Wang, W.[Wei],
Zhu, L.Q.[Li-Qiang],
Structured feature sparsity training for convolutional neural network
compression,
JVCIR(71), 2020, pp. 102867.
Elsevier DOI
2009
Convolutional neural network, CNN compression,
Structured sparsity, Pruning criterion
BibRef
Kaplan, C.[Cagri],
Bulbul, A.[Abdullah],
Goal driven network pruning for object recognition,
PR(110), 2021, pp. 107468.
Elsevier DOI
2011
Deep learning, Network pruning,
Network compressing, Top-down attention, Perceptual visioning
BibRef
Yao, K.X.[Kai-Xuan],
Cao, F.L.[Fei-Long],
Leung, Y.[Yee],
Liang, J.[Jiye],
Deep neural network compression through interpretability-based filter
pruning,
PR(119), 2021, pp. 108056.
Elsevier DOI
2106
Deep neural network (DNN), Convolutional neural network (CNN),
Visualization, Compression
BibRef
Gowdra, N.[Nidhi],
Sinha, R.[Roopak],
MacDonell, S.[Stephen],
Yan, W.Q.[Wei Qi],
Mitigating severe over-parameterization in deep convolutional neural
networks through forced feature abstraction and compression with an
entropy-based heuristic,
PR(119), 2021, pp. 108057.
Elsevier DOI
2106
Convolutional neural networks (CNNs), Depth redundancy,
Entropy, Feature compression, EBCLE
BibRef
Zhang, H.[Huijie],
An, L.[Li],
Chu, V.W.[Vena W.],
Stow, D.A.[Douglas A.],
Liu, X.B.[Xiao-Bai],
Ding, Q.H.[Qing-Hua],
Learning Adjustable Reduced Downsampling Network for Small Object
Detection in Urban Environments,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Yao, J.[Jie],
Wang, D.D.[Dong-Dong],
Hu, H.[Hao],
Xing, W.W.[Wei-Wei],
Wang, L.Q.[Li-Qiang],
ADCNN: Towards learning adaptive dilation for convolutional neural
networks,
PR(123), 2022, pp. 108369.
Elsevier DOI
2112
Adaptive dilated convolution, Representation learning, Image classification
BibRef
Tahiri, Y.[Younes],
Seddik, M.E.[Mohamed El_Amine],
Tamaazousti, M.[Mohamed],
Optimization-Based Neural Networks Compression,
ICIP21(3512-3516)
IEEE DOI
2201
Performance evaluation, Image coding, Neurons, Memory management,
Task analysis, Biological neural networks,
Distillation
BibRef
Rueckauer, B.[Bodo],
Liu, S.C.[Shih-Chii],
Contraction of Dynamically Masked Deep Neural Networks for Efficient
Video Processing,
CirSysVideo(32), No. 2, February 2022, pp. 621-633.
IEEE DOI
2202
Neurons, Taylor series, Surveillance, Sparse matrices,
Heuristic algorithms, Correlation, Biological neural networks,
masking
BibRef
Wang, Z.Z.[Zhen-Zhen],
Qin, M.[Minghai],
Chen, Y.K.[Yen-Kuang],
Learning from the CNN-based Compressed Domain,
WACV22(4000-4008)
IEEE DOI
2202
Training, Image segmentation, Image coding, Computational modeling,
Estimation, Transform coding, Entropy,
Semi- and Un- supervised Learning
BibRef
Kirchhoffer, H.[Heiner],
Haase, P.[Paul],
Samek, W.[Wojciech],
Müller, K.[Karsten],
Rezazadegan-Tavakoli, H.[Hamed],
Cricri, F.[Francesco],
Aksu, E.B.[Emre B.],
Hannuksela, M.M.[Miska M.],
Jiang, W.[Wei],
Wang, W.[Wei],
Liu, S.[Shan],
Jain, S.[Swayambhoo],
Hamidi-Rad, S.[Shahab],
Racapé, F.[Fabien],
Bailer, W.[Werner],
Overview of the Neural Network Compression and Representation (NNR)
Standard,
CirSysVideo(32), No. 5, May 2022, pp. 3203-3216.
