M.],
Vidal, R.[René],
Sparse Dictionaries for Semantic Segmentation,
ECCV14(V: 549-564).
Springer DOI
1408
BibRef
Zhu, S.Q.[Sheng-Qi],
Yang, Y.Q.[Yi-Qing],
Zhang, L.[Li],
From Label Maps to Label Strokes:
Semantic Segmentation for Street Scenes from Incomplete Training Data,
CVCP13(468-475)
IEEE DOI
1403
data handling
BibRef
Baek, S.[Seung_Ryul],
Lim, T.[Taegyu],
Heo, Y.S.[Yong Seok],
Park, S.B.[Sung-Bum],
Kwak, H.[Hantak],
Shim, W.[Woosung],
Superpixel Coherency and Uncertainty Models for Semantic Segmentation,
PGMs13(275-282)
IEEE DOI
1403
computational complexity
BibRef
Roig, G.[Gemma],
Boix, X.[Xavier],
de Nijs, R.[Roderick],
Ramos, S.[Sebastian],
Kuhnlenz, K.[Koljia],
Van Gool, L.J.[Luc J.],
Active MAP Inference in CRFs for Efficient Semantic Segmentation,
ICCV13(2312-2319)
IEEE DOI
1403
using expensive features.
BibRef
Barron, J.T.[Jonathan T.],
Biggin, M.D.[Mark D.],
Arbelaez, P.[Pablo],
Knowles, D.W.[David W.],
Keranen, S.V.E.[Soile V.E.],
Malik, J.[Jitendra],
Volumetric Semantic Segmentation Using Pyramid Context Features,
ICCV13(3448-3455)
IEEE DOI
1403
BibRef
Singh, G.[Gautam],
Kosecka, J.[Jana],
Introspective semantic segmentation,
WACV14(714-720)
IEEE DOI
1406
BibRef
Earlier:
Nonparametric Scene Parsing with Adaptive Feature Relevance and
Semantic Context,
CVPR13(3151-3157)
IEEE DOI
1309
feature relevance; scene understanding; semantic segmentation.
Small patches, simple features.
Accuracy.
BibRef
Csurka, G.[Gabriela],
Larlus, D.[Diane],
Perronnin, F.[Florent],
What is a good evaluation measure for semantic segmentation?,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Li, F.X.[Fu-Xin],
Carreira, J.[Joao],
Lebanon, G.[Guy],
Sminchisescu, C.[Cristian],
Composite Statistical Inference for Semantic Segmentation,
CVPR13(3302-3309)
IEEE DOI
1309
composite likelihood
BibRef
Ying, P.[Peng],
Liu, J.[Jing],
Lu, H.Q.[Han-Qing],
Dictionary learning based superpixels clustering for
weakly-supervised semantic segmentation,
ICIP15(4258-4262)
IEEE DOI
1512
Weak supervision;dictionary learning;semantic segmentation
BibRef
Liu, Y.[Yang],
Liu, J.[Jing],
Li, Z.[Zechao],
Tang, J.H.[Jin-Hui],
Lu, H.Q.[Han-Qing],
Weakly-Supervised Dual Clustering for Image Semantic Segmentation,
CVPR13(2075-2082)
IEEE DOI
1309
Image Semantic Segmentation; Weakly-Supervised
BibRef
Zou, W.B.[Wen-Bin],
Kpalma, K.[Kidiyo],
Ronsin, J.[Joseph],
Semantic image segmentation using region bank,
ICPR12(922-925).
WWW Link.
1302
BibRef
And:
Semantic segmentation via sparse coding over hierarchical regions,
ICIP12(2577-2580).
IEEE DOI
1302
Hierarchical region segmentation, sparse coding of regions for recognition.
BibRef
Fröhlich, B.[Björn],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Semantic Segmentation with Millions of Features:
Integrating Multiple Cues in a Combined Random Forest Approach,
ACCV12(I:218-231).
Springer DOI
1304
BibRef
And:
As Time Goes by:
Anytime Semantic Segmentation with Iterative Context Forests,
DAGM12(1-10).
