Yang, Q.X.[Qing-Xiong],
Ahuja, N.,
Yang, R.G.[Rui-Gang],
Tan, K.H.[Kar-Han],
Davis, J.,
Culbertson, B.,
Apostolopoulos, J.,
Wang, G.[Gang],
Fusion of Median and Bilateral Filtering for Range Image Upsampling,
IP(22), No. 12, 2013, pp. 4841-4852.
IEEE DOI
1312
image colour analysis
BibRef
Park, J.[Jaesik],
Kim, H.W.[Hyeong-Woo],
Tai, Y.W.[Yu-Wing],
Brown, M.S.[Michael S.],
Kweon, I.S.[In So],
High-Quality Depth Map Upsampling and Completion for RGB-D Cameras,
IP(23), No. 12, December 2014, pp. 5559-5572.
IEEE DOI
1412
BibRef
Earlier:
High quality depth map upsampling for 3D-TOF cameras,
ICCV11(1623-1630).
IEEE DOI
1201
cameras.
Upsample ToF camera using high-res image.
BibRef
Choi, J.[Jinsoo],
Park, J.[Jaesik],
Kweon, I.S.[In So],
High-quality Frame Interpolation via Tridirectional Inference,
WACV21(596-604)
IEEE DOI
2106
Industries, Interpolation, Media, Reliability, Data mining
BibRef
Lee, H.[Hyunmin],
Park, J.[Jaesik],
STAD: Stable Video Depth Estimation,
ICIP21(3213-3217)
IEEE DOI
2201
Geometry, Image processing, Aggregates, Estimation,
Propagation losses, Task analysis, 3D Geometry
BibRef
Kang, M.K.[Min-Koo],
Kim, D.Y.[Dae-Young],
Yoon, K.J.[Kuk-Jin],
Adaptive Support of Spatial-Temporal Neighbors for Depth Map Sequence
Up-sampling,
SPLetters(21), No. 2, February 2014, pp. 150-154.
IEEE DOI
1402
Markov processes
BibRef
Kim, J.[Joohyeok],
Jeon, G.G.[Gwang-Gil],
Jeong, J.C.[Je-Chang],
Joint-adaptive bilateral depth map upsampling,
SP:IC(29), No. 4, 2014, pp. 506-513.
Elsevier DOI
1404
Depth upsampling
BibRef
Choi, O.[Ouk],
Jung, S.W.[Seung-Won],
A Consensus-Driven Approach for Structure and Texture Aware Depth Map
Upsampling,
IP(23), No. 8, August 2014, pp. 3321-3335.
IEEE DOI
1408
image colour analysis
BibRef
Huang, W.Q.[Wen-Qi],
Gong, X.J.[Xiao-Jin],
Yang, M.Y.,
Joint Object Segmentation and Depth Upsampling,
SPLetters(22), No. 2, February 2015, pp. 192-196.
IEEE DOI
1410
Markov processes
BibRef
Zhu, X.,
Song, X.,
Chen, X.,
Image Guided Depth Map Upsampling using Anisotropic TV-L2,
SPLetters(22), No. 3, March 2015, pp. 318-321.
IEEE DOI
1410
Cameras
BibRef
Liu, W.[Wei],
Jia, S.Y.[Shao-Yong],
Li, P.[Penglin],
Chen, X.G.[Xiao-Gang],
Yang, J.[Jie],
Wu, Q.A.[Qi-Ang],
An MRF-Based Depth Upsampling: Upsample the Depth Map With Its Own
Property,
SPLetters(22), No. 10, October 2015, pp. 1708-1712.
IEEE DOI
1506
Markov processes
BibRef
Liu, W.[Wei],
Li, P.[Penglin],
Yang, J.[Jie],
Shi, P.F.[Peng-Fei],
Upsampling the depth map with its own properties,
ICIP15(3530-3534)
IEEE DOI
1512
Bilateral filter;ToF;depth map upsampling;optimization
BibRef
Hua, K.L.[Kai-Lung],
Lo, K.H.[Kai-Han],
Wang, Y.C.F.[Y.C. Frank],
Extended Guided Filtering for Depth Map Upsampling,
MultMedMag(23), No. 2, April 2016, pp. 72-83.