IEEE DOI
2205
Artificial neural networks, Quantization (signal),
Biological neural networks, Standards, Tensors, Decoding, Training,
machine learning
BibRef
Lohit, S.[Suhas],
Jones, M.[Michael],
Model Compression Using Optimal Transport,
WACV22(3645-3654)
IEEE DOI
2202
Knowledge engineering, Training, Deep learning,
Image coding, Computational modeling, Mobile handsets,
Learning and Optimization
BibRef
Tayyab, M.[Muhammad],
Khan, F.A.[Fahad Ahmad],
Mahalanobis, A.[Abhijit],
Compressing Deep CNNs Using Basis Representation and Spectral
Fine-Tuning,
ICIP21(3537-3541)
IEEE DOI
2201
Image coding, Convolution, Object detection, Spatial filters,
Convolutional neural networks, Image classification,
orthogonal filters
BibRef
Papadimitriou, D.[Dimitris],
Jain, S.[Swayambhoo],
Data-Driven Low-Rank Neural Network Compression,
ICIP21(3547-3551)
IEEE DOI
2201
Deep learning, Image coding, Neural networks, Convex functions,
Artificial intelligence, Deep Neural Network Compression,
Edge AI
BibRef
Afrabandpey, H.[Homayun],
Muravev, A.[Anton],
Tavakoli, H.R.[Hamed R.],
Zhang, H.L.[Hong-Lei],
Cricri, F.[Francesco],
Gabbouj, M.[Moncef],
Aksu, E.[Emre],
Mind the Structure: Adopting Structural Information for Deep Neural
Network Compression,
ICIP21(3532-3536)
IEEE DOI
2201
Deep learning, Quantization (signal), Image coding, Image analysis,
Neural networks, Focusing, Acoustics, Clustering
BibRef
Idelbayev, Y.[Yerlan],
Carreira-Perpińán, M.Á.[Miguel Á.],
Beyond Flops In Low-Rank Compression of Neural Networks:
Optimizing Device-Specific Inference Runtime,
ICIP21(2843-2847)
IEEE DOI
2201
Performance evaluation, Image coding, Runtime, Neural networks,
Time measurement, Inference algorithms,
neural network compression
BibRef
Choi, Y.[Yoojin],
El-Khamy, M.[Mostafa],
Lee, J.[Jungwon],
Zero-Shot Learning of A Conditional Generative Adversarial Network
for Data-Free Network Quantization,
ICIP21(3552-3556)
IEEE DOI
2201
Training, Quantization (signal), Image coding, Pipelines,
Neural networks, Training data, Generative adversarial networks, quantization
BibRef
Kondratyuk, D.[Dan],
Yuan, L.Z.[Liang-Zhe],
Li, Y.D.[Yan-Dong],
Zhang, L.[Li],
Tan, M.X.[Ming-Xing],
Brown, M.[Matthew],
Gong, B.Q.[Bo-Qing],
MoViNets: Mobile Video Networks for Efficient Video Recognition,
CVPR21(16015-16025)
IEEE DOI
2111
Training, Costs, Computational modeling, Memory management, Video sequences,
Computational efficiency
BibRef
Yu, C.Q.[Chang-Qian],
Xiao, B.[Bin],
Gao, C.X.[Chang-Xin],
Yuan, L.[Lu],
Zhang, L.[Lei],
Sang, N.[Nong],
Wang, J.D.[Jing-Dong],
Lite-HRNet: A Lightweight High-Resolution Network,
CVPR21(10435-10445)
IEEE DOI
2111
Convolutional codes, Bridges,
Computational modeling, Pose estimation, Semantics, Pattern recognition
BibRef
Li, Y.[Yuchao],
Lin, S.H.[Shao-Hui],
Liu, J.Z.[Jian-Zhuang],
Ye, Q.X.[Qi-Xiang],
Wang, M.[Mengdi],
Chao, F.[Fei],
Yang, F.[Fan],
Ma, J.C.[Jin-Cheng],
Tian, Q.[Qi],
Ji, R.R.[Rong-Rong],
Towards Compact CNNs via Collaborative Compression,
CVPR21(6434-6443)
IEEE DOI
2111
Image coding, Tensors, Sensitivity, Collaboration, Transforms,
Performance gain, Pattern recognition
BibRef
Shen, Z.Q.[Zhi-Qiang],
Liu, Z.[Zechun],
Qin, J.[Jie],
Huang, L.[Lei],
Cheng, K.T.[Kwang-Ting],
Savvides, M.[Marios],
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit
Neural Networks via Guided Distribution Calibration,
CVPR21(2165-2174)
IEEE DOI
2111
WWW Link.
