8.6.4.7 Medical Image Semantic Segmentation

Chapter Contents (Back)
Semantic Segmentation. Medical Images. General topic of medical image segmentation.
See also Organ Segmentation, Multi-Organ Segmentation, Anatomy Segmentation.

Cheng, K.S.[Kuo-Sheng], Lin, J.S.[Jzau-Sheng], Mao, C.W.[Chi-Wu],
The Application of Competitive Hopfield Neural Network to Medical Image Segmentation,
MedImg(15), No. 4, August 1996, pp. 560-567.
IEEE Top Reference. 0203
BibRef

Hansen, M.W.[Michael W.], Higgins, W.E.[William E.],
Relaxation Methods for Supervised Image Segmentation,
PAMI(19), No. 9, September 1997, pp. 949-962.
IEEE DOI 9710
BibRef
Earlier:
Watershed-driven relaxation labeling for image segmentation,
ICIP94(III: 460-464).
IEEE DOI 9411
Watershed driven relaxation labeling. Applied to 3D medical images. Use cues that indicate region shape. BibRef

Gal, Y.[Yaniv], Mehnert, A.[Andrew], Rose, S.[Stephen], Crozier, S.[Stuart],
Mutual information-based binarisation of multiple images of an object: An application in medical imaging,
IET-CV(7), No. 3, 2013, pp. 163-169.
DOI Link 1307
BibRef

Cardoso, M.J.[M. Jorge], Modat, M.[Marc], Wolz, R., Melbourne, A., Cash, D.[David], Rueckert, D., Ourselin, S.[Sebastien],
Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion,
MedImg(34), No. 9, September 2015, pp. 1976-1988.
IEEE DOI 1509
Image segmentation Clinical annotations. BibRef

Korner, M.[Marco], Krishna, M.V.[Mahesh V.], Susse, H.[Herbert], Ortmann, W.[Wolfang], Denzler, J.[Joachim],
Regularized Geometric Hulls for Bio-medical Image Segmentation,
BMVA(2015), No. 4, 2015, pp. 1-12.
PDF File. 1509
BibRef

Bi, L.[Lei], Feng, D.D.[David Dagan], Kim, J.M.[Jin-Man],
Dual-Path Adversarial Learning for Fully Convolutional Network (FCN)-Based Medical Image Segmentation,
VC(34), No. 6-8, June 2018, pp. 1043-1052.
WWW Link. 1806
BibRef

Schipaanboord, B., Boukerroui, D., Peressutti, D., van Soest, J., Lustberg, T., Kadir, T., Dekker, A., van Elmpt, W., Gooding, M.,
Can Atlas-Based Auto-Segmentation Ever Be Perfect? Insights From Extreme Value Theory,
MedImg(38), No. 1, January 2019, pp. 99-106.
IEEE DOI 1901
Image segmentation, Databases, Computed tomography, Planning, Head, Neck, Tumors, Radiotherapy, extreme value theory, auto-contouring BibRef

Lu, L., Harrison, A.P.,
Deep Medical Image Computing in Preventive and Precision Medicine,
MultMedMag(25), No. 3, July 2018, pp. 109-113.
IEEE DOI 1901
Biomedical imaging, Tumors, Computed tomography, Image segmentation, Biomarkers BibRef

Karimi, D., Salcudean, S.E.,
Reducing the Hausdorff Distance in Medical Image Segmentation With Convolutional Neural Networks,
MedImg(39), No. 2, February 2020, pp. 499-513.
IEEE DOI 2002
Image segmentation, Biomedical imaging, Training, Sensitivity, convolutional neural networks BibRef

Lin, D.Y.[Dong-Yun], Li, Y.Q.[Yi-Qun], Nwe, T.L.[Tin Lay], Dong, S.[Sheng], Oo, Z.M.[Zaw Min],
RefineU-Net: Improved U-Net with progressive global feedbacks and residual attention guided local refinement for medical image segmentation,
PRL(138), 2020, pp. 267-275.
Elsevier DOI 2010
U-Net, Medical image segmentation, Progressive global feedbacks, Local refinement, Residual attention gate BibRef

Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.,
Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation,
MedImg(39), No. 12, December 2020, pp. 3868-3878.
IEEE DOI 2012
Uncertainty, Image segmentation, Calibration, Estimation, Biomedical imaging, Artificial neural networks, Bayes methods, fully convolutional neural networks BibRef

Eelbode, T., Bertels, J., Berman, M., Vandermeulen, D., Maes, F., Bisschops, R., Blaschko, M.B.,
Optimization for Medical Image Segmentation: Theory and Practice When Evaluating With Dice Score or Jaccard Index,
MedImg(39), No. 11, November 2020, pp. 3679-3690.
IEEE DOI 2011
Indexes, Image segmentation, Biomedical imaging, Measurement, Risk management, Training, Task analysis, Dice, Jaccard, Tversky BibRef

Ren, X., Ahmad, S., Zhang, L., Xiang, L., Nie, D., Yang, F., Wang, Q., Shen, D.,
Task Decomposition and Synchronization for Semantic Biomedical Image Segmentation,
IP(29), 2020, pp. 7497-7510.
IEEE DOI 2007
Semantic segmentation, fully convolutional network, task decomposition, sync-regularization, deep learning BibRef

Wang, D.[Dan], Hu, G.Q.[Guo-Qing], Lyu, C.Z.[Cheng-Zhi],
Multi-path connected network for medical image segmentation,
JVCIR(71), 2020, pp. 102852.
Elsevier DOI 2009
Medical image segmentation, Multi-path connections, Convolutional neural networks, Encoder-decoder structure BibRef

Kim, B.N.[Bach Ngoc], Dolz, J.[Jose], Jodoin, P.M.[Pierre-Marc], Desrosiers, C.[Christian],
Privacy-Net: An Adversarial Approach for Identity-Obfuscated Segmentation of Medical Images,
MedImg(40), No. 7, July 2021, pp. 1737-1749.
IEEE DOI 2107
Image segmentation, Task analysis, Biomedical imaging, Servers, Training, Privacy, Image analysis, Adversarial, deep learning, segmentation BibRef

Huang, H.M.[Hui-Min], Zheng, H.[Han], Lin, L.F.[Lan-Fen], Cai, M.[Ming], Hu, H.J.[Hong-Jie], Zhang, Q.W.[Qiao-Wei], Chen, Q.Q.[Qing-Qing], Iwamoto, Y.[Yutaro], Han, X.H.[Xian-Hua], Chen, Y.W.[Yen-Wei], Tong, R.F.[Ruo-Feng],
Medical Image Segmentation With Deep Atlas Prior,
MedImg(40), No. 12, December 2021, pp. 3519-3530.
IEEE DOI 2112
Image segmentation, Bayes methods, Probabilistic logic, Deep learning, Adaptation models, Task analysis, adaptive bayesian loss BibRef

Yu, Q.[Qian], Gao, Y.[Yang], Zheng, Y.F.[Ye-Feng], Zhu, J.B.[Jian-Bing], Dai, Y.K.[Ya-Kang], Shi, Y.H.[Ying-Huan],
Crossover-Net: Leveraging vertical-horizontal crossover relation for robust medical image segmentation,
PR(113), 2021, pp. 107756.
Elsevier DOI 2103
Code, Segmentation.
WWW Link. Convolutional neural network, Non-elongated tissue, Crossover-Net, Image segmentation, Crossover-patch BibRef

Nath, V.[Vishwesh], Yang, D.[Dong], Landman, B.A.[Bennett A.], Xu, D.G.[Da-Guang], Roth, H.R.[Holger R.],
Diminishing Uncertainty Within the Training Pool: Active Learning for Medical Image Segmentation,
MedImg(40), No. 10, October 2021, pp. 2534-2547.
IEEE DOI 2110
Image segmentation, Biomedical imaging, Deep learning, Training, Task analysis, Mutual information, Hippocampus, Deep Learning, SVGD BibRef

Feng, R.[Ruiwei], Zheng, X.S.[Xiang-Shang], Gao, T.X.[Tian-Xiang], Chen, J.T.[Jin-Tai], Wang, W.Z.[Wen-Zhe], Chen, D.Z.[Danny Z.], Wu, J.[Jian],
Interactive Few-Shot Learning: Limited Supervision, Better Medical Image Segmentation,
MedImg(40), No. 10, October 2021, pp. 2575-2588.
IEEE DOI 2110
Image segmentation, Task analysis, Biomedical imaging, Training, Annotations, Deep learning, Optimization, limited supervision BibRef

Cui, H.J.[Heng-Ji], Wei, D.[Dong], Ma, K.[Kai], Gu, S.[Shi], Zheng, Y.F.[Ye-Feng],
A Unified Framework for Generalized Low-Shot Medical Image Segmentation With Scarce Data,
MedImg(40), No. 10, October 2021, pp. 2656-2671.
IEEE DOI 2110
Image segmentation, Biomedical imaging, Training, Annotations, Task analysis, Diseases, adaptive mixing coefficients BibRef

Wang, L.[Lu], Guo, D.[Dong], Wang, G.[Guotai], Zhang, S.T.[Shao-Ting],
Annotation-Efficient Learning for Medical Image Segmentation Based on Noisy Pseudo Labels and Adversarial Learning,
MedImg(40), No. 10, October 2021, pp. 2795-2807.
IEEE DOI 2110
Image segmentation, Training, Annotations, Shape, Biomedical imaging, Noise measurement, Deep learning, Segmentation, deep learning, noisy labels BibRef

Qu, L.[Lei], Wang, M.[Meng], Guo, K.X.[Kai-Xuan], Wan, W.[Wan], Liu, Y.[Yu], Tang, J.[Jun], Wu, J.[Jun], Duan, P.[Peng],
Biomedical image segmentation based on full-Resolution network,
PRL(153), 2022, pp. 232-238.
Elsevier DOI 2201
Image Segmentation, Biomedical Image, Full-resolution, Convolutional Neural Network BibRef

Wang, R.S.[Ri-Sheng], Lei, T.[Tao], Cui, R.X.[Rui-Xia], Zhang, B.T.[Bing-Tao], Meng, H.Y.[Hong-Ying], Nandi, A.K.[Asoke K.],
Medical image segmentation using deep learning: A survey,
IET-IPR(16), No. 5, 2022, pp. 1243-1267.
DOI Link 2203
Survey, Medical Images. BibRef

Minaee, S.[Shervin], Boykov, Y.Y.[Yuri Y.], Porikli, F.M.[Fatih M.], Plaza, A.[Antonio], Kehtarnavaz, N.[Nasser], Terzopoulos, D.[Demetri],
Image Segmentation Using Deep Learning: A Survey,
PAMI(44), No. 7, July 2022, pp. 3523-3542.
IEEE DOI 2206
Image segmentation, Semantics, Deep learning, Computational modeling, medical image segmentation BibRef

Zhang, Z.X.[Zhen-Xi], Tian, C.[Chunna], Gao, X.B.[Xin-Bo], Li, J.[Jie], Jiao, Z.C.[Zhi-Cheng], Wang, C.[Cui], Zhong, Z.[Zhusi],
Collaborative boundary-aware context encoding networks for error map prediction,
PR(125), 2022, pp. 108515.
Elsevier DOI 2203
Segmentation quality assessment, Error map prediction, Medical image segmentation BibRef

Gut, D.[Daniel], Tabor, Z.[Zbislaw], Szymkowski, M.[Mateusz], Rozynek, M.[Milosz], Kucybala, I.[Iwona], Wojciechowski, W.[Wadim],
Benchmarking of Deep Architectures for Segmentation of Medical Images,
MedImg(41), No. 11, November 2022, pp. 3231-3241.
IEEE DOI 2211
Image segmentation, Task analysis, Training, Biomedical imaging, Computed tomography, Magnetic resonance imaging, Benchmark, segmentation BibRef

Zhang, Y.C.[Yun-Chu], Dong, J.F.[Jian-Fei],
2K-Fold-Net and feature enhanced 4-Fold-Net for medical image segmentation,
PR(127), 2022, pp. 108625.
Elsevier DOI 2205
2K-Fold-Net, EF-Net, U-Net, AFE, Image segmentation BibRef

Liu, Z.H.[Zi-Hao], Li, Z.W.[Zhuo-Wei], Hu, Z.Q.[Zhi-Qiang], Xia, Q.[Qing], Xiong, R.Q.[Rui-Qin], Zhang, S.T.[Shao-Ting], Jiang, T.T.[Ting-Ting],
Contrastive and Selective Hidden Embeddings for Medical Image Segmentation,
MedImg(41), No. 11, November 2022, pp. 3398-3410.
IEEE DOI 2211
Code, Segmentation.
WWW Link. Uncertainty, Image segmentation, Training, Task analysis, Medical diagnostic imaging, Decoding, neural network BibRef

