8.3.4.3 Neural Networks for Segmentation

Chapter Contents (Back)
Neural Networks. See also Neural Networks for Semantic Segmentation.

Tsao, E.C.K.[Eric Chen-Kuo], Lin, W.C.[Wei-Chung], Chen, C.T.[Chin-Tu],
Constraint satisfaction neural networks for image recognition,
PR(26), No. 4, April 1993, pp. 553-567.
Elsevier DOI 0401
BibRef
Earlier: A2, A1, A3:
Constraint Satisfaction Neural Networks for Image Segmentation,
PR(25), No. 7, July 1992, pp. 679-693.
Elsevier DOI BibRef

Chen, K.S., Tsay, D.H., Huang, W.P., Tzeng, Y.C.,
Remote Sensing Image Segmentation Using a Kalman Filter-Trained Neural-Network,
IJIST(7), No. 2, Summer 1996, pp. 141-148. 9607
BibRef

Cheng, K.S.[Kuo-Sheng], Lin, J.S.[Jzau-Sheng], Mao, C.W.[Chi-Wu],
The Application of Competitive Hopfield Neural Network to Medical Image Segmentation,
MedImg(15), No. 4, August 1996, pp. 560-567.
IEEE Top Reference. 0203
BibRef

Ziemke, T.,
Radar Image Segmentation Using Recurrent Artificial Neural Networks,
PRL(17), No. 4, April 4 1996, pp. 319-334. 9605
BibRef

Routa, S.[Saroj], Seethalakshmy, A.G., Srivastava, P.[Pramod], Majumdar, J.[Jharna],
Multimodal Image Segmentation Using a Modified Hopfield Neural Network,
PR(31), No. 6, June 1998, pp. 743-750.
Elsevier DOI 9806
BibRef

Venkatesh, Y.V., Rishikesh, N.,
Self-Organizing Neural Networks Based on Spatial Isomorphism for Active Contour Modeling,
PR(33), No. 7, July 2000, pp. 1239-1250.
Elsevier DOI 0005
BibRef

Venkatesh, Y.V., Raja, S.K., Ramya, N.,
Multiple contour extraction from graylevel images using an artificial neural network,
IP(15), No. 4, April 2006, pp. 892-899.
IEEE DOI 0604
BibRef

Gupta, L.[Lalit], Mangai, U.G.[Utthara Gosa], Das, S.[Sukhendu],
Integrating region and edge information for texture segmentation using a modified constraint satisfaction neural network,
IVC(26), No. 8, 1 August 2008, pp. 1106-1117.
Elsevier DOI 0806
Constraint satisfaction neural networks (CSNN); Segmentation; Texture edge detection; Fuzzy-C means (FCM); Dynamic window BibRef

Sahami, S., Shayesteh, M.G.,
Bi-level image compression technique using neural networks,
IET-IPR(6), No. 5, 2012, pp. 496-506.
DOI Link 1210
BibRef

Längkvist, M.[Martin], Kiselev, A.[Andrey], Alirezaie, M.[Marjan], Loutfi, A.[Amy],
Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks,
RS(8), No. 4, 2016, pp. 329.
DOI Link 1604
BibRef

Ghodrati, A.[Amir], Diba, A.[Ali], Pedersoli, M.[Marco], Tuytelaars, T.[Tinne], Van Gool, L.J.[Luc J.],
DeepProposals: Hunting Objects and Actions by Cascading Deep Convolutional Layers,
IJCV(124), No. 2, September 2017, pp. 115-131.
Springer DOI 1708
BibRef
Earlier:
DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers,
ICCV15(2578-2586)
IEEE DOI 1602
Aggregates BibRef

Nakajima, Y.[Yoshikatsu], Saito, H.[Hideo],
Simultaneous Object Segmentation and Recognition by Merging CNN Outputs from Uniformly Distributed Multiple Viewpoints,
IEICE(E101-D), No. 5, May 2018, pp. 1308-1316.
WWW Link. 1805
BibRef