Code, Learning. Training, Degradation, Codes, Neural networks,
Supervised learning, Predictive models
BibRef
Yin, M.[Miao],
Sui, Y.[Yang],
Liao, S.[Siyu],
Yuan, B.[Bo],
Towards Efficient Tensor Decomposition-Based DNN Model Compression
with Optimization Framework,
CVPR21(10669-10678)
IEEE DOI
2111
Tensors, Image coding, Systematics, Recurrent neural networks,
Image recognition, Computational modeling, Convex functions
BibRef
Martinez, J.[Julieta],
Shewakramani, J.[Jashan],
Liu, T.W.[Ting Wei],
Bârsan, I.A.[Ioan Andrei],
Zeng, W.Y.[Wen-Yuan],
Urtasun, R.[Raquel],
Permute, Quantize, and Fine-tune:
Efficient Compression of Neural Networks,
CVPR21(15694-15703)
IEEE DOI
2111
Convolutional codes, Visualization, Image coding, Annealing,
Vector quantization, Neural networks, Rate-distortion
BibRef
Oh, S.[Sangyun],
Sim, H.[Hyeonuk],
Lee, S.[Sugil],
Lee, J.[Jongeun],
Automated Log-Scale Quantization for Low-Cost Deep Neural Networks,
CVPR21(742-751)
IEEE DOI
2111
Training, Deep learning, Image segmentation,
Quantization (signal), Semantics, Computer architecture
BibRef
Yamamoto, K.[Kohei],
Learnable Companding Quantization for Accurate Low-bit Neural
Networks,
CVPR21(5027-5036)
IEEE DOI
2111
Training, Quantization (signal), Limiting, Memory management,
Neural networks, Object detection, Table lookup
BibRef
Lee, J.[Junghyup],
Kim, D.[Dohyung],
Ham, B.[Bumsub],
Network Quantization with Element-wise Gradient Scaling,
CVPR21(6444-6453)
IEEE DOI
2111
Training, Deep learning, Quantization (signal),
Computer architecture, Network architecture, Hardware
BibRef
Jaume, G.[Guillaume],
Pati, P.[Pushpak],
Bozorgtabar, B.[Behzad],
Foncubierta, A.[Antonio],
Anniciello, A.M.[Anna Maria],
Feroce, F.[Florinda],
Rau, T.[Tilman],
Thiran, J.P.[Jean-Philippe],
Gabrani, M.[Maria],
Goksel, O.[Orcun],
Quantifying Explainers of Graph Neural Networks in Computational
Pathology,
CVPR21(8102-8112)
IEEE DOI
2111
Measurement, Deep learning, Pathology, Terminology,
Satellite broadcasting, Radiology, Breast cancer
BibRef
Zhao, S.[Sijie],
Yue, T.[Tao],
Hu, X.[Xuemei],
Distribution-aware Adaptive Multi-bit Quantization,
CVPR21(9277-9286)
IEEE DOI
2111
Training, Quantization (signal), Sensitivity, Neural networks,
Taylor series, Pattern recognition, Resource management
BibRef
Kryzhanovskiy, V.[Vladimir],
Balitskiy, G.[Gleb],
Kozyrskiy, N.[Nikolay],
Zuruev, A.[Aleksandr],
QPP: Real-Time Quantization Parameter Prediction for Deep Neural
Networks,
CVPR21(10679-10687)
IEEE DOI
2111
Deep learning, Training, Quantization (signal), Runtime,
Superresolution, Predictive models, Stability analysis
BibRef
Aghli, N.[Nima],
Ribeiro, E.[Eraldo],
Combining Weight Pruning and Knowledge Distillation For CNN
Compression,
EVW21(3185-3192)
IEEE DOI
2109
Image coding, Neurons, Estimation, Graphics processing units,
Computer architecture, Real-time systems, Convolutional neural networks
BibRef
Ran, J.[Jie],
Lin, R.[Rui],
So, H.K.H.[Hayden K.H.],
Chesi, G.[Graziano],
Wong, N.[Ngai],
Exploiting Elasticity in Tensor Ranks for Compressing Neural Networks,
ICPR21(9866-9873)
IEEE DOI
2105
Training, Tensors, Neural networks, Redundancy, Games, Elasticity, Minimization
BibRef
Shah, M.A.[Muhammad A.],
Olivier, R.[Raphael],
Raj, B.[Bhiksha],
Exploiting Non-Linear Redundancy for Neural Model Compression,
ICPR21(9928-9935)
IEEE DOI
2105
Training, Image coding, Computational modeling, Neurons,
Transfer learning, Redundancy, Nonlinear filters
BibRef
Bui, K.[Kevin],
Park, F.[Fredrick],
Zhang, S.[Shuai],
Qi, Y.[Yingyong],
Xin, J.[Jack],
Nonconvex Regularization for Network Slimming:
Compressing CNNS Even More,
ISVC20(I:39-53).
Springer DOI
2103
BibRef
Wang, H.T.[Hao-Tao],
Gui, S.P.[Shu-Peng],
Yang, H.C.[Hai-Chuan],
Liu, J.[Ji],
Wang, Z.Y.[Zhang-Yang],
GAN Slimming: All-in-one GAN Compression by a Unified Optimization
Framework,
ECCV20(IV:54-73).
Springer DOI
2011
BibRef
Guo, J.,
Ouyang, W.,
Xu, D.,
Multi-Dimensional Pruning: A Unified Framework for Model Compression,
CVPR20(1505-1514)
IEEE DOI
2008
Tensile stress, Redundancy,
Logic gates, Convolution, Solid modeling
BibRef
Heo, B.[Byeongho],
Kim, J.[Jeesoo],
Yun, S.[Sangdoo],
Park, H.[Hyojin],
Kwak, N.[Nojun],
Choi, J.Y.[Jin Young],
A Comprehensive Overhaul of Feature Distillation,
ICCV19(1921-1930)
IEEE DOI
2004
feature extraction, image classification, image segmentation,
object detection, distillation loss,
Artificial intelligence
BibRef
Yu, J.,
Huang, T.,
Universally Slimmable Networks and Improved Training Techniques,
ICCV19(1803-1811)
IEEE DOI
2004
Code, Neural Networks.
WWW Link. image classification, image resolution,
learning (artificial intelligence), mobile computing,
Testing
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Neural Net Quantization .