Song, J.H.[Jia-Huan], Chen, X.J.[Xin-Jian], Zhu, Q.[Qianlong], Shi, F.[Fei], Xiang, D.[Dehui], Chen, Z.Y.[Zhong-Yue], Fan, Y.[Ying], Pan, L.J.[Ling-Jiao], Zhu, W.F.[Wei-Fang],
Global and Local Feature Reconstruction for Medical Image Segmentation,
MedImg(41), No. 9, September 2022, pp. 2273-2284.
IEEE DOI 2209
Feature extraction, Image reconstruction, Semantics, Image segmentation, Convolution, Biomedical imaging, Task analysis, local feature reconstruction module BibRef

Nan, Y.[Yang], Tang, P.[Peng], Zhang, G.[Guyue], Zeng, C.H.[Cai-Hong], Liu, Z.H.[Zhi-Hong], Gao, Z.F.[Zhi-Fan], Zhang, H.[Heye], Yang, G.[Guang],
Unsupervised Tissue Segmentation via Deep Constrained Gaussian Network,
MedImg(41), No. 12, December 2022, pp. 3799-3811.
IEEE DOI 2212
Image segmentation, Pathology, Training, Manuals, Annotations, Deep learning, Unsupervised learning, Semantic segmentation, tissue segmentation BibRef

Zheng, R.F.[Rui-Feng], Zhong, Y.[Ying], Yan, S.[Senxiang], Sun, H.C.[Hong-Cheng], Shen, H.B.[Hai-Bin], Huang, K.[Kejie],
MsVRL: Self-Supervised Multiscale Visual Representation Learning via Cross-Level Consistency for Medical Image Segmentation,
MedImg(42), No. 1, January 2023, pp. 91-102.
IEEE DOI 2301
Image segmentation, Task analysis, Visualization, Self-supervised learning, Medical diagnostic imaging, abdomen BibRef

Hu, S.S.[Shi-Shuai], Liao, Z.[Zehui], Zhang, J.P.[Jian-Peng], Xia, Y.[Yong],
Domain and Content Adaptive Convolution Based Multi-Source Domain Generalization for Medical Image Segmentation,
MedImg(42), No. 1, January 2023, pp. 233-244.
IEEE DOI 2301
Image segmentation, Adaptation models, Head, Biomedical imaging, Convolution, Training, Data models, Domain generalization, deep learning BibRef

Valverde, J.M.[Juan Miguel], Tohka, J.[Jussi],
Region-wise loss for biomedical image segmentation,
PR(136), 2023, pp. 109208.
Elsevier DOI 2301
Deep learning, Segmentation, Medical imaging, Loss function BibRef

Yuan, F.N.[Fei-Niu], Zhang, Z.X.[Zheng-Xiao], Fang, Z.J.[Zhi-Jun],
An effective CNN and Transformer complementary network for medical image segmentation,
PR(136), 2023, pp. 109228.
Elsevier DOI 2301
Transformer, Medical image segmentation, Feature complementary module, Cross-domain fusion, Convolutional Neural Network BibRef

Li, S.[Shumeng], Cai, H.[Heng], Qi, L.[Lei], Yu, Q.[Qian], Shi, Y.H.[Ying-Huan], Gao, Y.[Yang],
PLN: Parasitic-Like Network for Barely Supervised Medical Image Segmentation,
MedImg(42), No. 3, March 2023, pp. 582-593.
IEEE DOI 2303
Annotations, Image segmentation, Training, Biomedical imaging, Task analysis, Shape, 3D medical image segmentation, parasitic-like network BibRef

Cai, H.[Heng], Li, S.[Shumeng], Qi, L.[Lei], Yu, Q.[Qian], Shi, Y.H.[Ying-Huan], Gao, Y.[Yang],
Orthogonal Annotation Benefits Barely-supervised Medical Image Segmentation,
CVPR23(3302-3311)
IEEE DOI 2309
BibRef

Zou, W.X.[Wen-Xuan], Qi, X.Q.[Xing-Qun], Zhou, W.T.[Wan-Ting], Sun, M.[Muyi], Sun, Z.A.[Zhen-An], Shan, C.F.[Cai-Feng],
Graph Flow: Cross-Layer Graph Flow Distillation for Dual Efficient Medical Image Segmentation,
MedImg(42), No. 4, April 2023, pp. 1159-1171.
IEEE DOI 2304
Image segmentation, Knowledge engineering, Medical diagnostic imaging, Sun, Cross layer design, Annotations, graph flow BibRef

Yuan, C.[Chao], Wang, Y.B.[Yan-Bo], Xiao, Y.X.[Yun-Xuan],
LSUnetMix: Fuse channel feature information with long-short term memory,
IET-CV(17), No. 2, 2023, pp. 241-249.
DOI Link 2304
biomedical engineering, image segmentation, learning (artificial intelligence) BibRef

Wang, K.[Kun], Zhang, X.H.[Xiao-Hong], Lu, Y.T.[Yu-Ting], Zhang, W.[Wei], Huang, S.[Sheng], Yang, D.[Dan],
GSAL: Geometric structure adversarial learning for robust medical image segmentation,
PR(140), 2023, pp. 109596.
Elsevier DOI 2305
Medical image segmentation, Geometric structure learning, Adversarial learning, Computer-Aided diagnosis (CAD) BibRef

Li, H.[He], Iwamoto, Y.[Yutaro], Han, X.H.[Xian-Hua], Lin, L.F.[Lan-Fen], Furukawa, A.[Akira], Kanasaki, S.[Shuzo], Chen, Y.W.[Yen-Wei],
3D Multiple-Contextual ROI-Attention Network for Efficient and Accurate Volumetric Medical Image Segmentation,
IEICE(E106-D), No. 5, May 2023, pp. 1027-1037.
WWW Link. 2305
BibRef

Fang, W.H.[Wen-Hao], Han, X.H.[Xian-Hua],
Spatial and Channel Attention Modulated Network for Medical Image Segmentation,
MLCSA20(3-17).
Springer DOI 2103
BibRef

Song, Y.Y.[You-Yi], Yu, L.Q.[Le-Quan], Lei, B.Y.[Bai-Ying], Choi, K.S.[Kup-Sze], Qin, J.[Jing],
Data Discernment for Affordable Training in Medical Image Segmentation,
MedImg(42), No. 5, May 2023, pp. 1431-1445.
IEEE DOI 2305
Training, Image segmentation, Biomedical imaging, Task analysis, Training data, Programming, Annotations, Data discernment, medical image segmentation BibRef

Huang, X.H.[Xiao-Hong], Deng, Z.F.[Zhi-Fang], Li, D.D.[Dan-Dan], Yuan, X.G.[Xue-Guang], Fu, Y.[Ying],
MISSFormer: An Effective Transformer for 2D Medical Image Segmentation,
MedImg(42), No. 5, May 2023, pp. 1484-1494.
IEEE DOI 2305
Transformers, Image segmentation, Task analysis, Bridges, Medical diagnostic imaging, Feature extraction, Merging, segmentation BibRef

Hao, D.[Dechen], Li, H.L.[Hua-Ling],
A graph-based edge attention gate medical image segmentation method,
IET-IPR(17), No. 7, 2023, pp. 2142-2157.
DOI Link 2305
dropout residual graph convolution block, edge attention gate, medical image segmentation, UNet++, weighted loss function BibRef

Li, Z.[Zeju], Kamnitsas, K.[Konstantinos], Ouyang, C.[Cheng], Chen, C.[Chen], Glocker, B.[Ben],
Context Label Learning: Improving Background Class Representations in Semantic Segmentation,
MedImg(42), No. 6, June 2023, pp. 1885-1896.
IEEE DOI 2306
Image segmentation, Tumors, Task analysis, Liver, Kidney, Context modeling, Training, Underfitting, multi-task learning, image segmentation BibRef

Fang, C.W.[Chao-Wei], Wang, Q.[Qian], Cheng, L.[Lechao], Gao, Z.F.[Zhi-Fan], Pan, C.W.[Cheng-Wei], Cao, Z.[Zhen], Zheng, Z.H.[Zhao-Hui], Zhang, D.W.[Ding-Wen],
Reliable Mutual Distillation for Medical Image Segmentation Under Imperfect Annotations,
MedImg(42), No. 6, June 2023, pp. 1720-1734.
IEEE DOI 2306
Image segmentation, Reliability, Annotations, Noise measurement, Data models, Training, Cleaning, Imperfect annotation, medical image segmentation BibRef

Xian, J.L.[Jun-Lin], Li, X.[Xiang], Tu, D.D.[Dan-Dan], Zhu, S.[Senhua], Zhang, C.Z.[Chang-Zheng], Liu, X.W.[Xiao-Wu], Li, X.[Xin], Yang, X.[Xin],
Unsupervised Cross-Modality Adaptation via Dual Structural-Oriented Guidance for 3D Medical Image Segmentation,
MedImg(42), No. 6, June 2023, pp. 1774-1785.
IEEE DOI 2306
Image segmentation, Biomedical imaging, Feature extraction, Training, Magnetic resonance imaging, Computed tomography, structural-oriented guidance BibRef

Shu, Y.C.[Yu-Cheng], Li, H.[Hengbo], Xiao, B.[Bin], Bi, X.L.[Xiu-Li], Li, W.S.[Wei-Sheng],
Cross-Mix Monitoring for Medical Image Segmentation With Limited Supervision,
MultMed(25), 2023, pp. 1700-1712.
IEEE DOI 2306
Image segmentation, Biomedical imaging, Training, Data models, Perturbation methods, Task analysis, Monitoring, transductive monitor BibRef

Ta, N.[Na], Chen, H.P.[Hai-Peng], Lyu, Y.D.[Ying-Da], Wang, X.[Xue], Shi, Z.[Zenan], Liu, Z.H.[Zhe-Hao],
A complementary and contrastive network for stimulus segmentation and generalization,
IVC(135), 2023, pp. 104694.
Elsevier DOI 2306
Complementary feature, Contrastive feature, Mutual attention, Synthetic data augmentation, Medical image segmentation BibRef

Jiang, M.[Meirui], Yang, H.Z.[Hong-Zheng], Cheng, C.[Chen], Dou, Q.[Qi],
IOP-FL: Inside-Outside Personalization for Federated Medical Image Segmentation,
MedImg(42), No. 7, July 2023, pp. 2106-2117.
IEEE DOI 2307
Adaptation models, Data models, Training, Routing, Image segmentation, Biomedical imaging, Task analysis, data heterogeneity BibRef

Gao, Z.[Zheyao], Wu, F.[Fuping], Gao, W.G.[Wei-Guo], Zhuang, X.[Xiahai],
A New Framework of Swarm Learning Consolidating Knowledge From Multi-Center Non-IID Data for Medical Image Segmentation,
MedImg(42), No. 7, July 2023, pp. 2118-2129.
IEEE DOI 2307
Image segmentation, Training, Data models, Task analysis, Biomedical imaging, Distributed databases, Distance learning, swarm learning BibRef

Lin, X.[Xian], Yu, L.[Li], Cheng, K.T.[Kwang-Ting], Yan, Z.Q.[Zeng-Qiang],
The Lighter the Better: Rethinking Transformers in Medical Image Segmentation Through Adaptive Pruning,
MedImg(42), No. 8, August 2023, pp. 2325-2337.
IEEE DOI 2308
Transformers, Biomedical imaging, Image segmentation, Training, Task analysis, Computational complexity, Costs, Adaptive pruning, transformer BibRef

Huang, S.Q.[Shi-Qi], Xu, T.F.[Ting-Fa], Shen, N.[Ning], Mu, F.[Feng], Li, J.A.[Jian-An],
Rethinking Few-Shot Medical Segmentation: A Vector Quantization View,
CVPR23(3072-3081)
IEEE DOI 2309
BibRef

Chen, Y.Z.[Yi-Zheng], Yu, L.Q.[Le-Quan], Wang, J.Y.[Jen-Yeu], Panjwani, N.[Neil], Obeid, J.P.[Jean-Pierre], Liu, W.[Wu], Liu, L.L.[Lian-Li], Kovalchuk, N.[Nataliya], Gensheimer, M.F.[Michael Francis], Vitzthum, L.K.[Lucas Kas], Beadle, B.M.[Beth M.], Chang, D.T.[Daniel T.], Le, Q.T.[Quynh-Thu], Han, B.[Bin], Xing, L.[Lei],
Adaptive Region-Specific Loss for Improved Medical Image Segmentation,
PAMI(45), No. 11, November 2023, pp. 13408-13421.
IEEE DOI 2310
BibRef

