Shi, Q.F.[Qin-Feng],
Cheng, L.[Li],
Wang, L.[Li],
Smola, A.J.[Alex J.],
Human Action Segmentation and Recognition Using Discriminative
Semi-Markov Models,
IJCV(93), No. 1, May 2011, pp. 22-32.
WWW Link.
1104
BibRef
Earlier: A1, A3, A2, A4:
Discriminative human action segmentation and recognition using
semi-Markov model,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Wu, C.,
Zaheer, M.,
Hu, H.,
Manmatha, R.,
Smola, A.J.,
Krähenbühl, P.,
Compressed Video Action Recognition,
CVPR18(6026-6035)
IEEE DOI
1812
Image coding, Video compression, Training, Optical imaging,
Streaming media
BibRef
Samadani, A.A.[Ali-Akbar],
Ghodsi, A.[Ali],
Kulic, D.[Dana],
Discriminative functional analysis of human movements,
PRL(34), No. 15, 2013, pp. 1829-1839.
Elsevier DOI
1309
Human movement time-series analysis
BibRef
Lin, J.F.S.,
Karg, M.,
Kulic, D.,
Movement Primitive Segmentation for Human Motion Modeling:
A Framework for Analysis,
HMS(46), No. 3, June 2016, pp. 325-339.
IEEE DOI
1605
Algorithm design and analysis
BibRef
Hoai, M.[Minh],
de la Torre, F.[Fernando],
Max-Margin Early Event Detectors,
IJCV(107), No. 2, April 2014, pp. 191-202.
WWW Link.
1404
BibRef
Earlier:
CVPR12(2863-2870).
IEEE DOI
1208
Award, CVPR, Student.
BibRef
Wang, Y.,
Hoai, M.,
Pulling Actions out of Context:
Explicit Separation for Effective Combination,
CVPR18(7044-7053)
IEEE DOI
1812
Training, Feature extraction, Context modeling, Cameras, Lighting,
Loss measurement, Video sequences
BibRef
Hoai, M.[Minh],
Lan, Z.Z.[Zhen-Zhong],
de la Torre, F.[Fernando],
Joint segmentation and classification of human actions in video,
CVPR11(3265-3272).
IEEE DOI
1106
BibRef
Wang, B.[Boyu],
Hoai, M.[Minh],
Back to the beginning:
Starting point detection for early recognition of ongoing human actions,
CVIU(175), 2018, pp. 24-31.
Elsevier DOI
1812
Action early recognition, Online action detection, Event detection
BibRef
Taralova, E.[Ekaterina],
de la Torre, F.[Fernando],
Hebert, M.[Martial],
Source constrained clustering,
ICCV11(1927-1934).
IEEE DOI
1201
Quantizing data from different sources. Cluster actions, not cluster
subjects.
BibRef
Panagiotakis, C.[Costas],
Papoutsakis, K.E.[Konstantinos E.],
Argyros, A.A.[Antonis A.],
A graph-based approach for detecting common actions in motion capture
data and videos,
PR(79), 2018, pp. 1-11.
Elsevier DOI
1804
Common action detection, Video co-segmentation,
Temporal action co-segmentation, Dynamic Time Warping
BibRef
Zeng, X.X.[Xun-Xun],
Chen, F.[Fei],
Wang, M.Q.[Mei-Qing],
Shape group Boltzmann machine for simultaneous object segmentation
and action classification,
PRL(111), 2018, pp. 43-50.
Elsevier DOI
1808
Deep Boltzmann machine, Shape prior, Object segmentation,
Classification, Transformation invariance
BibRef
Yan, Y.[Yan],
Xu, C.L.[Chen-Liang],
Cai, D.[Dawen],
Corso, J.J.[Jason J.],
A Weakly Supervised Multi-task Ranking Framework for Actor-Action
Semantic Segmentation,
IJCV(128), No. 5, May 2020, pp. 1414-1432.