Wang, C.Y.[Chun-Yan], Xu, A.[Aigong], Li, X.[Xiaoli],
Supervised Classification High-Resolution Remote-Sensing Image Based on Interval Type-2 Fuzzy Membership Function,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Wang, C.Y.[Chun-Yan], Xu, A.[Aigong], Li, C.[Chao], Zhao, X.M.[Xue-Mei],
Interval Type-2 Fuzzy Based Neural Network For High Resolution Remote Sensing Image Segmentation,
ISPRS16(B7: 385-391).
DOI Link 1610
BibRef

Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.,
DRINet for Medical Image Segmentation,
MedImg(37), No. 11, November 2018, pp. 2453-2462.
IEEE DOI 1811
Image segmentation, Computer architecture, Convolution, Training, Medical diagnostic imaging, Standards, abdominal organ segmentation BibRef

Larsson, M.[Mĺns], Arnab, A.[Anurag], Zheng, S.[Shuai], Torr, P.H.S.[Philip H.S.], Kahl, F.[Fredrik],
Revisiting Deep Structured Models for Pixel-Level Labeling with Gradient-Based Inference,
SIIMS(11), No. 4, 2018, pp. 2610-2628.
DOI Link 1901
BibRef

Roy, A.G.[Abhijit Guha], Navab, N.[Nassir], Wachinger, C.[Christian],
Recalibrating Fully Convolutional Networks With Spatial and Channel 'Squeeze and Excitation' Blocks,
MedImg(38), No. 2, February 2019, pp. 540-549.
IEEE DOI 1902
Image segmentation, Biomedical imaging, Decoding, Task analysis, Encoding, Computer architecture, Retina, squeeze & excitation BibRef

Wu, G.M.[Guang-Ming], Guo, Y.M.[Yi-Min], Song, X.Y.[Xiao-Ya], Guo, Z.L.[Zhi-Ling], Zhang, H.R.[Hao-Ran], Shi, X.D.[Xiao-Dan], Shibasaki, R.[Ryosuke], Shao, X.W.[Xiao-Wei],
A Stacked Fully Convolutional Networks with Feature Alignment Framework for Multi-Label Land-cover Segmentation,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Wang, Q., Yuan, C., Liu, Y.,
Learning Deep Conditional Neural Network for Image Segmentation,
MultMed(21), No. 7, July 2019, pp. 1839-1852.
IEEE DOI 1906
Feature extraction, Object segmentation, Visualization, Brain modeling, Context modeling, Convolutional neural networks, conditional Boltzmann machines BibRef

He, C.[Chu], Fang, P.[Peizhang], Zhang, Z.[Zhi], Xiong, D.[Dehui], Liao, M.S.[Ming-Sheng],
An End-to-End Conditional Random Fields and Skip-Connected Generative Adversarial Segmentation Network for Remote Sensing Images,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Ghosh, S.[Swarnendu], Das, N.[Nibaran], Das, I.[Ishita], Maulik, U.[Ujjwal],
Understanding Deep Learning Techniques for Image Segmentation,
Surveys(52), No. 4, September 2019, pp. Article No 73.
DOI Link 1912
BibRef

Han, Y.M.[Yong-Ming], Zhang, S.[Shuheng], Geng, Z.[Zhiqing], Wei, Q.[Qin], Ouyang, Z.[Zhi],
Level set based shape prior and deep learning for image segmentation,
IET-IPR(14), No. 1, January 2020, pp. 183-191.
DOI Link 1912
BibRef

Wang, S.[Sherrie], Chen, W.[William], Xie, S.M.[Sang Michael], Azzari, G.[George], Lobell, D.B.[David B.],
Weakly Supervised Deep Learning for Segmentation of Remote Sensing Imagery,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Yu, J., Blaschko, M.B.,
The Lovász Hinge: A Novel Convex Surrogate for Submodular Losses,
PAMI(42), No. 3, March 2020, pp. 735-748.
IEEE DOI 2002
Fasteners, Risk management, Optimization, Training, Complexity theory, Task analysis, Indexes, Lovász extension, Jaccard index score BibRef

Karimi, D., Salcudean, S.E.,
Reducing the Hausdorff Distance in Medical Image Segmentation With Convolutional Neural Networks,
MedImg(39), No. 2, February 2020, pp. 499-513.
IEEE DOI 2002
Image segmentation, Biomedical imaging, Training, Sensitivity, convolutional neural networks BibRef