He, A.[Along], Wang, K.[Kai], Li, T.[Tao], Du, C.K.[Cheng-Kun], Xia, S.[Shuang], Fu, H.Z.[Hua-Zhu],
H2Former: An Efficient Hierarchical Hybrid Transformer for Medical Image Segmentation,
MedImg(42), No. 9, September 2023, pp. 2763-2775.
IEEE DOI 2310
BibRef

Wang, N.[Nan], Lin, S.H.[Shao-Hui], Li, X.X.[Xiao-Xiao], Li, K.[Ke], Shen, Y.[Yunhang], Gao, Y.[Yue], Ma, L.Z.[Li-Zhuang],
MISSU: 3D Medical Image Segmentation via Self-Distilling TransUNet,
MedImg(42), No. 9, September 2023, pp. 2740-2750.
IEEE DOI 2310
BibRef

Du, H.[Hao], Dong, Q.H.[Qi-Hua], Xu, Y.[Yan], Liao, J.[Jing],
Weakly-Supervised 3D Medical Image Segmentation Using Geometric Prior and Contrastive Similarity,
MedImg(42), No. 10, October 2023, pp. 2936-2947.
IEEE DOI 2310
BibRef

Zhang, J.Y.[Jing-Yang], Gu, R.[Ran], Xue, P.[Peng], Liu, M.X.[Mian-Xin], Zheng, H.[Hao], Zheng, Y.F.[Ye-Feng], Ma, L.[Lei], Wang, G.[Guotai], Gu, L.[Lixu],
S3R: Shape and Semantics-Based Selective Regularization for Explainable Continual Segmentation Across Multiple Sites,
MedImg(42), No. 9, September 2023, pp. 2539-2551.
IEEE DOI 2310
BibRef

Xu, M.C.[Mou-Cheng], Zhou, Y.K.[Yu-Kun], Jin, C.[Chen], de Groot, M.[Marius], Alexander, D.C.[Daniel C.], Oxtoby, N.P.[Neil P.], Jacob, J.[Joseph],
MisMatch: Calibrated Segmentation via Consistency on Differential Morphological Feature Perturbations With Limited Labels,
MedImg(42), No. 10, October 2023, pp. 2988-2999.
IEEE DOI 2310
BibRef

Wang, S.S.[Sheng-Sheng], Fu, Z.[Zihao], Wang, B.L.[Bi-Lin], Hu, Y.L.[Yu-Long],
Fusing feature and output space for unsupervised domain adaptation on medical image segmentation,
IJIST(33), No. 5, 2023, pp. 1672-1681.
DOI Link 2310
adversarial domain adaptation, domain adaptation, image segmentation, medical image BibRef

Pang, S.C.[Shu-Chao], Du, A.[Anan], Orgun, M.A.[Mehmet A.], Wang, Y.[Yan], Sheng, Q.Z.[Quan Z.], Wang, S.J.[Shou-Jin], Huang, X.S.[Xiao-Shui], Yu, Z.M.[Zhen-Mei],
Beyond CNNs: Exploiting Further Inherent Symmetries in Medical Image Segmentation,
Cyber(53), No. 11, November 2023, pp. 6776-6787.
IEEE DOI 2310
BibRef

Wu, H.M.[Hui-Min], Li, X.M.[Xiao-Meng], Lin, Y.Q.[Yi-Qun], Cheng, K.T.[Kwang-Ting],
Compete to Win: Enhancing Pseudo Labels for Barely-Supervised Medical Image Segmentation,
MedImg(42), No. 11, November 2023, pp. 3244-3255.
IEEE DOI Code:
WWW Link. 2311
BibRef

Li, Z.[Zeju], Kamnitsas, K.[Konstantinos], Dou, Q.[Qi], Qin, C.[Chen], Glocker, B.[Ben],
Joint Optimization of Class-Specific Training- and Test-Time Data Augmentation in Segmentation,
MedImg(42), No. 11, November 2023, pp. 3323-3335.
IEEE DOI Code:
WWW Link. 2311
BibRef

Ji, Q.L.[Qiu-Lang], Wang, J.H.[Ji-Hong], Ding, C.[Caifu], Wang, Y.H.[Yu-Hang], Zhou, W.[Wen], Liu, Z.J.[Zi-Jie], Yang, C.[Chen],
DMAGNet: Dual-path multi-scale attention guided network for medical image segmentation,
IET-IPR(17), No. 13, 2023, pp. 3631-3644.
DOI Link 2311
codecs, convolutional neural nets, image processing, image segmentation BibRef

Chen, J.K.[Jing-Kun], Chen, C.R.[Chang-Rui], Huang, W.J.[Wen-Jian], Zhang, J.G.[Jian-Guo], Debattista, K.[Kurt], Han, J.G.[Jun-Gong],
Dynamic contrastive learning guided by class confidence and confusion degree for medical image segmentation,
PR(145), 2024, pp. 109881.
Elsevier DOI 2311
Class confusion degree, Dynamic contrastive learning, Medical image segmentation BibRef

Qiu, Z.X.[Zhong-Xi], Hu, Y.[Yan], Chen, X.S.[Xiao-Shan], Zeng, D.[Dan], Hu, Q.Y.[Qing-Yong], Liu, J.[Jiang],
Rethinking Dual-Stream Super-Resolution Semantic Learning in Medical Image Segmentation,
PAMI(46), No. 1, January 2024, pp. 451-464.
IEEE DOI 2312
BibRef

Zhang, J.J.[Jiao-Jiao], Zhang, S.[Shuo], Shen, X.Q.[Xiao-Qian], Lukasiewicz, T.[Thomas], Xu, Z.H.[Zheng-Hua],
Multi-ConDoS: Multimodal Contrastive Domain Sharing Generative Adversarial Networks for Self-Supervised Medical Image Segmentation,
MedImg(43), No. 1, January 2024, pp. 76-95.
IEEE DOI 2401
BibRef

Xu, Z.H.[Zheng-Hua], Liu, Y.X.[Yun-Xin], Xu, G.[Gang], Lukasiewicz, T.[Thomas],
Self-Supervised Medical Image Segmentation Using Deep Reinforced Adaptive Masking,
MedImg(44), No. 1, January 2025, pp. 180-193.
IEEE DOI 2501
Biomedical imaging, Image reconstruction, Image segmentation, Task analysis, Adaptation models, Self-supervised learning, deep reinforcement learning BibRef

Lei, W.H.[Wen-Hui], Su, Q.[Qi], Jiang, T.Y.[Tian-Yu], Gu, R.[Ran], Wang, N.[Na], Liu, X.L.[Xing-Long], Wang, G.[Guotai], Zhang, X.F.[Xiao-Fan], Zhang, S.T.[Shao-Ting],
One-Shot Weakly-Supervised Segmentation in 3D Medical Images,
MedImg(43), No. 1, January 2024, pp. 175-189.
IEEE DOI Code:
WWW Link. 2401
BibRef

Wang, J.C.[Jia-Cheng], Jin, Y.M.[Yue-Ming], Stoyanov, D.[Danail], Wang, L.S.[Lian-Sheng],
FedDP: Dual Personalization in Federated Medical Image Segmentation,
MedImg(43), No. 1, January 2024, pp. 297-308.
IEEE DOI Code:
WWW Link. 2401
BibRef
Earlier: A1, A2, A4, Only:
Personalizing Federated Medical Image Segmentation via Local Calibration,
ECCV22(XXI:456-472).
Springer DOI 2211
BibRef

Tong, S.S.[Shan-Shan], Zuo, Z.T.[Zhen-Tao], Liu, Z.[Zuxiang], Sun, D.[Dengdi], Zhou, T.G.[Tian-Gang],
Hybrid attention mechanism of feature fusion for medical image segmentation,
IET-IPR(18), No. 1, 2024, pp. 77-87.
DOI Link 2401
biomedical imaging, image segmentation, medical image processing BibRef

Lu, C.Z.[Cheng-Zhun], Xia, Z.R.[Zhang-Run], Przystupa, K.[Krzysztof], Kochan, O.[Orest], Su, J.[Jun],
DCELANM-Net: Medical image segmentation based on dual channel efficient layer aggregation network with learner,
IJIST(34), No. 1, 2024, pp. e22960.
DOI Link 2401
CNN, medical image segmentation, self-supervised learning, transformer BibRef

Ming, Q.[Qi], Xiao, X.W.[Xiao-Wu],
Towards Accurate Medical Image Segmentation with Gradient-Optimized Dice Loss,
SPLetters(31), 2024, pp. 191-195.
IEEE DOI 2401
BibRef

Pang, Y.[Yan], Liang, J.M.[Jia-Ming], Huang, T.[Teng], Chen, H.[Hao], Li, Y.H.[Yun-Hao], Li, D.[Dan], Huang, L.[Lin], Wang, Q.[Qiong],
Slim UNETR: Scale Hybrid Transformers to Efficient 3D Medical Image Segmentation Under Limited Computational Resources,
MedImg(43), No. 3, March 2024, pp. 994-1005.
IEEE DOI Code:
WWW Link. 2403
Biomedical imaging, Transformers, Image segmentation, Task analysis, Computational modeling, Solid modeling, resource-limited application BibRef

Han, X.J.[Xian-Jun], Li, T.T.[Tian-Tian], Bai, C.[Can], Yang, H.Y.[Hong-Yu],
Integrating prior knowledge into a bibranch pyramid network for medical image segmentation,
IVC(143), 2024, pp. 104945.
Elsevier DOI 2403
Image pyramid, Medical image segmentation, Prior knowledge, Medical image processing BibRef

Li, H.[Hao], Zhai, D.H.[Di-Hua], Xia, Y.Q.[Yuan-Qing],
ERDUnet: An Efficient Residual Double-Coding Unet for Medical Image Segmentation,
CirSysVideo(34), No. 4, April 2024, pp. 2083-2096.
IEEE DOI Code:
WWW Link. 2404
Image segmentation, Feature extraction, Medical diagnostic imaging, Lesions, Transformers, Encoding, reduce parameter scale BibRef

Huang, Z.M.[Zhong-Miao], Cheng, S.[Shuli], Wang, L.J.[Lie-Jun],
Medical image segmentation based on dynamic positioning and region-aware attention,
PR(151), 2024, pp. 110375.
Elsevier DOI 2404
Medical image segmentation, Transformer, Dynamic Positioning Attention, Bi-Level Routing Attention BibRef

Guo, X.[Xiayu], Lin, X.[Xian], Yang, X.[Xin], Yu, L.[Li], Cheng, K.T.[Kwang-Ting], Yan, Z.Q.[Zeng-Qiang],
UCTNet: Uncertainty-guided CNN-Transformer hybrid networks for medical image segmentation,
PR(152), 2024, pp. 110491.
Elsevier DOI Code:
WWW Link. 2405
CNN-Transformer hybrid, Uncertainty, Functional overlap, Masked self-attention, Medical image segmentation BibRef

Liu, X.Q.[Xiao-Qing], Ono, K.[Kenji], Bise, R.[Ryoma],
A data augmentation approach that ensures the reliability of foregrounds in medical image segmentation,
IVC(147), 2024, pp. 105056.
Elsevier DOI 2406
Medical image analysis, Medical image segmentation, Data augmentation BibRef

Wang, Z.B.[Zhi-Bing], Wang, W.M.[Wen-Min], Li, N.N.[Nan-Nan], Zhang, S.Y.[Shen-Yong], Chen, Q.[Qi], Jiang, Z.[Zhe],
Multimodal parallel attention network for medical image segmentation,
IVC(147), 2024, pp. 105069.
Elsevier DOI 2406
Multimodal parallel attention, Feature parallel, Spatial parallel, Channel parallel, Medical image segmentation BibRef

Zhu, E.[Enjun], Feng, H.[Haiyu], Chen, L.[Long], Lai, Y.Q.[Yong-Qiang], Chai, S.[Senchun],
MP-Net: A Multi-Center Privacy-Preserving Network for Medical Image Segmentation,
MedImg(43), No. 7, July 2024, pp. 2718-2729.
IEEE DOI 2407
Biomedical imaging, Encryption, Image segmentation, Training, Cryptography, Hospitals, Medical diagnostic imaging, Deep learning, segmentation BibRef

Chen, K.[Kecheng], Qin, T.[Tiexin], Lee, V.H.F.[Victor Ho-Fun], Yan, H.[Hong], Li, H.L.[Hao-Liang],
Learning Robust Shape Regularization for Generalizable Medical Image Segmentation,
MedImg(43), No. 7, July 2024, pp. 2693-2706.
IEEE DOI 2407
Shape, Image segmentation, Biomedical imaging, Training, Image edge detection, Feature extraction, knowledge distillation BibRef

Yang, Z.Y.[Zhi-Yi], Zhao, Z.[Zhou], Gu, Y.L.[Yu-Liang], Xu, Y.C.[Yong-Chao],
Query-guided generalizable medical image segmentation,
PRL(184), 2024, pp. 52-58.
Elsevier DOI 2408
Medical image segmentation, Domain generalized, Query-based transformer BibRef