IEEE DOI
1605
Cameras.
filtering theory
BibRef
Lo, K.H.[Kai-Han],
Wang, Y.C.F.[Y.C. Frank],
Hua, K.L.[Kai-Lung],
Edge-Preserving Depth Map Upsampling by Joint Trilateral Filter,
Cyber(48), No. 1, January 2018, pp. 371-384.
IEEE DOI
1801
BibRef
Earlier:
Joint trilateral filtering for depth map super-resolution,
VCIP13(1-6)
IEEE DOI
1402
Color, Image color analysis, Image edge detection,
Image resolution, Image sensors, Kernel, Sensors, range sensor
BibRef
Al Ismaeil, K.[Kassem],
Aouada, D.[Djamila],
Mirbach, B.[Bruno],
Ottersten, B.[Björn],
Enhancement of dynamic depth scenes by upsampling for precise
super-resolution (UP-SR),
CVIU(147), No. 1, 2016, pp. 38-49.
Elsevier DOI
1605
BibRef
Earlier:
Dynamic super resolution of depth sequences with non-rigid motions,
ICIP13(660-664)
IEEE DOI
1402
Super-resolution
BibRef
Al Ismaeil, K.[Kassem],
Aouada, D.[Djamila],
Solignac, T.[Thomas],
Mirbach, B.[Bruno],
Ottersten, B.[Bjorn],
Real-Time Enhancement of Dynamic Depth Videos with Non-Rigid
Deformations,
PAMI(39), No. 10, October 2017, pp. 2045-2059.
IEEE DOI
1709
BibRef
Earlier:
Real-time non-rigid multi-frame depth video super-resolution,
FusionDynamic15(8-16)
IEEE DOI
1510
Cameras, Heuristic algorithms, Image resolution, Real-time systems,
Videos, Depth enhancement, Kalman filtering, bilateral total variation,
non-rigid deformations, registration, super-resolution
BibRef
Jung, C.[Cheolkon],
Yu, S.T.[Sheng-Tao],
Kim, J.[Joongkyu],
Intensity-guided edge-preserving depth upsampling through weighted L0
gradient minimization,
JVCIR(42), No. 1, 2017, pp. 132-144.
Elsevier DOI
1701
BibRef
Earlier: A2, A1, A3:
Color-guided boundary-preserving depth upsampling based on L0
gradient minimization,
VCIP16(1-4)
IEEE DOI
1701
Depth upsampling.
Cameras
BibRef
Eichhardt, I.[Iván],
Chetverikov, D.[Dmitry],
Jankó, Z.[Zsolt],
Image-guided ToF depth upsampling: a survey,
MVA(28), No. 3-4, May 2017, pp. 267-282.
WWW Link.
1704
Survey, Depth Super Resolution.
BibRef
Yuan, L.[Liang],
Jin, X.[Xin],
Li, Y.G.[Yang-Guang],
Yuan, C.[Chun],
Depth map super-resolution via low-resolution depth guided joint
trilateral up-sampling,
JVCIR(46), No. 1, 2017, pp. 280-291.
Elsevier DOI
1706
Joint, trilateral, upsampling
BibRef
Li, Y.G.[Yang-Guang],
Zhang, L.[Lei],
Zhang, Y.B.[Yong-Bing],
Xuan, H.M.[Hui-Ming],
Dai, Q.H.[Qiong-Hai],
Depth map super-resolution via iterative joint-trilateral-upsampling,
VCIP14(386-389)
IEEE DOI
1504
image colour analysis
BibRef
Liu, W.,
Chen, X.,
Yang, J.,
Wu, Q.,
Variable Bandwidth Weighting for Texture Copy Artifact Suppression in
Guided Depth Upsampling,
CirSysVideo(27), No. 10, October 2017, pp. 2072-2085.
IEEE DOI
1710
Bandwidth, Color, Computational efficiency, DH-HEMTs,
Image color analysis, Image resolution, Kernel,
Blur of depth discontinuities,
color image-guided depth upsampling, texture copy artifacts,
variable, bandwidth, weighting
BibRef
Chang, T.A.[Ting-An],
Yang, J.F.[Jar-Ferr],
Precise depth map upsampling and enhancement based on edge-preserving
fusion filters,
IET-CV(12), No. 5, August 2018, pp. 651-658.