Springer DOI
2005
BibRef
Earlier:
Weakly Supervised Actor-Action Segmentation via Robust Multi-task
Ranking,
CVPR17(1022-1031)
IEEE DOI
1711
Optimization, Robustness, Semantics, Support vector machines,
Training, Videos
BibRef
Xu, C.L.[Chen-Liang],
Hsieh, S.H.[Shao-Hang],
Xiong, C.M.[Cai-Ming],
Corso, J.J.[Jason J.],
Can humans fly? Action understanding with multiple classes of actors,
CVPR15(2264-2273)
IEEE DOI
1510
BibRef
Chen, J.[Jie],
Li, Z.H.[Zhi-Heng],
Luo, J.B.[Jie-Bo],
Xu, C.L.[Chen-Liang],
Learning a Weakly-Supervised Video Actor-Action Segmentation Model
With a Wise Selection,
CVPR20(9898-9908)
IEEE DOI
2008
Training, Motion segmentation, Legged locomotion, Task analysis,
Computational modeling, Proposals
BibRef
Xu, C.L.[Chen-Liang],
Ding, L.[Li],
Weakly-Supervised Action Segmentation with Iterative Soft Boundary
Assignment,
CVPR18(6508-6516)
IEEE DOI
1812
Videos, Hidden Markov models, Training, Task analysis, Decoding,
Computational modeling, Recurrent neural networks
BibRef
Qian, H.W.[Hang-Wei],
Pan, S.J.L.[Sinno Jia-Lin],
Miao, C.Y.[Chun-Yan],
Weakly-supervised sensor-based activity segmentation and recognition
via learning from distributions,
AI(292), 2021, pp. 103429.
Elsevier DOI
2102
Human activity recognition, Sensor readings segmentation, Kernel mean embedding
BibRef
Sun, X.[Xiao],
Long, X.[Xiang],
He, D.L.[Dong-Liang],
Wen, S.L.[Shi-Lei],
Lian, Z.H.[Zhou-Hui],
VSRNet: End-to-end video segment retrieval with text query,
PR(119), 2021, pp. 108027.
Elsevier DOI
2106
Video segment retrieval, Video retrieval, Description localization
BibRef
Ji, L.[Lei],
Wu, C.[Chenfei],
Zhou, D.[Daisy],
Yan, K.[Kun],
Cui, E.[Edward],
Chen, X.L.[Xi-Lin],
Duan, N.[Nan],
Learning Temporal Video Procedure Segmentation from an Automatically
Collected Large Dataset,
WACV22(2733-2742)
IEEE DOI
2202
Measurement, TV, Convolution, Annotations,
Computational modeling, Transformers, Datasets,
Evaluation and Comparison of Vision Algorithms Vision and Languages
BibRef
Park, J.[Junyong],
Kim, D.[Daekyum],
Huh, S.[Sejoon],
Jo, S.[Sungho],
Maximization and restoration: Action segmentation through dilation
passing and temporal reconstruction,
PR(129), 2022, pp. 108764.
Elsevier DOI
2206
Action segmentation, Temporal segmentation, Video understanding
BibRef
Gao, H.B.[Hong-Bo],
Lv, C.[Chen],
Zhang, T.[Tong],
Zhao, H.F.[Hong-Fei],
Jiang, L.[Lei],
Zhou, J.J.[Jun-Jie],
Liu, Y.C.[Yu-Chao],
Huang, Y.[Yi],
Han, C.[Chao],
A Structure Constraint Matrix Factorization Framework for Human
Behavior Segmentation,
Cyber(52), No. 12, December 2022, pp. 12978-12988.
IEEE DOI
2212
Clustering algorithms, Image segmentation, Principal component analysis,
Motion segmentation, Optimization, structure constraint
BibRef
Chen, Y.Z.[Yun-Ze],
Chen, M.J.[Meng-Juan],
Gu, Q.Y.[Qing-Yi],
Class-wise boundary regression by uncertainty in temporal action
detection,
IET-IPR(16), No. 14, 2022, pp. 3854-3862.
DOI Link
2212
BibRef
Aziere, N.[Nicolas],
Todorovic, S.[Sinisa],
Multistage temporal convolution transformer for action segmentation,
IVC(128), 2022, pp. 104567.
Elsevier DOI
2212
Action segmentation, Video understanding, Full supervision,
Transformer network, Hybrid models, CNNs
BibRef
Rahaman, R.[Rahul],
Singhania, D.[Dipika],
Thiery, A.[Alexandre],
Yao, A.[Angela],
A Generalized and Robust Framework for Timestamp Supervision in
Temporal Action Segmentation,
ECCV22(IV:279-296).
Springer DOI
2211
BibRef
Ding, G.D.[Guo-Dong],
Yao, A.[Angela],
Leveraging Action Affinity and Continuity for Semi-supervised Temporal
Action Segmentation,
ECCV22(XXXV:17-32).
Springer DOI
2211
BibRef
Behrmann, N.[Nadine],
Golestaneh, S.A.[S. Alireza],
Kolter, Z.[Zico],
Gall, J.[Jürgen],
Noroozi, M.[Mehdi],
Unified Fully and Timestamp Supervised Temporal Action Segmentation via
Sequence to Sequence Translation,
ECCV22(XXXV:52-68).