Huang, X.R.[Xing-Ru], Huang, J.[Jian], Zhao, K.[Kai], Zhang, T.Y.[Tian-Yun], Li, Z.[Zhi], Yue, C.P.[Chang-Peng], Chen, W.H.[Wen-Hao], Wang, R.H.[Rui-Hao], Chen, X.B.[Xuan-Bin], Zhang, Q.[Qianni], Fu, Y.[Ying], Wang, Y.Y.[Yang-Yundou], Guo, Y.H.[Yi-Hao],
SASAN: Spectrum-Axial Spatial Approach Networks for Medical Image Segmentation,
MedImg(43), No. 8, August 2024, pp. 3044-3056.
IEEE DOI Code:
WWW Link. 2408
BibRef

Liu, Q.[Qing], Zeng, H.L.[Hai-Long], Sun, Z.D.[Zhao-Dong], Li, X.B.[Xiao-Bai], Zhao, G.Y.[Guo-Ying], Liang, Y.X.[Yi-Xiong],
Many birds, one stone: Medical image segmentation with multiple partially labeled datasets,
PR(155), 2024, pp. 110636.
Elsevier DOI Code:
WWW Link. 2408
Partially supervised learning, Self-training, Medical image segmentation, Cross-task attention BibRef

Fiaz, M.[Mustansar], Noman, M.[Mubashir], Cholakkal, H.[Hisham], Anwer, R.M.[Rao Muhammad], Hanna, J.[Jacob], Khan, F.S.[Fahad Shahbaz],
Guided-attention and gated-aggregation network for medical image segmentation,
PR(156), 2024, pp. 110812.
Elsevier DOI Code:
WWW Link. 2408
Medical image segmentation, Multi-scale feature aggregation, Mask-guided feature attention, Deep supervision, Transformers, Convolutional neural networks BibRef

Gai, D.[Di], Geng, Y.H.[Yu-Han], Huang, X.[Xia], Huang, Z.[Zheng], Xiong, X.[Xin], Zhou, R.H.[Rui-Hua], Wang, Q.[Qi],
Feature ensemble network for medical image segmentation with multi-scale atrous transformer,
IET-IPR(18), No. 11, 2024, pp. 3082-3092.
DOI Link 2409
biomedical imaging, image segmentation, medical image processing BibRef

Wang, Y.[Ying], Zhang, M.[Meng], Liang, J.[Jian'an], Liang, M.Y.[Mei-Yan],
MFH-Net: A Hybrid CNN-Transformer Network Based Multi-Scale Fusion for Medical Image Segmentation,
IJIST(34), No. 6, 2024, pp. e23192.
DOI Link 2410
medical image segmentation, multi-scale feature fusion, skip connection, U-Net BibRef

Zhang, Y.M.[Yu-Min], Li, H.L.[Hong-Liu], Gao, Y.J.[Ya-Jun], Duan, H.R.[Hao-Ran], Huang, Y.W.[Ya-Wen], Zheng, Y.F.[Ye-Feng],
Prototype Correlation Matching and Class- Relation Reasoning for Few-Shot Medical Image Segmentation,
MedImg(43), No. 11, November 2024, pp. 4041-4054.
IEEE DOI 2411
Medical diagnostic imaging, Image segmentation, Correlation, Prototypes, Task analysis, Cognition, Semantics, inter-class relations BibRef

Chen, T.[Tao], Wang, C.[Chenhui], Chen, Z.H.[Zhi-Hao], Lei, Y.M.[Yi-Ming], Shan, H.M.[Hong-Ming],
HiDiff: Hybrid Diffusion Framework for Medical Image Segmentation,
MedImg(43), No. 10, October 2024, pp. 3570-3583.
IEEE DOI Code:
WWW Link. 2411
Image segmentation, Biomedical imaging, Diffusion models, Task analysis, Data models, Training, Transformers, diffusion model BibRef

Ji, Z.X.[Ze-Xuan], Ye, S.L.[Shun-Long], Ma, X.[Xiao],
Sparse Coding Inspired LSTM and Self-Attention Integration for Medical Image Segmentation,
IP(33), 2024, pp. 6098-6113.
IEEE DOI Code:
WWW Link. 2411
Long short term memory, Image coding, Image segmentation, Medical diagnostic imaging, Sparse matrices, Codes, medical image segmentation BibRef

Zhang, J.W.[Jia-Wei], Zhang, Y.C.[Yan-Chun], Qiu, H.L.[Hai-Long], Wang, T.C.[Tian-Chen], Li, X.M.[Xiao-Meng], Zhu, S.F.[Shan-Feng], Huang, M.P.[Mei-Ping], Zhuang, J.[Jian], Shi, Y.Y.[Yi-Yu], Xu, X.W.[Xiao-Wei],
Constrained multi-scale dense connections for biomedical image segmentation,
PR(158), 2025, pp. 111031.
Elsevier DOI Code:
WWW Link. 2411
Multi-scale dense connections, Image segmentation, Network architecture search, Feature fusion BibRef

Sun, J.D.[Jun-Ding], Li, Y.[Yabei], Wu, X.S.[Xiao-Sheng], Tang, C.S.[Chao-Sheng], Wang, S.H.[Shui-Hua], Zhang, Y.D.[Yu-Dong],
HAD-Net: An attention U-based network with hyper-scale shifted aggregating and max-diagonal sampling for medical image segmentation,
CVIU(249), 2024, pp. 104151.
Elsevier DOI 2412
Medical image segmentation, Max-diagonal pooling, Channel-space attention, Hyper-scale shifted aggregation BibRef

Ning, G.J.[Gang-Jun], Liu, P.P.[Ping-Ping], Dai, C.Y.[Chuang-Ye], Sun, M.[Mingsi], Zhou, Q.Z.[Qiu-Zhan], Li, Q.L.[Qing-Liang],
RGAM: A refined global attention mechanism for medical image segmentation,
IET-CV(18), No. 8, 2024, pp. 1362-1375.
DOI Link 2501
convolutional neural nets, medical image processing BibRef

Zhang, Z.[Zheng], Yin, G.C.[Guan-Chun], Ma, Z.[Zibo], Tan, Y.P.[Yun-Peng], Zhang, B.[Bo], Zhuang, Y.F.[Yu-Feng],
IDA-NET: Individual Difference aware Medical Image Segmentation with Meta-Learning,
PRL(187), 2025, pp. 21-27.
Elsevier DOI 2501
Transformer, U-Net, Meta Learning, Individual Difference, Medical Image Segmentation BibRef

Gao, J.[Jun], Lao, Q.[Qicheng], Kang, Q.B.[Qing-Bo], Liu, P.[Paul], Du, C.L.[Chen-Lin], Li, K.[Kang], Zhang, L.[Le],
Boosting Your Context by Dual Similarity Checkup for In-Context Learning Medical Image Segmentation,
MedImg(44), No. 1, January 2025, pp. 310-319.
IEEE DOI 2501
Image segmentation, Biomedical imaging, Task analysis, Semantics, Visualization, Data models, Computational modeling, support set reinforcement BibRef

Amaan-Valiuddin, M.M., Viviers, C.G.A.[Christiaan G. A.], van Sloun, R.J.G.[Ruud J. G.], de With, P.H.N.[Peter H. N.], van der Sommen, F.[Fons],
Investigating and Improving Latent Density Segmentation Models for Aleatoric Uncertainty Quantification in Medical Imaging,
MedImg(44), No. 1, January 2025, pp. 384-395.
IEEE DOI 2501
Uncertainty, Image segmentation, Probabilistic logic, Decoding, Training, Biomedical imaging, Annotations, latent density modeling BibRef

Huang, W.D.[Wen-Dong], Hu, J.[Jinwu], Xiao, J.H.[Jun-Hao], Wei, Y.[Yang], Bi, X.L.[Xiu-Li], Xiao, B.[Bin],
Prototype-Guided Graph Reasoning Network for Few-Shot Medical Image Segmentation,
MedImg(44), No. 2, February 2025, pp. 761-773.
IEEE DOI 2502
Prototypes, Semantic segmentation, Cognition, Medical diagnostic imaging, Training, Data models, medical image segmentation BibRef

Dhamale, A.[Akshat], Rajalakshmi, R.[Ratnavel], Balasundaram, A.[Ananthakrishnan],
Dual multi scale networks for medical image segmentation using contrastive learning,
IVC(154), 2025, pp. 105371.
Elsevier DOI 2502
Contrastive learning, Multi-scale architecture, Encoder-decoder based model, Medical image segmentation BibRef

Wang, W.[Wei], He, J.X.[Ji-Xing], Wang, X.[Xin],
Rethinking Feature Guidance for Medical Image Segmentation,
SPLetters(32), 2025, pp. 641-645.
IEEE DOI 2502
Feature extraction, Image segmentation, Lesions, Medical diagnostic imaging, Convolution, Logic gates, Transformers, medical image segmentation BibRef

Huang, S.[Senlong], Ge, Y.X.[Yong-Xin], Liu, D.F.[Dong-Fang], Hong, M.J.[Ming-Jian], Zhao, J.[Junhan], Loui, A.C.[Alexander C.],
Rethinking Copy-Paste for Consistency Learning in Medical Image Segmentation,
IP(34), 2025, pp. 1060-1074.
IEEE DOI Code:
WWW Link. 2502
Perturbation methods, Data models, Training, Image segmentation, Medical diagnostic imaging, Uncertainty, Estimation, Training data, copy-paste BibRef

Huang, Y.Z.[Yun-Zhi], Han, L.[Luyi], Dou, H.R.[Hao-Ran],
Generative feature style augmentation for domain generalization in medical image segmentation,
PR(162), 2025, pp. 111416.
Elsevier DOI 2503
Domain generalization, Variation inference, Feature style mapping BibRef

Ren, Z.T.[Zi-Tong], Li, Y.M.[Yong-Ming], Wang, L.J.[Lie-Jun], Xu, L.H.[Liang-Hui],
Lite-MixedNet: Lightweight and efficient hybrid network for medical image segmentation,
PR(162), 2025, pp. 111378.
Elsevier DOI Code:
WWW Link. 2503
Medical image segmentation, Convolutional Neural Network, Vision Transformer, Self-attention mechanism BibRef

Wang, Z.H.[Zhi-Hua], He, Y.X.[Yu-Xin], Yi, Z.[Zhang], He, T.[Tao], Bu, J.J.[Jia-Jun],
Neural Memory Self-Supervised State Space Models With Learnable Gates,
SPLetters(32), 2025, pp. 926-930.
IEEE DOI 2503
Computational modeling, Logic gates, Image segmentation, Decoding, Training, Image reconstruction, Head, Biomedical imaging, self-supervision BibRef

Lin, L.[Li], Liu, Y.X.[Yi-Xiang], Wu, J.W.[Jie-Wei], Cheng, P.[Pujin], Cai, Z.Y.[Zhi-Yuan], Wong, K.K.Y.[Kenneth K. Y.], Tang, X.Y.[Xiao-Ying],
FedLPPA: Learning Personalized Prompt and Aggregation for Federated Weakly-Supervised Medical Image Segmentation,
MedImg(44), No. 3, March 2025, pp. 1127-1139.
IEEE DOI Code:
WWW Link. 2503
Image segmentation, Data models, Training, Annotations, Computational modeling, Medical diagnostic imaging, medical image segmentation BibRef

Wang, H.F.[Hui-Fang], Liu, Y.T.[Ya-Tong], Ye, J.Y.[Jiong-Yao], Yang, D.W.[Da-Wei], Zhu, Y.[Yu],
TS-Net: Trans-Scale Network for Medical Image Segmentation,
IJIST(35), No. 2, 2025, pp. e70064.
DOI Link 2504
convolution modulation, deep supervision, edge loss, feature complementarity, medical image segmentation BibRef

Fanyang, Z.[Zhang], Fan, Z.[Zhang],
CS U-NET: A Medical Image Segmentation Method Integrating Spatial and Contextual Attention Mechanisms Based on U-NET,
IJIST(35), No. 2, 2025, pp. e70072.
DOI Link 2504
CBAM, deep learning, medical image segmentation, Swin transformer, U-net BibRef

Zhang, C.[Chuyan], Zheng, H.[Hao], You, X.[Xin], Zheng, Y.F.[Ye-Feng], Gu, Y.[Yun],
PASS: Test-Time Prompting to Adapt Styles and Semantic Shapes in Medical Image Segmentation,
MedImg(44), No. 4, April 2025, pp. 1853-1865.
IEEE DOI Code:
WWW Link. 2504
Shape, Adaptation models, Training, Visualization, Image segmentation, Data models, Semantics, Predictive models, transfer learning BibRef