DOI Link
1807
BibRef
Qiao, Y.,
Jiao, L.,
Yang, S.,
Hou, B.,
A Novel Segmentation Based Depth Map Up-Sampling,
MultMed(21), No. 1, January 2019, pp. 1-14.
IEEE DOI
1901
Image segmentation, Color, Image color analysis, Visualization,
Merging, Interpolation,
joint trilateral filtering
BibRef
Belhi, A.[Abdelhak],
Bouras, A.[Abdelaziz],
Alfaqheri, T.[Taha],
Aondoakaa, A.S.[Akuha Solomon],
Sadka, A.H.[Abdul Hamid],
Investigating 3D holoscopic visual content upsampling using
super-resolution for cultural heritage digitization,
SP:IC(75), 2019, pp. 188-198.
Elsevier DOI
1906
Cultural heritage, Deep learning, Super-resolution, 3D holoscopic imaging
BibRef
Yang, Y.[Yoonmo],
Lee, H.S.[Hean Sung],
Oh, B.T.[Byung Tae],
Depth map upsampling with a confidence-based joint guided filter,
SP:IC(77), 2019, pp. 40-48.
Elsevier DOI
1906
Upsampling, Super-resolution, Depth map, Confidence map, Guided filter
BibRef
Chen, J.[Jian],
Zhang, Z.C.[Zi-Chao],
Zhang, K.[Kai],
Wang, S.[Shubo],
Han, Y.[Yu],
UAV-Borne LiDAR Crop Point Cloud Enhancement Using Grasshopper
Optimization and Point Cloud Up-Sampling Network,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Wang, Z.H.[Zhi-Hui],
Ye, X.C.[Xin-Chen],
Sun, B.L.[Bao-Li],
Yang, J.Y.[Jing-Yu],
Xu, R.[Rui],
Li, H.J.[Hao-Jie],
Depth upsampling based on deep edge-aware learning,
PR(103), 2020, pp. 107274.
Elsevier DOI
2005
Upsampling, CNN, Edge-aware, Depth map
BibRef
Yang, H.[Hang],
Zhang, Z.B.[Zhong-Bo],
Depth image upsampling based on guided filter with low gradient
minimization,
VC(36), No. 7, July 2020, pp. 1411-1422.
WWW Link.
2005
BibRef
Balure, C.S.[Chandra Shaker],
Kini, M.R.[M. Ramesh],
Guidance-based improved depth upsampling with better initial estimate,
IJCVR(11), No. 1, 2021, pp. 109-125.
DOI Link
2012
BibRef
Li, W.[Weite],
Hasegawa, K.[Kyoko],
Li, L.[Liang],
Tsukamoto, A.[Akihiro],
Tanaka, S.[Satoshi],
Deep Learning-Based Point Upsampling for Edge Enhancement of
3D-Scanned Data and Its Application to Transparent Visualization,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Qian, Y.[Yue],
Hou, J.H.[Jun-Hui],
Kwong, S.[Sam],
He, Y.[Ying],
Deep Magnification-Flexible Upsampling Over 3D Point Clouds,
IP(30), 2021, pp. 8354-8367.
IEEE DOI
2110
Geometry, Feature extraction, Training,
Surface reconstruction, Image reconstruction, Deep learning,
surface reconstruction
BibRef
Ding, D.D.[Dan-Dan],
Qiu, C.[Chi],
Liu, F.[Fuchang],
Pan, Z.[Zhigeng],
Point Cloud Upsampling via Perturbation Learning,
CirSysVideo(31), No. 12, December 2021, pp. 4661-4672.
IEEE DOI
2112
Feature extraction,
Perturbation methods, Image reconstruction, Geometry,
neural network
BibRef
Zhang, P.P.[Ping-Ping],
Wang, X.[Xu],
Ma, L.[Lin],
Wang, S.Q.[Shi-Qi],
Kwong, S.[Sam],
Jiang, J.M.[Jian-Min],
Progressive Point Cloud Upsampling via Differentiable Rendering,
CirSysVideo(31), No. 12, December 2021, pp. 4673-4685.