Li, K.[Kun], Hu, X.Y.[Xiang-Yun], Jiang, H.[Huiwei], Shu, Z.[Zhen], Zhang, M.[Mi],
Attention-Guided Multi-Scale Segmentation Neural Network for Interactive Extraction of Region Objects from High-Resolution Satellite Imagery,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Gu, X.B.[Xian-Bin], Deng, J.D.[Jeremiah D.],
A multi-feature bipartite graph ensemble for image segmentation,
PRL(131), 2020, pp. 98-104.
Elsevier DOI 2004
Image segmentation, Feature fusion, Bipartite graph, Spectral clustering BibRef

Guo, Z.K.[Zheng-Kun], Song, Y.[Yong], Zhao, Y.F.[Yu-Fei], Yang, X.[Xin], Wang, F.N.[Feng-Ning],
An adaptive infrared image segmentation method based on fusion SPCNN,
SP:IC(87), 2020, pp. 115905.
Elsevier DOI 2007
Infrared image segmentation, Pulse coupled neural network, Adaptive parameter setting, Output selection BibRef

Han, L.[Lili], Li, S.J.[Shu-Juan], Ren, P.X.[Peng-Xin], Xue, D.D.[Ding-Dan],
Block cosparsity overcomplete learning transform image segmentation algorithm based on burr model,
IET-IPR(14), No. 10, August 2020, pp. 2074-2080.
DOI Link 2008
BibRef

Lin, D.Y.[Dong-Yun], Li, Y.Q.[Yi-Qun], Nwe, T.L.[Tin Lay], Dong, S.[Sheng], Oo, Z.M.[Zaw Min],
RefineU-Net: Improved U-Net with progressive global feedbacks and residual attention guided local refinement for medical image segmentation,
PRL(138), 2020, pp. 267-275.
Elsevier DOI 2010
U-Net, Medical image segmentation, Progressive global feedbacks, Local refinement, Residual attention gate BibRef

Ye, L., Liu, Z., Wang, Y.,
Dual Convolutional LSTM Network for Referring Image Segmentation,
MultMed(22), No. 12, December 2020, pp. 3224-3235.
IEEE DOI 2011
Image segmentation, Visualization, Decoding, Linguistics, Task analysis, Logic gates, Computer vision, deep learning BibRef


Li, X., Liu, Y., Xu, K., Zhao, Z., Liu, S.,
A Context-Based Network For Referring Image Segmentation,
ICIP20(1436-1440)
IEEE DOI 2011
Image segmentation, Visualization, Linguistics, Feature extraction, Convolution, Decoding, Referring Image Segmentation, Dense Convolution BibRef

Beheshti, N., Johnsson, L.,
Squeeze U-Net: A Memory and Energy Efficient Image Segmentation Network,
WiCV20(1495-1504)
IEEE DOI 2008
Fires, Computational modeling, Kernel, Feature extraction, Graphics processing units, Memory management BibRef

Zhu, W., Myronenko, A., Xu, Z., Li, W., Roth, H., Huang, Y., Milletari, F., Xu, D.,
NeurReg: Neural Registration and Its Application to Image Segmentation,
WACV20(3606-3615)
IEEE DOI 2006
Image segmentation, Training, Strain, Estimation, Task analysis, Image registration, Neural networks BibRef

Kundu, J.N., Rajput, G.S.[G. Singh], Babu, R.V.,
VRT-Net: Real-Time Scene Parsing via Variable Resolution Transform,
WACV20(2038-2045)
IEEE DOI 2006
Image segmentation, Transforms, Estimation, Real-time systems, Spatial resolution, Computer architecture BibRef

Kim, Y., Choi, S., Lee, H., Kim, T., Kim, C.,
RPM-Net: Robust Pixel-Level Matching Networks for Self-Supervised Video Object Segmentation,
WACV20(2046-2054)
IEEE DOI 2006
Convolution, Training, Object segmentation, Feature extraction, Robustness, Image segmentation, Image color analysis BibRef