Gu, Y.Y.[Ying-Yan], Wang, Y.[Yan], Ye, H.[Hua], Shu, X.[Xin],
DA-Net: Deep attention network for biomedical image segmentation,
SP:IC(135), 2025, pp. 117283.
Elsevier DOI 2504
Biomedical image segmentation, U-Net, Improved triplet attention, Residual concatenate block BibRef

Wu, L.[Lanhu], Zhang, M.[Miao], Piao, Y.[Yongri], Yao, Z.Y.[Zhen-Yan], Sun, W.B.[Wei-Bing], Tian, F.[Feng], Lu, H.C.[Hu-Chuan],
CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation,
CirSysVideo(35), No. 5, May 2025, pp. 4072-4086.
IEEE DOI Code:
WWW Link. 2505
Transformers, Federated learning, Knowledge transfer, Image segmentation, Convolutional neural networks, Accuracy, collaborative learning BibRef

Jing, W.P.[Wei-Peng], Wang, J.[Junze], Di, D.L.[Dong-Lin], Li, D.D.[Dan-Dan], Song, Y.[Yang], Fan, L.[Lei],
Multi-modal hypergraph contrastive learning for medical image segmentation,
PR(165), 2025, pp. 111544.
Elsevier DOI Code:
WWW Link. 2505
Multi-modal medical image, Self-supervised learning, Hypergraph learning, Knowledge distillation BibRef

Zhang, Z.Z.[Zhong-Zhou], Chen, Y.Y.[Ying-Yu], Yu, H.[Hui], Wang, Z.W.[Zhi-Wen], Wang, S.S.[Shan-Shan], Fan, F.L.[Feng-Lei], Shan, H.M.[Hong-Ming], Zhang, Y.[Yi],
UniAda: Domain Unifying and Adapting Network for Generalizable Medical Image Segmentation,
MedImg(44), No. 5, May 2025, pp. 1988-2001.
IEEE DOI Code:
WWW Link. 2505
Adaptation models, Training, Image segmentation, Testing, Data models, Uncertainty, Perturbation methods, unifying and adapting BibRef

Zhu, Y.[Yun], Zhang, D.[Dong], Lin, Y.[Yi], Feng, Y.F.[Yi-Fei], Tang, J.H.[Jin-Hui],
Merging Context Clustering With Visual State Space Models for Medical Image Segmentation,
MedImg(44), No. 5, May 2025, pp. 2131-2142.
IEEE DOI Code:
WWW Link. 2505
Context modeling, Image segmentation, Computational modeling, Visualization, Transformers, Medical diagnostic imaging, visual state space model BibRef

Chen, P.[Peng], Wang, H.H.[Hui-Hui], Jin, Q.[Qin],
MPKU-Net: A U-Shaped Medical Image Segmentation Network Based on MLP and KAN,
IJIST(35), No. 3, 2025, pp. e70105.
DOI Link Code:
WWW Link. 2506
KAN network architecture, medical image segmentation, multilayer perceptron, u-shaped network BibRef

Wang, Y.B.[Yuan-Bin], Shi, Y.[Yunbo], Zhao, R.[Rui], Chen, Y.[Yunan], Ren, X.Q.[Xing-Qiao], Xing, B.H.[Bing-Hong],
MGMFormer: Multi-Scale Attentional Medical Image Segmentation Network for Semantic Feature Enhancement,
IJIST(35), No. 3, 2025, pp. e70086.
DOI Link 2506
attention mechanism, feature enhancement, medical image segmentation, multi-scale feature extraction BibRef

Yu, X.C.[Xiang-Chun], Chen, Q.[Qiaoyi], Liang, M.M.[Miao-Miao], Yu, L.J.[Ling-Juan], Zheng, J.[Jian],
Feature Subspace Projection Knowledge Distillation for Medical Image Segmentation,
IJIST(35), No. 3, 2025, pp. e70085.
DOI Link 2506
bias-variance coupling, conditional generative adversarial learning, medical image segmentation BibRef

Tian, M.[Mu], Yang, Q.Z.[Qin-Zhu], Gao, Y.[Yi],
AttenScribble: Attention-enhanced scribble supervision for medical image segmentation,
JVCIR(110), 2025, pp. 104476.
Elsevier DOI Code:
WWW Link. 2506
Weakly-supervised learning, Scribbles, Self-attention BibRef

Bogensperger, L.[Lea], Narnhofer, D.[Dominik], Falk, A.[Alexander], Schindler, K.[Konrad], Pock, T.[Thomas],
FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms,
IJCV(133), No. 7, July 2025, pp. 4864-4876.
Springer DOI 2506
BibRef

Chen, C.J.[Chia-Jui],
Hard-UNet architecture for medical image segmentation using position encoding generator: LSA based encoder,
JVCIR(110), 2025, pp. 104452.
Elsevier DOI 2506
Medical image segmentation, Hardnet, LSA, Big data BibRef

Shan, D.D.[Dan-Dan], Li, Z.[Zihan], Li, Y.X.[Yun-Xiang], Li, Q.[Qingde], Tian, J.[Jie], Hong, Q.Q.[Qing-Qi],
STPNet: Scale-Aware Text Prompt Network for Medical Image Segmentation,
IP(34), 2025, pp. 3169-3180.
IEEE DOI Code:
WWW Link. 2506
Image segmentation, Lesions, Feature extraction, Accuracy, Visualization, Medical diagnostic imaging, Training, Lungs, medical image segmentation BibRef

Chen, J.Y.[Jing-Yun], Yuan, Y.D.[Ya-Ding],
Decentralized Personalization for Federated Medical Image Segmentation via Gossip Contrastive Mutual Learning,
MedImg(44), No. 7, July 2025, pp. 2768-2783.
IEEE DOI Code:
WWW Link. 2507
Data models, Servers, Predictive models, Biomedical imaging, Adaptation models, Training, Image segmentation, Brain modeling, automated tumor segmentation BibRef

Wang, H.R.[Hao-Ran], Huai, L.[Lian], Li, W.B.[Wen-Bin], Qi, L.[Lei], Jiang, X.Q.[Xing-Qun], Shi, Y.H.[Ying-Huan],
WeakMedSAM: Weakly-Supervised Medical Image Segmentation via SAM With Sub-Class Exploration and Prompt Affinity Mining,
MedImg(44), No. 7, July 2025, pp. 2795-2807.
IEEE DOI Code:
WWW Link. 2507
Image segmentation, Biomedical imaging, Training, Tumors, Data mining, Adaptation models, Weak supervision, Head, prompt affinity mining BibRef

Wang, J.N.[Jiang-Nan], Zhou, C.X.[Cai-Xia], Huang, Y.P.[Ya-Ping],
Contour-Aware Multi-Expert Model for Ambiguous Medical Image Segmentation,
MedImg(44), No. 8, August 2025, pp. 3284-3298.
IEEE DOI 2508
Image segmentation, Uncertainty, Stochastic processes, Accuracy, Annotations, Probabilistic logic, Predictive models, uncertainty estimation BibRef

Chen, T.X.[Tian-Xiang], Zhou, X.D.[Xu-Dong], Tan, Z.T.[Zhen-Tao], Wu, Y.[Yue], Wang, Z.Y.[Zi-Yang], Ye, Z.[Zi], Gong, T.[Tao], Chu, Q.[Qi], Yu, N.H.[Neng-Hai], Lu, L.[Le],
Zig-RiR: Zigzag RWKV-in-RWKV for Efficient Medical Image Segmentation,
MedImg(44), No. 8, August 2025, pp. 3245-3257.
IEEE DOI Code:
WWW Link. 2508
Biomedical imaging, Image segmentation, Visualization, Feature extraction, Computational modeling, Accuracy, Transformers, zigzag scan BibRef

Chen, H.[Hejian], Liu, Q.[Qing], Fu, Z.M.[Zhong-Ming], Liu, L.[Li],
UM-Mamba: An efficient U-network with medical visual state space for medical image segmentation,
CVIU(259), 2025, pp. 104436.
Elsevier DOI 2509
Mamba, Medical image segmentation, State space models, U-net BibRef

Liao, M.[Miao], Yang, R.X.[Rui-Xin], Zhao, Y.Q.[Yu-Qian], Liang, W.[Wei], Yuan, J.S.[Jun-Song],
FocalTransNet: A Hybrid Focal-Enhanced Transformer Network for Medical Image Segmentation,
IP(34), 2025, pp. 5614-5627.
IEEE DOI Code:
WWW Link. 2509
Transformers, Iron, Biomedical imaging, Image segmentation, Feature extraction, Decoding, Merging, downsampling BibRef

Zhou, X.L.[Xiao-Ling], Wu, S.[Shili], Qiao, Y.[Yalu], Guo, Y.K.[Yong-Kun], Qian, C.[Chao], Zhang, X.[Xinyou],
Research on Multi-Objective Optimization of Medical Image Segmentation Based on Frequency Domain Decoupling and Dual Attention Mechanism,
IJIST(35), No. 5, 2025, pp. e70186.
DOI Link Code:
WWW Link. 2509
dual-frequency multiscale fusion, medical image segmentation, multiscale dual attention, sublinear computation BibRef

Wan, Y.L.[Yu-Long], Zhou, D.M.[Dong-Ming], Yan, R.[Ran],
EGLC: Enhancing Global Localization Capability for medical image segmentation,
CVIU(260), 2025, pp. 104471.
Elsevier DOI 2510
Deep learning, Medical image segmentation, Wavelet transform, Transformer BibRef

Cheng, Z.[Zihan], Guo, J.T.[Jin-Tao], Zhang, J.[Jian], Qi, L.[Lei], Zhou, L.P.[Lu-Ping], Shi, Y.H.[Ying-Huan], Gao, Y.[Yang],
Mamba-Sea: A Mamba-Based Framework With Global-to-Local Sequence Augmentation for Generalizable Medical Image Segmentation,
MedImg(44), No. 9, September 2025, pp. 3741-3755.
IEEE DOI Code:
WWW Link. 2510
Image segmentation, Biomedical imaging, Training, Adaptation models, Semantics, Feature extraction, Data models, Mamba BibRef

Zhang, Z.Y.[Zhe-Yuan], Yao, L.H.[Lan-Hong], Wang, B.[Bin], Jha, D.[Debesh], Durak, G.[Gorkem], Keles, E.[Elif], Medetalibeyoglu, A.[Alpay], Bagci, U.[Ulas],
DiffBoost: Enhancing Medical Image Segmentation via Text-Guided Diffusion Model,
MedImg(44), No. 9, September 2025, pp. 3670-3682.
IEEE DOI Code:
WWW Link. 2510
Biomedical imaging, Diffusion models, Image segmentation, Data augmentation, Data models, Training, Noise, Noise reduction, diffusion models BibRef

Noh, J.[Jeonghyun], Jeon, W.[Wangsu], Park, J.[Jinsun],
Dual interaction network with cross-image attention for medical image segmentation,
PRL(197), 2025, pp. 332-338.
Elsevier DOI Code:
WWW Link. 2510
Dual interaction, Cross-image attention, Medical image segmentation BibRef

Yu, R.[Ruiguo], Zhang, Y.Y.[Yi-Yang], Tian, Y.[Yuan], Diao, Y.J.[Yu-Jie], Jin, D.[Di], Pedrycz, W.[Witold],
MAMBO-NET: Multi-causal aware modeling backdoor-intervention optimization for medical image segmentation network,
PRL(197), 2025, pp. 102-109.
Elsevier DOI 2510
Medical image segmentation, Causal inference, Backdoor model, Gaussian modeling BibRef

Luan, X.[Xiao], Fu, Y.[Yule], Liu, L.H.[Ling-Hui], Li, W.S.[Wei-Sheng],
CSSNet: A 3D medical image segmentation network based on compressed sparse dual-branch structure,
PRL(197), 2025, pp. 222-228.
Elsevier DOI 2510
Medical image segmentation, Compression encoding, Sparse representation, Multi-scale attention fusion BibRef

Wang, S.Q.[Si-Qi], Wu, H.[Hao], Yu, X.S.[Xiao-Sheng], Wu, C.D.[Cheng-Dong],
Unsupervised Domain Adaptive Medical Segmentation Network Based on Contrastive Learning,
IJIST(35), No. 6, 2025, pp. e70210.
DOI Link Code:
WWW Link. 2510
contrastive learning, medical segmentation, unsupervised domain adaptation BibRef