IEEE DOI
2112
Rendering (computer graphics),
Task analysis, Image reconstruction, Surface reconstruction,
feature expansion unit
BibRef
Wang, K.Y.[Kaisi-Yuan],
Sheng, L.[Lu],
Gu, S.H.[Shu-Hang],
Xu, D.[Dong],
Sequential Point Cloud Upsampling by Exploiting Multi-Scale Temporal
Dependency,
CirSysVideo(31), No. 12, December 2021, pp. 4686-4696.
IEEE DOI
2112
Feature extraction, Shape,
Task analysis, Superresolution, Estimation, Solid modeling,
spatio-temporal exploration
BibRef
Han, B.[Bing],
Zhang, X.Y.[Xin-Yun],
Ren, S.[Shuang],
PU-GACNet: Graph Attention Convolution Network for Point Cloud
Upsampling,
IVC(118), 2022, pp. 104371.
Elsevier DOI
2202
Point cloud upsampling, Graph attention convolution,
Feature extraction, Edge-aware nodeshuffle, Feature expansion
BibRef
Wang, K.Y.[Kaisi-Yuan],
Sheng, L.[Lu],
Gu, S.H.[Shu-Hang],
Xu, D.[Dong],
VPU: A Video-Based Point Cloud Upsampling Framework,
IP(31), 2022, pp. 4062-4075.
IEEE DOI
2206
Point cloud compression, Feature extraction, Task analysis,
Graphics processing units, Image reconstruction, Cloud computing,
spatial-temporal aggregation
BibRef
Liu, X.H.[Xin-Hai],
Liu, X.C.[Xin-Chen],
Liu, Y.S.[Yu-Shen],
Han, Z.Z.[Zhi-Zhong],
SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction With Self-Projection Optimization,
IP(31), 2022, pp. 4213-4226.
IEEE DOI
2207
Point cloud compression, Feature extraction,
Surface reconstruction, Deep learning, Shape, Optimization,
self-projection
BibRef
Gu, F.[Fan],
Zhang, C.[Changlun],
Wang, H.[Hengyou],
He, Q.[Qiang],
Huo, L.[Lianzhi],
PU-WGCN: Point Cloud Upsampling Using Weighted Graph Convolutional
Networks,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Liu, H.[Hao],
Yuan, H.[Hui],
Hou, J.H.[Jun-Hui],
Hamzaoui, R.[Raouf],
Gao, W.[Wei],
PUFA-GAN: A Frequency-Aware Generative Adversarial Network for 3D
Point Cloud Upsampling,
IP(31), 2022, pp. 7389-7402.
IEEE DOI
2212
Point cloud compression, Geometry, Measurement, Training,
Visualization, Feature extraction, Point cloud upsampling, deep learning
BibRef
Akhtar, A.[Anique],
Li, Z.[Zhu],
van der Auwera, G.[Geert],
Li, L.[Li],
Chen, J.L.[Jian-Le],
PU-Dense: Sparse Tensor-Based Point Cloud Geometry Upsampling,
IP(31), 2022, pp. 4133-4148.
IEEE DOI
2206
Point cloud compression, Laser radar, Geometry, Feature extraction,
Sensors, Deep learning, Point cloud, upsampling
BibRef
Rozsa, Z.[Zoltan],
Sziranyi, T.[Tamas],
Optical Flow and Expansion Based Deep Temporal Up-Sampling of LIDAR
Point Clouds,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Zhao, W.B.[Wen-Bo],
Liu, X.M.[Xian-Ming],
Zhai, D.[Deming],
Jiang, J.J.[Jun-Jun],
Ji, X.Y.[Xiang-Yang],
Self-Supervised Arbitrary-Scale Implicit Point Clouds Upsampling,
PAMI(45), No. 10, October 2023, pp. 12394-12407.
IEEE DOI
2310
BibRef
Zhao, W.B.[Wen-Bo],
Liu, X.M.[Xian-Ming],
Zhong, Z.W.[Zhi-Wei],
Jiang, J.J.[Jun-Jun],
Gao, W.[Wei],
Li, G.[Ge],
Ji, X.Y.[Xiang-Yang],
Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation,
CVPR22(1989-1997)
IEEE DOI
2210
Point cloud compression, Visualization, Codes, Supervised learning,
Self-supervised learning, Low-level vision,
Self- semi- meta- unsupervised learning
BibRef
Li, Z.Z.[Zhuang-Zi],
Li, G.[Ge],
Li, T.H.[Thomas H.],
Liu, S.[Shan],
Gao, W.[Wei],
Semantic Point Cloud Upsampling,
MultMed(25), 2023, pp. 3432-3442.