Park, H., Sjösund, L.L., Yoo, Y., Monet, N., Bang, J., Kwak, N.,
SINet: Extreme Lightweight Portrait Segmentation Networks with Spatial Squeeze Modules and Information Blocking Decoder,
WACV20(2055-2063)
IEEE DOI 2006
Image segmentation, Decoding, Convolution, Task analysis, Feature extraction, Uncertainty, Computational modeling BibRef

Wang, W., Yu, K., Hugonot, J., Fua, P., Salzmann, M.,
Recurrent U-Net for Resource-Constrained Segmentation,
ICCV19(2142-2151)
IEEE DOI 2004
image segmentation, recurrent neural nets, segmentation methods, deep networks, standard GPUs, recurrent U-Net architecture, Tensile stress BibRef

Ding, H., Jiang, X., Liu, A.Q., Thalmann, N.M., Wang, G.,
Boundary-Aware Feature Propagation for Scene Segmentation,
ICCV19(6818-6828)
IEEE DOI 2004
feature extraction, graph theory, image segmentation, learning (artificial intelligence), segment regions, Convolution BibRef

Ye, L.W.[Lin-Wei], Rochan, M.[Mrigank], Liu, Z.[Zhi], Wang, Y.[Yang],
Cross-Modal Self-Attention Network for Referring Image Segmentation,
CVPR19(10494-10503).
IEEE DOI 2002
BibRef

Cao, J.[Jiale], Pang, Y.W.[Yan-Wei], Li, X.L.[Xue-Long],
Triply Supervised Decoder Networks for Joint Detection and Segmentation,
CVPR19(7384-7393).
IEEE DOI 2002
BibRef

Chen, W.Y.[Wu-Yang], Jiang, Z.[Ziyu], Wang, Z.Y.[Zhang-Yang], Cui, K.[Kexin], Qian, X.N.[Xiao-Ning],
Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-High Resolution Images,
CVPR19(8916-8925).
IEEE DOI 2002
BibRef

Durall, R.[Ricard], Pfreundt, F.J.[Franz-Josef], Köthe, U.[Ullrich], Keuper, J.[Janis],
Object Segmentation Using Pixel-Wise Adversarial Loss,
GCPR19(303-316).
Springer DOI 1911
BibRef

Hu, T.[Tao],
Dense In Dense: Training Segmentation from Scratch,
ACCV18(VI:454-470).
Springer DOI 1906
BibRef

Pandey, G., Dukkipati, A.,
Learning to Segment With Image-Level Supervision,
WACV19(1856-1865)
IEEE DOI 1904
convolution, image classification, image representation, image segmentation, learning (artificial intelligence), Force BibRef

Xu, X., Lu, Q., Yang, L., Hu, S., Chen, D., Hu, Y., Shi, Y.,
Quantization of Fully Convolutional Networks for Accurate Biomedical Image Segmentation,
CVPR18(8300-8308)
IEEE DOI 1812
Quantization (signal), Training, Biomedical imaging, Image segmentation, Uncertainty, Memory management, Neural networks BibRef

Marin, D.[Dmitrii], Tang, M.[Meng], Ben Ayed, I.[Ismail], Boykov, Y.[Yuri],
Beyond Gradient Descent for Regularized Segmentation Losses,
CVPR19(10179-10188).
IEEE DOI 2002
BibRef

Tang, M.[Meng], Perazzi, F.[Federico], Djelouah, A.[Abdelaziz], Ben Ayed, I.[Ismail], Schroers, C.[Christopher], Boykov, Y.[Yuri],
On Regularized Losses for Weakly-supervised CNN Segmentation,
ECCV18(XVI: 524-540).
Springer DOI 1810
BibRef

Oudni, L., Vázquez, C., Coulombe, S.,
Motion Occlusions for Automatic Generation of Relative Depth Maps,
ICIP18(1538-1542)
IEEE DOI 1809
Optical imaging, Integrated optics, Image color analysis, Estimation, Coherence, Interpolation, Image segmentation, BibRef