Zhao, J.W.[Jian-Wei], Yang, F.[Fan], Li, X.[Xin], Jiao, Z.C.[Zhi-Cheng], Zhai, Q.[Qiang], Li, X.M.[Xiao-Meng], Wu, D.[De], Fu, H.Z.[Hua-Zhu], Cheng, H.[Hong],
SegMIC: A universal model for medical image segmentation through in-context learning,
PR(171), 2026, pp. 112179.
Elsevier DOI Code:
WWW Link. 2510
Universal medical image segmentation, Multi-modality, In-context learning BibRef

Zhang, J.[Juan], Jiang, G.Q.[Gao-Qiang], Li, Z.W.[Zhong-Wen], Tian, B.[Bihan], Yu, S.[Shuchen], Yu, Q.X.[Qing-Xiang], Zhou, J.[Jie], Chen, H.[Hao], Pu, J.T.[Jian-Tao], Yi, Q.Y.[Quan-Yong], Wang, L.[Lei],
Medical image segmentation using dual-decoder mutual teaching with a mean teacher framework,
PR(171), 2026, pp. 112184.
Elsevier DOI Code:
WWW Link. 2510
Image segmentation, Semi-supervised learning, Exponential moving average, Mutual teaching, Mean teacher BibRef

Yang, Y.K.[Ya-Kun], Liu, X.P.[Xiang-Ping], Xue, H.C.[Hong-Cheng], Feng, C.[Chungang], Qu, H.[Hao], Wang, L.[Longhe], Li, L.[Lin],
CCPNet: Joining the pooling transformer and target context for medical image segmentation,
PR(171), 2026, pp. 112139.
Elsevier DOI Code:
WWW Link. 2510
Medical image segmentation, Pooling transformer, Target context, Tibial dyschondroplasia analysis BibRef

Diao, Z.S.[Zhao-Shuo], Zhang, Y.[Yan], Yuan, Y.[Ye], Wang, Q.[Qian], Zhang, Y.[Ying], Gao, Y.[Yue],
Mitigating label noise impact: A plug-and-play RECIST-based iterative label refinement teacher-student learning paradigm for medical image segmentation,
PR(171), 2026, pp. 112155.
Elsevier DOI 2510
Biomedical segmentation, Label noise, Teacher-student, Convolutional neural networks BibRef

Song, J.C.[Jin-Cai], Chen, H.P.[Hai-Peng], Lyu, Y.[Yingda], Nie, W.Z.[Wei-Zhi], Liu, A.A.[An-An],
Causality-Inspired Unsupervised Domain Adaptation With Target Style Imitation for Medical Image Segmentation,
CirSysVideo(35), No. 10, October 2025, pp. 10175-10187.
IEEE DOI 2510
Image segmentation, Biomedical imaging, Training, Adaptation models, Testing, Training data, Semantics, data augmentation BibRef

Li, G.[Guorun], Liu, L.[Lei], Du, Y.F.[Yue-Feng], Liu, P.[Peng], Li, X.Y.[Xiao-Yu], Qi, T.[Taiguo], Qiao, Z.[Zhi], Chen, D.[Du], Song, Z.[Zhenghe],
A recurrent-attention mechanism for medical image segmentation,
PR(171), 2026, pp. 112252.
Elsevier DOI 2511
Medical image segmentation, Attention mechanism, Skip connection, Self-attention, Recurrent-attention BibRef

Nguyen, V.Q.[Van Quang], Tran, T.T.[Thi-Thao], Truong, G.B.[Gia-Bao], Than, N.L.[Nhu-Linh], Hoang, N.K.[Ngoc-Khai], Nguyen, D.H.[Dinh-Hieu], Pham, V.T.[Van-Truong],
A dense attention Mamba-based network with Adaptive Sigmoid Fowlkes-Mallows Loss for enhanced medical image segmentation,
IVC(163), 2025, pp. 105778.
Elsevier DOI Code:
WWW Link. 2511
Medical image segmentation, Mamba for vision, Channel-spatial attention gate, Axial residual block, Adaptive Sigmoid Fowlkes-Mallows Loss BibRef

Yu, C.J.[Cheng-Jin], Zhang, H.[Hao], Pu, C.L.[Cai-Ling], Lv, S.Y.[Sang-Yin], Yu, J.[Jing], Wu, X.R.[Xiao-Rui], Ruan, D.S.[Dong-Sheng], Xuan, H.Y.[Han-Yu], Yan, Y.[Yuanting],
GraphMamba: Graph-driven spatial order-aware Mamba for medical image segmentation,
PR(171), 2026, pp. 112231.
Elsevier DOI 2511
Mamba, Graph, Medical image segmentation, Scanning strategies, Spatial consistency BibRef

Zhang, Y.T.[Yu-Tong], Wang, Y.F.[Yue-Fei], Wan, Y.X.[Yu-Xuan], Zhao, Q.[Qinyu], Zhao, L.Y.[Liang-Yan], Li, B.X.[Bin-Xiong], Zhang, L.[Li], Chen, Z.X.[Zhi-Xuan],
A carving hierarchical information integration network for medical image segmentation,
PR(171), 2026, pp. 112291.
Elsevier DOI Code:
WWW Link. 2511
Medical image segmentation, Carving, Regional attention, Multiple datasets BibRef

Liu, J.[Jiarun], Yang, H.[Hao], Zhou, H.Y.[Hong-Yu], Yu, L.Q.[Le-Quan], Liang, Y.[Yong], Yu, Y.Z.[Yi-Zhou], Zhang, S.T.[Shao-Ting], Zheng, H.R.[Hai-Rong], Wang, S.S.[Shan-Shan],
Swin-UMamba†: Adapting Mamba-Based Vision Foundation Models for Medical Image Segmentation,
MedImg(44), No. 10, October 2025, pp. 3898-3908.
IEEE DOI Code:
WWW Link. 2511
Image segmentation, Data models, Transformers, Medical diagnostic imaging, Adaptation models, foundation model adaption BibRef


Guo, Y.[Yuan], Kong, J.Y.[Jing-Yu], Wang, Y.[Yu], Duan, Y.P.[Yu-Ping],
Take the Bull by the Horns: Learning to Segment Hard Samples,
CVPR25(15642-15652)
IEEE DOI Code:
WWW Link. 2508
Image segmentation, Accuracy, Codes, Diffusion processes, Solids, Biomedical imaging, image segmentation, hard sample, contrastive learning BibRef

Nordström, M.[Marcus], Maki, A.[Atsuto], Hult, H.[Henrik],
The Impact Label Noise and Choice of Threshold has on Cross-Entropy and Soft-Dice in Image Segmentation,
CVPR25(20820-20829)
IEEE DOI 2508
Medical image segmentation. Measurement, Image segmentation, Solid modeling, Computational modeling, Noise, Stability analysis, medical imaging BibRef

Qiu, K.P.[Kun-Peng], Gao, Z.Q.[Zhi-Qiang], Zhou, Z.Y.[Zhi-Ying], Sun, M.J.[Ming-Jie], Guo, Y.X.[Yong-Xin],
Noise-Consistent Siamese-Diffusion for Medical Image Synthesis and Segmentation,
CVPR25(15672-15681)
IEEE DOI 2508
Training, Deep learning, Image segmentation, Image synthesis, Scalability, Noise, Diffusion models, Robustness, Biomedical imaging, medical image segmentation BibRef

Rahman, M.M.[Md Motiur], Trabelsi, M.[Mohamed], Uzunalioglu, H.[Huseyin], Boyd, A.[Aidan],
Personalized Mixture of Experts for Multi-Site Medical Image Segmentation,
WACV25(3172-3184)
IEEE DOI 2505
Image segmentation, Data privacy, Federated learning, Predictive models, Data models, Regulation, Synchronization, Servers, Biomedical imaging BibRef

Karimijarbigloo, S.[Sanaz], Kolahi, S.G.[Sina Ghorbani], Azad, R.[Reza], Bagci, U.[Ulas], Merhof, D.[Dorit],
Frequency-Domain Refinement of Vision Transformers for Robust Medical Image Segmentation Under Degradation,
WACV25(9176-9185)
IEEE DOI 2505
Degradation, Wavelet transforms, Image segmentation, Frequency-domain analysis, Noise, Contrastive learning. BibRef

Xie, B.[Bin], Tang, H.[Hao], Cai, D.[Dawen], Yan, Y.[Yan],
MS-UMLP: Medical Image Segmentation via Multi-scale U-shape Mlp-mixer,
ACCV24(X: 325-341).
Springer DOI 2412
BibRef

Tian, Y.[Yu], Wen, C.C.[Cong-Cong], Shi, M.[Min], Afzal, M.M.[Muhammad Muneeb], Huang, H.[Hao], Khan, M.O.[Muhammad Osama], Luo, Y.[Yan], Fang, Y.[Yi], Wang, M.Y.[Meng-Yu],
Fairdomain: Achieving Fairness in Cross-domain Medical Image Segmentation and Classification,
ECCV24(LXXVI: 251-271).
Springer DOI 2412
BibRef

Xu, C.[Chen], Huang, Q.M.[Qi-Ming], Hou, Y.Q.[Yu-Qi], Wu, J.X.[Jiang-Xing], Zhang, F.[Fan], Chang, H.J.[Hyung Jin], Jiao, J.B.[Jian-Bo],
Few Exemplar-based General Medical Image Segmentation via Domain-aware Selective Adaptation,
ACCV24(II: 159-173).
Springer DOI 2412
BibRef

Khan, T.M.[Tariq M], Iqbal, S.[Shahzaib], Naqvi, S.S.[Syed S.], Razzak, I.[Imran], Meijering, E.[Erik],
LMBF-Net: A Lightweight Multipath Bidirectional Focal Attention Network for Multifeatures Segmentation,
ICIP24(2807-2813)
IEEE DOI 2411
Optical filters, Integrated optics, Image segmentation, Convolution, Modulation, Optical fiber networks, Optical imaging, Medical Image Segmentation BibRef

Du, Q.Y.[Qian-Yu], Zhong, B.J.[Bao-Jiang], Ma, K.K.[Kai-Kuang],
ATU-NET: An Adaptive Transformation-Based U-NET for Medical Image Segmentation,
ICIP24(2989-2995)
IEEE DOI 2411
Training, Image segmentation, Adaptive systems, Transforms, Network architecture, Benchmark testing, Feature extraction, encoder-decoder architecture BibRef

Wu, J.[Junde], Xu, M.[Min],
One-Prompt to Segment All Medical Images,
CVPR24(11302-11312)
IEEE DOI Code:
WWW Link. 2410
Learning systems, Image segmentation, Adaptation models, Visualization, Costs, Computational modeling BibRef

Perera, S.[Shehan], Navard, P.[Pouyan], Yilmaz, A.[Alper],
SegFormer3D: an Efficient Transformer for 3D Medical Image Segmentation,
DEF-AI-MIA24(4981-4988)
IEEE DOI Code:
WWW Link. 2410
Training, Image segmentation, Solid modeling, Computational modeling, Transformers, Deep Learning BibRef

Ding, Y.H.[Yu-Hang], Li, L.[Liulei], Wang, W.G.[Wen-Guan], Yang, Y.[Yi],
Clustering Propagation for Universal Medical Image Segmentation,
CVPR24(3357-3369)
IEEE DOI 2410
Training, Knowledge engineering, Image segmentation, Solid modeling, Image coding BibRef

Cheng, Z.H.[Zhi-Heng], Wei, Q.Y.[Qing-Yue], Zhu, H.[Hongru], Wang, Y.[Yan], Qu, L.Q.[Liang-Qiong], Shao, W.[Wei], Zhou, Y.[Yuyin],
Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding,
CVPR24(3511-3522)
IEEE DOI Code:
WWW Link. 2410
Training, Image segmentation, Adaptation models, Costs, Training data, Probabilistic logic, Data models, medical image segmentation BibRef

Rakic, M.[Marianne], Wong, H.E.[Hallee E.], Ortiz, J.J.G.[Jose Javier Gonzalez], Cimini, B.A.[Beth A.], Guttag, J.V.[John V.], Dalca, A.V.[Adrian V.],
Tyche: Stochastic in-Context Learning for Medical Image Segmentation,
CVPR24(11159-11173)
IEEE DOI Code:
WWW Link. 2410
Training, Learning systems, Image segmentation, Uncertainty, Convolution, Stochastic processes, Machine learning, uncertainty, medical imaging BibRef

Chen, Z.Y.[Zi-Yang], Pan, Y.S.[Yong-Sheng], Ye, Y.W.[Yi-Wen], Lu, M.K.[Meng-Kang], Xia, Y.[Yong],
Each Test Image Deserves A Specific Prompt: Continual Test-Time Adaptation for 2D Medical Image Segmentation,
CVPR24(11184-11193)
IEEE DOI Code:
WWW Link. 2410
Training, Adaptation models, Visualization, Codes, Semantic segmentation, Benchmark testing BibRef