IEEE DOI
2309
BibRef
Zhao, T.M.[Tian-Ming],
Li, L.F.[Lin-Feng],
Tian, T.[Tian],
Ma, J.Y.[Jia-Yi],
Tian, J.W.[Jin-Wen],
APUNet: Attention-guided upsampling network for sparse and
non-uniform point cloud,
PR(143), 2023, pp. 109796.
Elsevier DOI
2310
Point cloud upsampling, Distance prior, DisTransformer,
Attention mechanism, Feature prediction
BibRef
Han, B.[Bing],
Deng, L.X.[Li-Xiang],
Zheng, Y.[Yi],
Ren, S.[Shuang],
S3U-PVNet: Arbitrary-scale point cloud upsampling via Point-Voxel
Network based on Siamese Self-Supervised Learning,
CVIU(239), 2024, pp. 103890.
Elsevier DOI
2402
Self-supervised learning, Point cloud upsampling,
Point-voxel method, Siamese network
BibRef
Li, T.Y.[Tian-Yu],
Lin, Y.[Yanghong],
Cheng, B.[Bo],
Ai, G.[Guo],
Yang, J.[Jian],
Fang, L.[Li],
PU-CTG: A Point Cloud Upsampling Network Using Transformer Fusion and
GRU Correction,
RS(16), No. 3, 2024, pp. 450.
DOI Link
2402
BibRef
Lim, S.[Sangwon],
El-Basyouny, K.[Karim],
Yang, Y.H.[Yee Hong],
PU-Ray: Domain-Independent Point Cloud Upsampling via Ray Marching on
Neural Implicit Surface,
ITS(25), No. 10, October 2024, pp. 14600-14610.
IEEE DOI
2410
Point cloud compression, Laser radar, Training, Task analysis, Shape,
Superresolution, Point cloud, upsampling, 3D reconstruction, LiDAR,
neural implicit surface
BibRef
Lan, H.[Hui],
Jung, C.[Cheolkon],
DSRNet: Depth Super-Resolution Network guided by blurry depth and
clear intensity edges,
SP:IC(121), 2024, pp. 117064.
Elsevier DOI Code:
WWW Link.
2401
Depth super-resolution, Convolutional neural network,
Depth upsampling, Multiscale guidance, Residual estimation
BibRef
Qu, W.T.[Wen-Tao],
Shao, Y.[Yuantian],
Meng, L.[Lingwu],
Huang, X.S.[Xiao-Shui],
Xiao, L.[Liang],
A Conditional Denoising Diffusion Probabilistic Model for Point Cloud
Upsampling,
CVPR24(20786-20795)
IEEE DOI
2410
Point cloud compression, Training, Geometry, Noise, Diffusion models,
Feature extraction, Point Cloud Upsampling, Diffusion Model
BibRef
Rong, Y.[Yi],
Zhou, H.R.[Hao-Ran],
Xia, K.[Kang],
Mei, C.[Cheng],
Wang, J.H.[Jia-Hao],
Lu, T.[Tong],
RepKPU: Point Cloud Upsampling with Kernel Point Representation and
Deformation,
CVPR24(21050-21060)
IEEE DOI Code:
WWW Link.
2410
Point cloud compression, Geometry, Codes, Deformation, Shape, Benchmark testing
BibRef
Liu, Y.Z.[Yan-Zhe],
Chen, R.[Rong],
Li, Y.S.[Yu-Shi],
Li, Y.X.[Yi-Xi],
Tan, X.[Xuehou],
SPU-PMD: Self-Supervised Point Cloud Upsampling via Progressive Mesh
Deformation,
CVPR24(5188-5197)
IEEE DOI Code:
WWW Link.