Springer DOI
2211
BibRef
Ishihara, K.[Kenta],
Nakano, G.[Gaku],
Inoshita, T.[Tetsuo],
MCFM: Mutual Cross Fusion Module for Intermediate Fusion-Based Action
Segmentation,
ICIP22(1701-1705)
IEEE DOI
2211
Measurement, Image segmentation, Action segmentation,
feature fusion, mutual cross fusion module, human-related feature
BibRef
Sun, Z.N.[Zhao-Ning],
Messikommer, N.[Nico],
Gehrig, D.[Daniel],
Scaramuzza, D.[Davide],
ESS: Learning Event-Based Semantic Segmentation from Still Images,
ECCV22(XXXIV:341-357).
Springer DOI
2211
BibRef
Li, C.C.[Cong-Cong],
Wang, X.[Xinyao],
Wen, L.Y.[Long-Yin],
Hong, D.X.[De-Xiang],
Luo, T.J.[Tie-Jian],
Zhang, L.[Libo],
End-to-End Compressed Video Representation Learning for Generic Event
Boundary Detection,
CVPR22(13947-13956)
IEEE DOI
2210
Representation learning, Training, Annotations, Shape,
Machine vision, Video sequences, Feature extraction,
Vision applications and systems
BibRef
Tang, J.Q.[Jia-Qi],
Liu, Z.Y.[Zhao-Yang],
Qian, C.[Chen],
Wu, W.[Wayne],
Wang, L.M.[Li-Min],
Progressive Attention on Multi-Level Dense Difference Maps for
Generic Event Boundary Detection,
CVPR22(3345-3354)
IEEE DOI
2210
Representation learning, Codes, Aggregates, Semantics,
Benchmark testing, Pattern recognition,
Action and event recognition
BibRef
Du, Z.X.[Ze-Xing],
Wang, X.[Xue],
Zhou, G.Q.[Guo-Qing],
Wang, Q.[Qing],
Fast and Unsupervised Action Boundary Detection for Action
Segmentation,
CVPR22(3313-3322)
IEEE DOI
2210
Training, Clustering algorithms, Real-time systems,
Pattern recognition, Proposals, Task analysis,
Action and event recognition
BibRef
Kang, H.[Hyolim],
Kim, J.[Jinwoo],
Kim, T.[Taehyun],
Kim, S.J.[Seon Joo],
UBoCo: Unsupervised Boundary Contrastive Learning for Generic Event
Boundary Detection,
CVPR22(20041-20050)
IEEE DOI
2210
Computational modeling, Semantics, Benchmark testing,
Pattern recognition, Task analysis, Action and event recognition,
Video analysis and understanding
BibRef
Kumar, S.[Sateesh],
Haresh, S.[Sanjay],
Ahmed, A.[Awais],
Konin, A.[Andrey],
Zia, M.Z.[M. Zeeshan],
Tran, Q.H.[Quoc-Huy],
Unsupervised Action Segmentation by Joint Representation Learning and
Online Clustering,
CVPR22(20142-20153)
IEEE DOI
2210
Representation learning, Visualization, Video on demand,
Memory management, Pattern recognition, Task analysis,
Self- semi- meta- Video analysis and understanding
BibRef
Dimiccoli, M.[Mariella],
Garrido, L.[Lluís],
Rodriguez-Corominas, G.[Guillem],
Wendt, H.[Herwig],
Graph Constrained Data Representation Learning for Human Motion
Segmentation,
ICCV21(1440-1449)
IEEE DOI
2203
Analytical models, Dictionaries, Computational modeling,
Motion segmentation, Transfer learning, Benchmark testing,
grouping and shape
BibRef
Ahn, H.[Hyemin],
Lee, D.[Dongheui],
Refining Action Segmentation with Hierarchical Video Representations,
ICCV21(16282-16290)
IEEE DOI
2203
Training, Codes, Computational modeling, Refining, Predictive models,
Feature extraction, Action and behavior recognition,
Video analysis and understanding
BibRef
Lu, Z.J.[Zi-Jia],
Elhamifar, E.[Ehsan],
Set-Supervised Action Learning in Procedural Task Videos via Pairwise
Order Consistency,
CVPR22(19871-19881)
IEEE DOI
2210
Training, Location awareness, Shape, Pattern recognition,
Reliability, Task analysis, Action and event recognition,
Video analysis and understanding
BibRef
Lu, Z.J.[Zi-Jia],
Elhamifar, E.[Ehsan],
Weakly-Supervised Action Segmentation and Alignment via
Transcript-Aware Union-of-Subspaces Learning,
ICCV21(8065-8075)
IEEE DOI
2203
Training, Real-time systems,
Inference algorithms, Videos, Video analysis and understanding,
grouping and shape
BibRef
Li, J.[Jun],
Todorovic, S.[Sinisa],
Action Shuffle Alternating Learning for Unsupervised Action
Segmentation,
CVPR21(12623-12631)
IEEE DOI
2111
Training, Viterbi algorithm,
Computational modeling, Hidden Markov models,
Videos
BibRef
Shen, Y.[Yuhan],
Wang, L.[Lu],
Elhamifar, E.[Ehsan],
Learning to Segment Actions from Visual and Language Instructions via
Differentiable Weak Sequence Alignment,
CVPR21(10151-10160)
IEEE DOI
2111
Location awareness, Visualization,
Computational modeling, Prototypes, Linguistics, Feature extraction
BibRef
Ishikawa, Y.[Yuchi],
Kasai, S.[Seito],
Aoki, Y.[Yoshimitsu],
Kataoka, H.[Hirokatsu],
Alleviating Over-segmentation Errors by Detecting Action Boundaries,
WACV21(2321-2330)
IEEE DOI
2106
Segmenting actions.
