Woiselle, A.,
Starck, J.L.,
Fadili, J.,
3-D Data Denoising and Inpainting with the Low-Redundancy Fast Curvelet
Transform,
JMIV(39), No. 2, February 2011, pp. 121-139.
WWW Link.
1103
BibRef
Belhedi, A.,
Bartoli, A.,
Bourgeois, S.,
Gay-Bellile, V.,
Hamrouni, K.,
Sayd, P.,
Noise modelling in time-of-flight sensors with application to depth
noise removal and uncertainty estimation in three-dimensional
measurement,
IET-CV(9), No. 6, 2015, pp. 967-977.
DOI Link
1512
Gaussian distribution
BibRef
Papari, G.,
Idowu, N.,
Varslot, T.,
Fast Bilateral Filtering for Denoising Large 3D Images,
IP(26), No. 1, January 2017, pp. 251-261.
IEEE DOI
1612
Gaussian distribution
BibRef
Gao, Z.,
Li, Q.,
Zhai, R.,
Shan, M.,
Lin, F.,
Adaptive and Robust Sparse Coding for Laser Range Data Denoising and
Inpainting,
CirSysVideo(26), No. 12, December 2016, pp. 2165-2175.
IEEE DOI
1612
Dictionaries
BibRef
Garduņo-Ramon, M.A.[Marco Antonio],
Terol-Villalobos, I.R.[Ivan R.],
Osornio-Rios, R.A.[Roque A.],
Morales-Hernandez, L.A.[Luis A.],
Methodology for filtering of depth maps based on the MCbR algorithm
supported by color, shape and neighboring features,
SP:IC(70), 2019, pp. 220-232.
Elsevier DOI
1812
Time-of-flight, Inpainting, Closing by reconstruction,
Mathematical morphology, Filtering, Noise classifier, Template matching
BibRef
Zheng, Y.L.[Ying-Long],
Li, G.Q.[Gui-Qing],
Wu, S.H.[Shi-Hao],
Liu, Y.X.[Yu-Xin],
Gao, Y.F.[Yue-Fang],
Guided point cloud denoising via sharp feature skeletons,
VC(33), No. 6-8, June 2017, pp. 857-867.
WWW Link.
1706
BibRef
Mukherjee, P.S.[Partha Sarathi],
A multi-resolution and adaptive 3-D image denoising framework with
applications in medical imaging,
SIViP(11), No. 7, October 2017, pp. 1379-1387.
WWW Link.
1708
BibRef
Cheng, Y.[Yang],
Cao, J.[Jie],
Hao, Q.[Qun],
Xiao, Y.Q.[Yu-Qing],
Zhang, F.H.[Fang-Hua],
Xia, W.Z.[Wen-Ze],
Zhang, K.[Kaiyu],
Yu, H.Y.[Hao-Yong],
A Novel De-Noising Method for Improving the Performance of
Full-Waveform LiDAR Using Differential Optical Path,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Li, H.X.[Hong-Xu],
Chang, J.H.[Jian-Hua],
Xu, F.[Fan],
Liu, Z.X.[Zhen-Xing],
Yang, Z.B.[Zhen-Bo],
Zhang, L.[Luyao],
Zhang, S.Y.[Shu-Yi],
Mao, R.X.[Ren-Xiang],
Dou, X.L.[Xiao-Lei],
Liu, B.G.[Bing-Gang],
Efficient Lidar Signal Denoising Algorithm Using Variational Mode
Decomposition Combined with a Whale Optimization Algorithm,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Gao, Z.,
Ji, H.,
Transform Learning Based Sparse Coding for LiDAR Data Denoising,
SPLetters(26), No. 3, March 2019, pp. 480-484.
IEEE DOI
1903
electrical engineering computing, iterative methods,
learning (artificial intelligence),
transform learning
BibRef
Zeng, J.,
Cheung, G.,
Ng, M.,
Pang, J.,
Yang, C.,
3D Point Cloud Denoising Using Graph Laplacian Regularization of a
Low Dimensional Manifold Model,
IP(29), 2020, pp. 3474-3489.
IEEE DOI
2002
Graph signal processing, point cloud denoising, low-dimensional manifold
BibRef
Dinesh, C.,
Cheung, G.,
Bajic, I.V.,
Point Cloud Denoising via Feature Graph Laplacian Regularization,
IP(29), 2020, pp. 4143-4158.
IEEE DOI
2002
3D point cloud, graph signal processing, denoising,
convex optimization, graph Laplacian regularizer
BibRef
Casajus, P.H.,
Ritschel, T.,
Ropinski, T.,
Total Denoising: Unsupervised Learning of 3D Point Cloud Cleaning,
ICCV19(52-60)
IEEE DOI
2004
image denoising, unsupervised learning,
unsupervised 3D point cloud denoising, unsupervised learning,
Training
BibRef
Eldesokey, A.[Abdelrahman],
Felsberg, M.[Michael],
Khan, F.S.[Fahad Shahbaz],
Confidence Propagation through CNNs for Guided Sparse Depth
Regression,
PAMI(42), No. 10, October 2020, pp. 2423-2436.