Morley, D., Foroosh, H.,
Improving RANSAC-Based Segmentation through CNN Encapsulation,
CVPR17(2661-2670)
IEEE DOI 1711
Encapsulation, Feature extraction, Image edge detection, Image segmentation, Training BibRef

Cohen, G., Weinshall, D.,
Hidden Layers in Perceptual Learning,
CVPR17(5349-5357)
IEEE DOI 1711
Biological system modeling, Computational modeling, Convolution, Image segmentation, Training, Visualization BibRef

Cannici, M.[Marco], Ciccone, M.[Marco], Romanoni, A.[Andrea], Matteucci, M.[Matteo],
Attention Mechanisms for Object Recognition With Event-Based Cameras,
WACV19(1127-1136)
IEEE DOI 1904
cameras, image recognition, image sequences, neural nets, object recognition, object recognition, event-based cameras, Object recognition BibRef

Jarrar, M., Kerkeni, A., Abdallah, A.B., Bedoui, M.H.,
MLP Neural Network Classifier for Medical Image Segmentation,
CGiV16(88-93)
IEEE DOI 1608
image classification BibRef

Hernández, J.[Juanita], Gómez, W.[Wilfrido],
Automatic Tuning of the Pulse-Coupled Neural Network Using Differential Evolution for Image Segmentation,
MCPR16(157-166).
Springer DOI 1608
BibRef

Pathak, D., Krahenbuhl, P., Darrell, T.J.,
Constrained Convolutional Neural Networks for Weakly Supervised Segmentation,
ICCV15(1796-1804)
IEEE DOI 1602
Convolutional codes BibRef

Safar, S.[Simon], Yang, M.H.[Ming-Hsuan],
Learning shape priors for object segmentation via neural networks,
ICIP15(1835-1839)
IEEE DOI 1512
Object segmentation; convolutional neural networks; shape priors BibRef

Porzi, L.[Lorenzo], Rota Bulo, S.[Samuel], Colovic, A.[Aleksander], Kontschieder, P.[Peter],
Seamless Scene Segmentation,
CVPR19(8269-8278).
IEEE DOI 2002
BibRef

Masci, J.[Jonathan], Giusti, A.[Alessandro], Ciresan, D.C.[Dan C.], Fricout, G.[Gabriel], Schmidhuber, J.[Jurgen],
A fast learning algorithm for image segmentation with max-pooling convolutional networks,
ICIP13(2713-2717)
IEEE DOI 1402
Convolutional Network BibRef

Giusti, A.[Alessandro], Ciresan, D.C.[Dan C.], Masci, J.[Jonathan], Gambardella, L.M.[Luca M.], Schmidhuber, J.[Jurgen],
Fast image scanning with deep max-pooling convolutional neural networks,
ICIP13(4034-4038)
IEEE DOI 1402
Biomedical Imaging BibRef

del Campo-Becerra, G.D.M.[Gustavo D. Martín], Yańez-Vargas, J.I.[Juan I.], López-Ruíz, J.A.[Josué A.],
Texture Analysis of Mean Shift Segmented Low-Resolution Speckle-Corrupted Fractional SAR Imagery through Neural Network Classification,
CASI14(998-1005).
Springer DOI 1411
BibRef

Yazdanpanah, A.P.[Ali Pour], Regentova, E.E.[Emma E.], Mandava, A.K.[Ajay Kumar], Ahmad, T.[Touqeer],
Sky Segmentation by Fusing Clustering with Neural Networks,
ISVC13(II:663-672).
Springer DOI 1311
BibRef

Andersen, J.D.[Jens D.],
Image Decomposition by Radial Basis Functions,
SCIA03(749-754).
Springer DOI 0310
BibRef

Matsui, K.[Kazuhiro], Kosugi, Y.[Yukio],
Image Segmentation by Neural-net Classifiers with Genetic Selection of Feature Indices,
ICIP99(I:524-528).
IEEE DOI BibRef 9900

Zong, X., Meyer-Baese, A., and Laine, A.,
Multiscale Segmentation Through a Radial Basis Neural Network,
ICIP97(III: 400-403).
IEEE DOI BibRef 9700

Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Neural Networks for Semantic Segmentation .


Last update:Nov 23, 2020 at 10:27:11