Wu, Y.C.[Yi-Cheng], Luo, X.[Xiangde], Xu, Z.[Zhe], Guo, X.Q.[Xiao-Qing], Ju, L.[Lie], Ge, Z.Y.[Zong-Yuan], Liao, W.J.[Wen-Jun], Cai, J.F.[Jian-Fei],
Diversified and Personalized Multi-Rater Medical Image Segmentation,
CVPR24(11470-11479)
IEEE DOI Code:
WWW Link. 2410
Training, Image segmentation, Adaptation models, Codes, Uncertainty, Annotations, Computational modeling BibRef

Chen, X.Y.[Xiao-Yang], Zheng, H.[Hao], Li, Y.M.[Yue-Meng], Ma, Y.C.[Yun-Cong], Ma, L.[Liang], Li, H.M.[Hong-Ming], Fan, Y.[Yong],
Versatile Medical Image Segmentation Learned from Multi-Source Datasets via Model Self-Disambiguation,
CVPR24(11747-11756)
IEEE DOI 2410
Training, Image segmentation, Solid modeling, Protocols, Annotations, Prevention and mitigation, Computational modeling BibRef

Dong, H.Y.[Hao-Yu], Konz, N.[Nicholas], Gu, H.[Hanxue], Mazurowski, M.A.[Maciej A.],
Medical Image Segmentation with InTEnt: Integrated Entropy Weighting for Single Image Test-Time Adaptation,
DEF-AI-MIA24(5046-5055)
IEEE DOI 2410
Training, Image segmentation, Adaptation models, Estimation, Predictive models, Nonhomogeneous media, Entropy, test-time adaptation BibRef

Aleem, S.[Sidra], Wang, F.[Fangyijie], Maniparambil, M.[Mayug], Arazo, E.[Eric], Dietlmeier, J.[Julia], Curran, K.[Kathleen], O'Connor, N.E.[Noel E.], Little, S.[Suzanne],
Test-Time Adaptation with SaLIP: A Cascade of SAM and CLIP for Zero-shot Medical Image Segmentation,
DEF-AI-MIA24(5184-5193)
IEEE DOI 2410
Image segmentation, Adaptation models, Filtering, Inference mechanisms, Lung, Robustness, Pattern recognition BibRef

Nam, J.H.[Ju-Hyeon], Syazwany, N.S.[Nur Suriza], Kim, S.J.[Su Jung], Lee, S.C.[Sang-Chul],
Modality-Agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention,
CVPR24(11480-11491)
IEEE DOI 2410
Image segmentation, Image analysis, Frequency-domain analysis, Feature extraction, Data mining, Noise measurement, Image Segmentation BibRef

Schmidt-Mengin, M.[Marius], Benichoux, A.[Alexis], Belachew, S.[Shibeshih], Komodakis, N.[Nikos], Paragios, N.[Nikos],
ToNNO: Tomographic Reconstruction of a Neural Network's Output for Weakly Supervised Segmentation of 3D Medical Images,
CVPR24(11428-11438)
IEEE DOI 2410
Training, Solid modeling, Semantic segmentation, Transforms, Tomography, Pattern recognition BibRef

Li, Z.[Zhe], Yang, L.T.[Laurence T.], Ren, B.[Bocheng], Nie, X.[Xin], Gao, Z.Y.[Zhang-Yang], Tan, C.[Cheng], Li, S.Z.[Stan Z.],
MLIP: Enhancing Medical Visual Representation with Divergence Encoder and Knowledge-guided Contrastive Learning,
CVPR24(11704-11714)
IEEE DOI Code:
WWW Link. 2410
Representation learning, Visualization, Semantic segmentation, Contrastive learning, Object detection, Pattern recognition BibRef

Azad, R.[Reza], Niggemeier, L.[Leon], Hüttemann, M.[Michael], Kazerouni, A.[Amirhossein], Aghdam, E.K.[Ehsan Khodapanah], Velichko, Y.[Yury], Bagci, U.[Ulas], Merhof, D.[Dorit],
Beyond Self-Attention: Deformable Large Kernel Attention for Medical Image Segmentation,
WACV24(1276-1286)
IEEE DOI 2404
Image segmentation, Adaptation models, Convolution, Computational modeling, Transformers, Data models, Algorithms, Biomedical / healthcare / medicine BibRef

Rahman, M.M.[Md Motiur], Shokouhmand, S.[Shiva], Bhatt, S.[Smriti], Faezipour, M.[Miad],
MIST: Medical Image Segmentation Transformer with Convolutional Attention Mixing (CAM) Decoder,
WACV24(403-412)
IEEE DOI 2404
Convolutional codes, Image segmentation, Computational modeling, Semantics, Transformers, Decoding, Kernel, Algorithms, Biomedical / healthcare / medicine BibRef

Leng, T.[Tianang], Zhang, Y.M.[Yi-Ming], Han, K.[Kun], Xie, X.H.[Xiao-Hui],
Self-Sampling Meta SAM: Enhancing Few-shot Medical Image Segmentation with Meta-Learning,
WACV24(7910-7920)
IEEE DOI Code:
WWW Link. 2404
Training, Metalearning, Image segmentation, Adaptation models, Visualization, Technological innovation, Training data BibRef

Gorade, V.[Vandan], Mittal, S.[Sparsh], Jha, D.[Debesh], Bagci, U.[Ulas],
SynergyNet: Bridging the Gap between Discrete and Continuous Representations for Precise Medical Image Segmentation,
WACV24(7753-7762)
IEEE DOI 2404
Deep learning, Image segmentation, Analytical models, Image analysis, Skin, Applications, Image recognition and understanding BibRef

Schmidt, A.[Arne], Morales-Álvarez, P.[Pablo], Molina, R.[Rafael],
Probabilistic Modeling of Inter- and Intra-observer Variability in Medical Image Segmentation,
ICCV23(21040-21049)
IEEE DOI 2401
BibRef

Singh, P.[Pranav], Chen, L.[Luoyao], Chen, M.[Mei], Pan, J.Q.[Jin-Qian], Chukkapalli, R.[Raviteja], Chaudhari, S.[Shravan], Cirrone, J.[Jacopo],
Enhancing Medical Image Segmentation: Optimizing Cross-Entropy Weights and Post-Processing with Autoencoders,
CVAMD23(2676-2685)
IEEE DOI 2401
BibRef

Pandey, S.[Sumit], Chen, K.F.[Kuan-Fu], Dam, E.B.[Erik B.],
Comprehensive Multimodal Segmentation in Medical Imaging: Combining YOLOv8 with SAM and HQ-SAM Models,
CVAMD23(2584-2590)
IEEE DOI 2401
BibRef

Pal, D.[Debojyoti], Meena, T.[Tanushree], Mahapatra, D.[Dwarikanath], Roy, S.[Sudipta],
AW-Net: A Novel Fully Connected Attention-based Medical Image Segmentation Model,
CVAMD23(2524-2533)
IEEE DOI Code:
WWW Link. 2401
BibRef

Bastico, M.[Matteo], Ryckelynck, D.[David], Corté, L.[Laurent], Tillier, Y.[Yannick], Decencière, E.[Etienne],
A Simple and Robust Framework for Cross-Modality Medical Image Segmentation applied to Vision Transformers,
LXCV-ICCV23(4130-4140)
IEEE DOI Code:
WWW Link. 2401
BibRef

Butoi, V.I.[Victor Ion], Ortiz, J.J.G.[Jose Javier Gonzalez], Ma, T.Y.[Tian-Yu], Sabuncu, M.R.[Mert R.], Guttag, J.[John], Dalca, A.V.[Adrian V.],
UniverSeg: Universal Medical Image Segmentation,
ICCV23(21381-21394)
IEEE DOI Code:
WWW Link. 2401
BibRef

Marinov, Z.[Zdravko], Reiß, S.[Simon], Kersting, D.[David], Kleesiek, J.[Jens], Stiefelhagen, R.[Rainer],
Mirror U-Net: Marrying Multimodal Fission with Multi-task Learning for Semantic Segmentation in Medical Imaging,
CVAMD23(2275-2285)
IEEE DOI Code:
WWW Link. 2401
BibRef

Hu, H.[Haigen], Jin, Z.C.[Zhi-Chao], Zhou, Q.W.[Qian-Wei], Guan, Q.[Qiu], Chen, Q.[Qi],
CTI-Unet: Hybrid Local Features and Global Representations Efficiently,
ICIP23(735-739)
IEEE DOI Code:
WWW Link. 2312
BibRef

Li, J.Q.[Jiu-Qiang],
MCTE: Marrying Convolution and Transformer Efficiently for End-to-End Medical Image Segmentation,
ICIP23(1100-1104)
IEEE DOI 2312
BibRef

Huang, Y.[Yao], Liu, J.M.[Jian-Ming], Chen, H.[Hua],
Self-Reinforcing For Few-Shot Medical Image Segmentation,
ICIP23(655-659)
IEEE DOI Code:
WWW Link. 2312
BibRef

Jiang, M.R.[Mei-Rui], Roth, H.R.[Holger R.], Li, W.Q.[Wen-Qi], Yang, D.[Dong], Zhao, C.[Can], Nath, V.[Vishwesh], Xu, D.G.[Da-Guang], Dou, Q.[Qi], Xu, Z.Y.[Zi-Yue],
Fair Federated Medical Image Segmentation via Client Contribution Estimation,
CVPR23(16302-16311)
IEEE DOI 2309
BibRef

Rahman, A.[Aimon], Valanarasu, J.M.J.[Jeya Maria Jose], Hacihaliloglu, I.[Ilker], Patel, V.M.[Vishal M.],
Ambiguous Medical Image Segmentation Using Diffusion Models,
CVPR23(11536-11546)
IEEE DOI 2309
BibRef

Santhirasekaram, A.[Ainkaran], Winkler, M.[Mathias], Rockall, A.[Andrea], Glocker, B.[Ben],
Topology Preserving Compositionality for Robust Medical Image Segmentation,
TAG-PRA23(543-552)
IEEE DOI 2309
BibRef

Yuan, M.Z.[Ming-Ze], Xia, Y.[Yingda], Dong, H.X.[He-Xin], Chen, Z.[Zifan], Yao, J.[Jiawen], Qiu, M.Y.[Ming-Yan], Yan, K.[Ke], Yin, X.L.[Xiao-Li], Shi, Y.[Yu], Chen, X.[Xin], Liu, Z.[Zaiyi], Dong, B.[Bin], Zhou, J.[Jingren], Lu, L.[Le], Zhang, L.[Ling], Zhang, L.[Li],
Devil is in the Queries: Advancing Mask Transformers for Real-world Medical Image Segmentation and Out-of-Distribution Localization,
CVPR23(23879-23889)
IEEE DOI 2309
BibRef

Jeong, S.W.[Seung-Wan], Cho, H.H.[Hwan-Ho], Kwon, J.[Junmo], Park, H.[Hyunjin],
Region-of-interest Attentive Heteromodal Variational Encoder-decoder for Segmentation with Missing Modalities,
ACCV22(VI:132-148).
Springer DOI 2307
BibRef

Zheng, Z.[Zhou], Hayashi, Y.[Yuichiro], Oda, M.[Masahiro], Kitasaka, T.[Takayuki], Mori, K.[Kensaku],
Trimix: A General Framework for Medical Image Segmentation from Limited Supervision,
ACCV22(VI:185-202).
Springer DOI 2307
BibRef

Tian, M.[Mu], Yang, Q.[Qinzhu], Gao, Y.[Yi],
Multi-scale Multi-task Distillation for Incremental 3d Medical Image Segmentation,
MCV22(369-384).
Springer DOI 2304
BibRef

Salpea, N.[Natalia], Tzouveli, P.[Paraskevi], Kollias, D.[Dimitrios],
Medical Image Segmentation: A Review of Modern Architectures,
MIA-COVID19D22(691-708).
Springer DOI 2304
BibRef

Tragakis, A.[Athanasios], Kaul, C.[Chaitanya], Murray-Smith, R.[Roderick], Husmeier, D.[Dirk],
The Fully Convolutional Transformer for Medical Image Segmentation,
WACV23(3649-3658)
IEEE DOI 2302
Convolutional codes, Image segmentation, Technological innovation, Semantic segmentation, Semantics, Applications: Biomedical/healthcare/medicine BibRef

Heidari, M.[Moein], Kazerouni, A.[Amirhossein], Soltany, M.[Milad], Azad, R.[Reza], Aghdam, E.K.[Ehsan Khodapanah], Cohen-Adad, J.[Julien], Merhof, D.[Dorit],
HiFormer: Hierarchical Multi-scale Representations Using Transformers for Medical Image Segmentation,
WACV23(6191-6201)
IEEE DOI 2302
Image segmentation, Correlation, Convolution, Computational modeling, Transformers, Biomedical/healthcare/medicine BibRef