Springer DOI
1209
BibRef
Hariharan, B.[Bharath],
Zitnick, C.L.[C. Lawrence],
Dollar, P.[Piotr],
Detecting Objects Using Deformation Dictionaries,
CVPR14(1995-2002)
IEEE DOI
1409
BibRef
Lin, D.[Dahua],
Fidler, S.[Sanja],
Urtasun, R.[Raquel],
Holistic Scene Understanding for 3D Object Detection with RGBD
Cameras,
ICCV13(1417-1424)
IEEE DOI
1403
BibRef
Fidler, S.[Sanja],
Mottaghi, R.[Roozbeh],
Yuille, A.L.[Alan L.],
Urtasun, R.[Raquel],
Bottom-Up Segmentation for Top-Down Detection,
CVPR13(3294-3301)
IEEE DOI
1309
Object detection; object class recognition; object segmentation
BibRef
Yao, J.[Jian],
Fidler, S.[Sanja],
Urtasun, R.[Raquel],
Describing the scene as a whole: Joint object detection, scene
classification and semantic segmentation,
CVPR12(702-709).
IEEE DOI
1208
BibRef
Vezhnevets, A.[Alexander],
Ferrari, V.[Vittorio],
Associative Embeddings for Large-Scale Knowledge Transfer with
Self-Assessment,
CVPR14(1987-1994)
IEEE DOI
1409
ImageNet
BibRef
Vezhnevets, A.[Alexander],
Buhmann, J.M.[Joachim M.],
Ferrari, V.[Vittorio],
Active learning for semantic segmentation with expected change,
CVPR12(3162-3169).
IEEE DOI
1208
BibRef
Vezhnevets, A.[Alexander],
Ferrari, V.[Vittorio],
Buhmann, J.M.[Joachim M.],
Weakly supervised structured output learning for semantic segmentation,
CVPR12(845-852).
IEEE DOI
1208
BibRef
Earlier:
Weakly supervised semantic segmentation with a multi-image model,
ICCV11(643-650).
IEEE DOI
1201
BibRef
Vezhnevets, A.[Alexander],
Buhmann, J.M.[Joachim M.],
Towards weakly supervised semantic segmentation by means of multiple
instance and multitask learning,
CVPR10(3249-3256).
IEEE DOI
1006
See also Agnostic Domain Adaptation.
BibRef
Dunlop, H.[Heather],
Scene classification of images and video via semantic segmentation,
POCV10(72-79).
IEEE DOI
1006
BibRef
Pohlen, T.,
Badami, I.,
Mathias, M.,
Leibe, B.[Bastian],
Semantic segmentation of modular furniture,
WACV16(1-9)
IEEE DOI
1606
Face
BibRef
Floros, G.[Georgios],
Leibe, B.[Bastian],
Joint 2D-3D temporally consistent semantic segmentation of street
scenes,
CVPR12(2823-2830).
IEEE DOI
1208
BibRef
Floros, G.[Georgios],
Rematas, K.[Konstantinos],
Leibe, B.[Bastian],
Multi-Class Image Labeling with Top-Down Segmentation and Generalized
Robust P^N Potentials,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Passino, G.[Giuseppe],
Patras, I.[Ioannis],
Izquierdo, E.[Ebroul],
Pyramidal Model for Image Semantic Segmentation,
ICPR10(1554-1557).
IEEE DOI
1008
BibRef
Micusik, B.[Branislav],
Kosecka, J.[Jana],
Semantic segmentation of street scenes by superpixel co-occurrence and
3D geometry,
ObjectEvent09(625-632).
IEEE DOI
0910
identify as one of a few common object/background classes.
BibRef
Schnitman, Y.[Yaar],
Caspi, Y.[Yaron],
Cohen-Or, D.[Daniel],
Lischinski, D.[Dani],
Inducing Semantic Segmentation from an Example,
ACCV06(II:373-384).
Springer DOI
0601
BibRef
Zhang, H.H.[Hong-Hui],
Xiao, J.X.[Jian-Xiong],
Quan, L.[Long],
Supervised Label Transfer for Semantic Segmentation of Street Scenes,
ECCV10(V: 561-574).
Springer DOI
1009
Set of labelled images of street scenes. Recognition is by matching
at image level, then using the given lables.
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Remote Sensing Semantic Segmentation .