Smoothing methods, Refining, Feature extraction, Task analysis
BibRef
Vignolo, A.[Alessia],
Noceti, N.[Nicoletta],
Sciutti, A.[Alessandra],
Odone, F.[Francesca],
Sandini, G.[Giulio],
Learning dictionaries of kinematic primitives for action
classification,
ICPR21(5965-5972)
IEEE DOI
2105
Visualization, Dictionaries, Motion segmentation, Kinematics,
Encoding, Synchronization
BibRef
Li, J.[Jun],
Todorovic, S.[Sinisa],
Anchor-Constrained Viterbi for Set-Supervised Action Segmentation,
CVPR21(9801-9810)
IEEE DOI
2111
BibRef
Earlier:
Set-Constrained Viterbi for Set-Supervised Action Segmentation,
CVPR20(10817-10826)
IEEE DOI
2008
Training, Shortest path problem, Monte Carlo methods,
Viterbi algorithm, Hidden Markov models, Estimation, Benchmark testing.
Neural networks,
Feature extraction, TV, Task analysis
BibRef
Huang, Y.,
Sugano, Y.,
Sato, Y.,
Improving Action Segmentation via Graph-Based Temporal Reasoning,
CVPR20(14021-14031)
IEEE DOI
2008
Task analysis, Convolution, Cognition, Predictive models,
Cameras, Glass
BibRef
Bai, R.,
Zhao, Q.,
Zhou, S.,
Li, Y.,
Zhao, X.,
Wang, J.,
Continuous Action Recognition and Segmentation in Untrimmed Videos,
ICPR18(2534-2539)
IEEE DOI
1812
Videos, Feature extraction, Motion segmentation,
Hidden Markov models, Pattern recognition, Task analysis, Computer vision
BibRef
Jain, H.,
Harit, G.,
Unsupervised Temporal Segmentation of Human Action Using Community
Detection,
ICIP18(1892-1896)
IEEE DOI
1809
Videos, Motion segmentation, Training, Indexes, Hidden Markov models,
Clustering algorithms, Shape, community detection,
unsupervised action segmentation
BibRef
Kuehne, H.[Hilde],
Gall, J.[Juergen],
Serre, T.[Thomas],
An end-to-end generative framework for video segmentation and
recognition,
WACV16(1-8)
IEEE DOI
1606
Data models
BibRef
Li, S.,
Li, K.,
Fu, Y.,
Temporal Subspace Clustering for Human Motion Segmentation,
ICCV15(4453-4461)
IEEE DOI
1602
Clustering methods
BibRef
Lu, J.[Jiasen],
Xu, R.[Ran],
Corso, J.J.[Jason J.],
Human action segmentation with hierarchical supervoxel consistency,
CVPR15(3762-3771)
IEEE DOI
1510
BibRef
Kim, Y.[Yelin],
Chen, J.X.[Ji-Xu],
Chang, M.C.[Ming-Ching],
Wang, X.[Xin],
Provost, E.M.,
Lyu, S.W.[Si-Wei],
Modeling transition patterns between events for temporal human action
segmentation and classification,
FG15(1-8)
IEEE DOI
1508
dynamic programming
BibRef
Ghodrati, A.[Amir],
Pedersoli, M.[Marco],
Tuytelaars, T.[Tinne],
Coupling video segmentation and action recognition,
WACV14(618-625)
IEEE DOI
1406
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Accumulation Methods, Motion Histograms for Human Action Recognition .