Rahman, M.M.[Md Mostafijur], Munir, M.[Mustafa], Marculescu, R.[Radu],
EMCAD: Efficient Multi-Scale Convolutional Attention Decoding for Medical Image Segmentation,
CVPR24(11769-11779)
IEEE DOI Code:
WWW Link. 2410
Image segmentation, Convolution, Semantic segmentation, Point of care, Logic gates, Decoding, Computational efficiency, Medical Image Segmentation BibRef

Rahman, M.M.[Md Mostafijur], Marculescu, R.[Radu],
G-CASCADE: Efficient Cascaded Graph Convolutional Decoding for 2D Medical Image Segmentation,
WACV24(7713-7722)
IEEE DOI Code:
WWW Link. 2404
BibRef
Earlier:
Medical Image Segmentation via Cascaded Attention Decoding,
WACV23(6211-6220)
IEEE DOI 2302
Image segmentation, Convolution, Semantic segmentation, Semantics, Transformers, Skin, Decoding, Applications, and algorithms. Medical services, Logic gates, Lesions: Biomedical/healthcare/medicine BibRef

Cho, W.W.[Won-Woo], Park, J.[Jeonghoon], Choo, J.[Jaegul],
Training Auxiliary Prototypical Classifiers for Explainable Anomaly Detection in Medical Image Segmentation,
WACV23(2623-2632)
IEEE DOI 2302
Training, Image segmentation, Machine learning algorithms, Pipelines, Training data, Network architecture, Data processing, visual reasoning BibRef

Guo, P.F.[Peng-Fei], Yang, D.[Dong], Hatamizadeh, A.[Ali], Xu, A.[An], Xu, Z.Y.[Zi-Yue], Li, W.Q.[Wen-Qi], Zhao, C.[Can], Xu, D.[Daguang], Harmon, S.[Stephanie], Turkbey, E.[Evrim], Turkbey, B.[Baris], Wood, B.[Bradford], Patella, F.[Francesca], Stellato, E.[Elvira], Carrafiello, G.[Gianpaolo], Patel, V.M.[Vishal M.], Roth, H.R.[Holger R.],
Auto-FedRL: Federated Hyperparameter Optimization for Multi-institutional Medical Image Segmentation,
ECCV22(XXI:437-455).
Springer DOI 2211
BibRef

Shen, H.R.[Hao-Ran], Zhang, Y.[Yifu], Wang, W.X.[Wen-Xuan], Chen, C.[Chen], Liu, J.[Jing], Song, S.S.[Shan-Shan], Li, J.[Jiangyun],
Med-DANet V2: A Flexible Dynamic Architecture for Efficient Medical Volumetric Segmentation,
WACV24(7856-7866)
IEEE DOI Code:
WWW Link. 2404
Training, Adaptation models, Image segmentation, Quantization (signal), Magnetic resonance imaging, Pipelines, Image recognition and understanding BibRef

Wang, W.X.[Wen-Xuan], Chen, C.[Chen], Wang, J.[Jing], Zha, S.[Sen], Zhang, Y.[Yan], Li, J.Y.[Jiang-Yun],
Med-DANet: Dynamic Architecture Network for Efficient Medical Volumetric Segmentation,
ECCV22(XXI:506-522).
Springer DOI 2211
BibRef

Zhou, Z.Q.[Zi-Qi], Qi, L.[Lei], Shi, Y.H.[Ying-Huan],
Generalizable Medical Image Segmentation via Random Amplitude Mixup and Domain-Specific Image Restoration,
ECCV22(XXI:420-436).
Springer DOI 2211
BibRef

Gupta, S.[Saumya], Hu, X.L.[Xiao-Ling], Kaan, J.[James], Jin, M.[Michael], Mpoy, M.[Mutshipay], Chung, K.[Katherine], Singh, G.[Gagandeep], Saltz, M.[Mary], Kurc, T.[Tahsin], Saltz, J.[Joel], Tassiopoulos, A.[Apostolos], Prasanna, P.[Prateek], Chen, C.[Chao],
Learning Topological Interactions for Multi-Class Medical Image Segmentation,
ECCV22(XXIX:701-718).
Springer DOI 2211
BibRef

Liu, L.[Libo], Fan, X.X.[Xin-Xin], Zhang, X.D.[Xiao-Dong], Hu, Q.M.[Qing-Mao],
Lightweight Dual-Domain Network for Real-Time Medical Image Segmentation,
ICIP22(396-400)
IEEE DOI 2211
Image segmentation, Convolution, Frequency-domain analysis, Semantics, Surgery, Stroke (medical condition), Real-time systems, lightweight dual-domain network BibRef

Cheng, J.L.[Jun-Long], Gao, C.R.[Cheng-Rui], Li, C.L.[Chang-Lin], Ming, Z.Q.[Zhang-Qiang], Yang, Y.[Yong], Wang, F.J.[Feng-Jie], Zhu, M.[Min],
F2RNET: A Full-Resolution Representation Network for Biomedical Image Segmentation,
ICIP22(2406-2410)
IEEE DOI 2211
Deep learning, Image segmentation, Image resolution, Convolution, Multilayer perceptrons, Feature extraction, Transformers, Biomedical image segmentation BibRef

Khan, T.M.[Tariq M.], Robles-Kelly, A.[Antonio], Naqvi, S.S.[Syed S.],
T-Net: A Resource-Constrained Tiny Convolutional Neural Network for Medical Image Segmentation,
WACV22(1799-1808)
IEEE DOI 2202
Image segmentation, Skin, Retinal vessels, Mobile handsets, Lesions, Convolutional neural networks, Image Processing BibRef

Hatamizadeh, A.[Ali], Tang, Y.C.[Yu-Cheng], Nath, V.[Vishwesh], Yang, D.[Dong], Myronenko, A.[Andriy], Landman, B.[Bennett], Roth, H.R.[Holger R.], Xu, D.G.[Da-Guang],
UNETR: Transformers for 3D Medical Image Segmentation,
WACV22(1748-1758)
IEEE DOI 2202
Image segmentation, Semantics, Transformers, Natural language processing, Medical Imaging/Imaging for Bioinformatics/Biological and Cell Microscopy BibRef

Shi, D.C.[Da-Chuan], Liu, R.Y.[Rui-Yang], Tao, L.M.[Lin-Mi], He, Z.X.[Zuo-Xiang], Huo, L.[Li],
Multi-Encoder Parse-Decoder Network for Sequential Medical Image Segmentation,
ICIP21(31-35)
IEEE DOI 2201
Training, Manifolds, Image segmentation, Neural networks, Feature extraction, Decoding, Data mining, Convolutional neural networks BibRef

Koker, T.[Teddy], Mireshghallah, F.[Fatemehsadat], Titcombe, T.[Tom], Kaissis, G.[Georgios],
U-Noise: Learnable Noise Masks for Interpretable Image Segmentation,
ICIP21(394-398)
IEEE DOI 2201
Deep learning, Image segmentation, Sensitivity, Computed tomography, Decision making, Distance measurement, Medical Imaging BibRef

Bhide, S., Mikut, R., Leptin, M., Stegmaier, J.,
Semi-Automatic Generation Of Tight Binary Masks And Non-Convex Isosurfaces For Quantitative Analysis of 3D Biological Samples,
ICIP20(2820-2824)
IEEE DOI 2011
Image segmentation, Embryo, Shape, Isosurfaces, GUI BibRef

Chang, Q., Qu, H., Zhang, Y., Sabuncu, M., Chen, C., Zhang, T., Metaxas, D.N.,
Synthetic Learning: Learn From Distributed Asynchronized Discriminator GAN Without Sharing Medical Image Data,
CVPR20(13853-13863)
IEEE DOI 2008
Biomedical imaging, Generators, Data privacy, Task analysis, Image segmentation, Data models BibRef

Smith, T.J.[Thomas J.], Valstar, M.[Michel], Sharkey, D.[Don], Crowe, J.[John],
Clinical Scene Segmentation with Tiny Datasets,
CVPM19(1637-1645)
IEEE DOI 2004
convolutional neural nets, graph theory, image representation, image segmentation, learning (artificial intelligence), End to end BibRef

Xu, X., Lu, Q., Yang, L., Hu, S., Chen, D., Hu, Y., Shi, Y.,
Quantization of Fully Convolutional Networks for Accurate Biomedical Image Segmentation,
CVPR18(8300-8308)
IEEE DOI 1812
Quantization (signal), Training, Biomedical imaging, Image segmentation, Uncertainty, Memory management, Neural networks BibRef

Kromp, F., Ambros, I., Weiss, T., Bogen, D., Dodig, H., Berneder, M., Gerber, T., Taschner-Mandl, S., Ambros, P., Hanbury, A.,
Machine learning framework incorporating expert knowledge in tissue image annotation,
ICPR16(343-348)
IEEE DOI 1705
Algorithm design and analysis, Biological tissues, Image segmentation, Machine learning algorithms, Morphology, Prediction algorithms, image annotation, machine learning, online, training BibRef

Mesbah, S., Shalaby, A., Willhite, A., Harkema, S., Rejc, E., El-baz, A.,
Automatic 3-D muscle and fat segmentation of thigh magnetic resonance images in individuals with spinal cord injury,
ICIP17(3280-3284)
IEEE DOI 1803
Markov processes, biomedical MRI, diseases, image registration, image segmentation, injuries, medical disorders, SCI BibRef

Jarrar, M., Kerkeni, A., Abdallah, A.B., Bedoui, M.H.,
MLP Neural Network Classifier for Medical Image Segmentation,
CGiV16(88-93)
IEEE DOI 1608
image classification BibRef

Zhu, H.[Hong], Xu, J.H.[Jin-Hui], Hu, J.F.[Jun-Feng], Chen, J.[Jing],
Medical Image Segmentation Using Improved Affinity Propagation,
CompIMAGE16(208-215).
Springer DOI 1704
Affinity Propagation (AP) vs. Nearest Neighbor classification. BibRef

Masci, J.[Jonathan], Giusti, A.[Alessandro], Ciresan, D.C.[Dan C.], Fricout, G.[Gabriel], Schmidhuber, J.[Jurgen],
A fast learning algorithm for image segmentation with max-pooling convolutional networks,
ICIP13(2713-2717)
IEEE DOI 1402
Convolutional Network BibRef

Giusti, A.[Alessandro], Ciresan, D.C.[Dan C.], Masci, J.[Jonathan], Gambardella, L.M.[Luca M.], Schmidhuber, J.[Jurgen],
Fast image scanning with deep max-pooling convolutional neural networks,
ICIP13(4034-4038)
IEEE DOI 1402
Biomedical Imaging BibRef

Ding, J.J.[Jian-Jiun], Wang, Y.H.[Yu-Hsiang], Hu, L.L.[Lee-Lin], Chao, W.L.[Wei-Lun], Shau, Y.W.[Yio-Wha],
Muscle injury determination by image segmentation,
VCIP11(1-4).
IEEE DOI 1201
BibRef

Kamarainen, J.K.[Joni-Kristian], Lensu, L.[Lasse], Kauppi, T.[Tomi],
Combining Multiple Image Segmentations by Maximizing Expert Agreement,
MLMI12(193-200).
Springer DOI 1211
BibRef

Pham, T.D.[Tuan D.], Eisenblatter, U.[Uwe], Golledge, J.[Jonathan], Baune, B.T.[Bernhard T.], Berger, K.[Klaus],
Segmentation of medical images using geo-theoretic distance matrix in fuzzy clustering,
ICIP09(3369-3372).
IEEE DOI 0911
BibRef

Luong, H.V.[Hyunh Van], Kim, J.M.[Jong Myon],
A New Parallel Approach to Fuzzy Clustering for Medical Image Segmentation,
ISVC08(I: 1092-1101).
Springer DOI 0812
BibRef

Vannier, M.W.[Michael W.], Haller, J.W.,
Biomedical image segmentation,
ICIP98(II: 20-24).
IEEE DOI 9810
BibRef

Wegner, S., Harms, T., Oswald, H., Fleck, E.,
The watershed transformation on graphs for the segmentation of CT images,
ICPR96(III: 498-502).
IEEE DOI 0509
BibRef
Earlier:
Medical image segmentation using the watershed transformation on graphs,
ICIP96(III: 37-40).
IEEE DOI 9610
Image Segmentation for a Hyperthermia Planning Environment BibRef

Wegner, S., Harms, T., Builtjes, J.H., Oswald, H., Fleck, E.,
The watershed transformation for multiresolution image segmentation,
CIAP95(31-36).
Springer DOI 9509
BibRef

Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Organ Segmentation, Multi-Organ Segmentation, Anatomy Segmentation .


Last update:Nov 26, 2025 at 20:24:09