IEEE DOI
2009
Convolution, Sensors, Task analysis, Computer architecture, Cameras,
Autonomous vehicles, Reliability, Sparse data, CNNs,
confidence propagation
BibRef
Eldesokey, A.,
Felsberg, M.,
Holmquist, K.,
Persson, M.,
Uncertainty-Aware CNNs for Depth Completion:
Uncertainty from Beginning to End,
CVPR20(12011-12020)
IEEE DOI
2008
Uncertainty, Task analysis, Probabilistic logic,
Measurement uncertainty, Noise measurement, Convolution, Computer vision
BibRef
Ibrahim, M.M.[Mostafa M.],
Liu, Q.[Qiong],
Yang, Y.[You],
Adaptive colour-guided non-local means algorithm for compound noise
reduction of depth maps,
IET-IPR(14), No. 12, October 2020, pp. 2768-2779.
DOI Link
2010
BibRef
Dong, G.T.[Guan-Ting],
Zhang, Y.Y.[Yue-Yi],
Xiong, Z.W.[Zhi-Wei],
Spatial Hierarchy Aware Residual Pyramid Network for Time-of-flight
Depth Denoising,
ECCV20(XXIV:35-50).
Springer DOI
2012
BibRef
Valsesia, D.[Diego],
Fracastoro, G.[Giulia],
Magli, E.[Enrico],
Learning Localized Representations of Point Clouds With
Graph-Convolutional Generative Adversarial Networks,
MultMed(23), 2021, pp. 402-414.
IEEE DOI
2012
Convolution, Generators, Generative adversarial networks,
Feature extraction, Data models, Generative adversarial networks,
point clouds
BibRef
Pistilli, F.[Francesca],
Fracastoro, G.[Giulia],
Valsesia, D.[Diego],
Magli, E.[Enrico],
Learning Graph-convolutional Representations for Point Cloud Denoising,
ECCV20(XX:103-118).
Springer DOI
2011
BibRef
Zhou, H.,
Chen, K.,
Zhang, W.,
Fang, H.,
Zhou, W.,
Yu, N.,
DUP-Net: Denoiser and Upsampler Network for 3D Adversarial Point
Clouds Defense,
ICCV19(1961-1970)
IEEE DOI
2004
computer graphics, cryptography, feature extraction,
Gaussian processes, image classification, image denoising, Measurement
BibRef
Sterzentsenko, V.,
Saroglou, L.,
Chatzitofis, A.,
Thermos, S.,
Zioulis, N.,
Doumanoglou, A.,
Zarpalas, D.,
Daras, P.,
Self-Supervised Deep Depth Denoising,
ICCV19(1242-1251)
IEEE DOI
2004
Code, Depth Denoising.
WWW Link. cameras, computer vision, convolutional neural nets,
data acquisition, image colour analysis, image denoising, Color
BibRef
Hui, Z.,
Cheng, P.,
Wang, L.,
Xia, Y.,
Hu, H.,
Li, X.,
A Novel Denoising Algorithm for Airborne Lidar Point Cloud Based On
Empirical Mode Decomposition,
Laser19(1021-1025).
DOI Link
1912
BibRef
Mugner, E.,
Seube, N.,
Denoising of 3d Point Clouds,
LC3D19(217-224).
DOI Link
1912
BibRef
Sarkar, K.,
Bernard, F.[Florian],
Varanasi, K.,
Theobalt, C.[Christian],
Stricker, D.,
Structured Low-Rank Matrix Factorization for Point-Cloud Denoising,
3DV18(444-453)
IEEE DOI
1812
approximation theory, image denoising, image reconstruction,
image representation, iterative methods,
3D patches
BibRef
Charron, N.,
Phillips, S.,
Waslander, S.L.,
De-noising of Lidar Point Clouds Corrupted by Snowfall,
CRV18(254-261)
IEEE DOI
1812
Laser radar, Snow, Noise reduction,
Smoothing methods, Image segmentation,
snow noise removal
BibRef
Kim, Y.S.,
Closed-Form Solution of Simultaneous Denoising and Hole Filling of
Depth Image,
ICIP18(968-972)
IEEE DOI
1809
Filtering, Image reconstruction, Image color analysis, Kernel,
Filling, Cameras, Color, Depth recovery, denoising, hole filling,
time-of-flight depth
BibRef
Sarkar, K.[Kripasindhu],
Hampiholi, B.[Basavaraj],
Varanasi, K.[Kiran],
Stricker, D.[Didier],
Learning 3D Shapes as Multi-layered Height-Maps Using 2D Convolutional
Networks,
ECCV18(XVI: 74-89).
Springer DOI
1810
BibRef
Earlier: A1, A3, A4, Only:
3D Shape Processing by Convolutional Denoising Autoencoders on Local
Patches,
WACV18(1925-1934)
IEEE DOI
1806
computational geometry, convolution, feedforward neural nets,
image coding, image denoising, image reconstruction,
BibRef
Liao, X.,
Zhang, X.,
Multi-scale mutual feature convolutional neural network for depth
image denoise and enhancement,
VCIP17(1-4)
IEEE DOI
1804
cameras, feature extraction, image colour analysis,
image denoising, image enhancement,
mutual feature
BibRef
Jaiswal, M.S.[Mayoore S.],
Wang, Y.Y.[Yu-Ying],
Sun, M.T.[Ming-Ting],
Object Boundary Based Denoising for Depth Images,
ICIAR17(125-133).
Springer DOI
1706
BibRef
Wolff, K.,
Kim, C.,
Zimmer, H.,
Schroers, C.,
Botsch, M.,
Sorkine-Hornung, O.,
Sorkine-Hornung, A.,
Point Cloud Noise and Outlier Removal for Image-Based 3D
Reconstruction,
3DV16(118-127)
IEEE DOI
1701
Image reconstruction
BibRef
Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Outpainting, Extrapolation .