2410
Point cloud compression, Measurement, Surface reconstruction,
Deformation, Network topology, Computational modeling, transformer
BibRef
Yang, B.[Bin],
Pfreundschuh, P.[Patrick],
Siegwart, R.[Roland],
Hutter, M.[Marco],
Moghadam, P.[Peyman],
Patil, V.[Vaishakh],
TULIP: Transformer for Upsampling of LiDAR Point Clouds,
CVPR24(15354-15364)
IEEE DOI Code:
WWW Link.
2410
Point cloud compression, Measurement, Geometry, Laser radar,
Superresolution, Transforms
BibRef
Dell'Eva, A.[Anthony],
Orsingher, M.[Marco],
Bertozzi, M.[Massimo],
Arbitrary Point Cloud Upsampling with Spherical Mixture of Gaussians,
3DV22(465-474)
IEEE DOI
2408
Point cloud compression, Training, Solid modeling, Codes,
Transformers, Data models, Point Cloud Upsampling, Transformer, Gaussian Mixture Model
BibRef
Liu, S.Y.[Shi-Yu],
Dai, W.R.[Wen-Rui],
Li, C.L.[Cheng-Lin],
Zou, J.[Junni],
Xiong, H.K.[Hong-Kai],
Point Cloud Upsampling with Dynamic Graph Scattering Transform,
ICIP23(3274-3278)
IEEE DOI
2312
BibRef
He, Y.[Yun],
Tang, D.H.[Dan-Hang],
Zhang, Y.[Yinda],
Xue, X.Y.[Xiang-Yang],
Fu, Y.W.[Yan-Wei],
Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent
with Learned Distance Functions,
CVPR23(5354-5363)
IEEE DOI
2309
BibRef
Liu, Z.S.[Zhi-Song],
Wang, Z.[Zijia],
Jia, Z.[Zhen],
Arbitrary Point Cloud Upsampling Via Dual Back-Projection Network,
ICIP23(1470-1474)
IEEE DOI
2312
BibRef
Kumbar, A.[Akash],
Anvekar, T.[Tejas],
Vikrama, T.A.[Tulasi Amitha],
Tabib, R.A.[Ramesh Ashok],
Mudenagudi, U.[Uma],
TP-NoDe: Topology-aware Progressive Noising and Denoising of Point
Clouds towards Upsampling,
WiCV-ICCV23(2264-2274)
IEEE DOI Code:
WWW Link.
2401
BibRef
Kumbar, A.[Akash],
Anvekar, T.[Tejas],
Tabib, R.A.[Ramesh Ashok],
Mudenagudi, U.[Uma],
ASUR3D: Arbitrary Scale Upsampling and Refinement of 3D Point Clouds
using Local Occupancy Fields,
eHeritage23(1644-1653)
IEEE DOI Code:
WWW Link.
2401
BibRef
Feng, W.Q.[Wan-Quan],
Li, J.[Jin],
Cai, H.R.[Hong-Rui],
Luo, X.N.[Xiao-Nan],
Zhang, J.[Juyong],
Neural Points: Point Cloud Representation with Neural Fields for
Arbitrary Upsampling,
CVPR22(18612-18621)
IEEE DOI
2210
Point cloud compression, Codes, Shape, Feature extraction,
Robustness, Vision + graphics, Low-level vision, RGBD sensors and analytics
BibRef
Wang, Y.R.[Ying-Rui],
Wang, S.[Suyu],
Sun, L.H.[Long-Hua],
Point Cloud Upsampling via a Coarse-to-Fine Network,
MMMod22(I:467-478).
Springer DOI
2203
BibRef
Qiu, S.[Shi],
Anwar, S.[Saeed],
Barnes, N.M.[Nick M.],
PU-Transformer: Point Cloud Upsampling Transformer,
ACCV22(I:326-343).
Springer DOI
2307
BibRef
Du, H.[Hang],
Yan, X.J.[Xue-Jun],
Wang, J.J.[Jing-Jing],
Xie, D.[Di],
Pu, S.L.[Shi-Liang],
Point Cloud Upsampling via Cascaded Refinement Network,
ACCV22(I:106-122).
Springer DOI
2307
BibRef
Heimann, V.[Viktoria],
Spruck, A.[Andreas],
Kaup, A.[André],
Frequency-Selective Geometry Upsampling of Point Clouds,
ICIP22(1511-1515)
IEEE DOI
2211
Point cloud compression, Geometry, Visualization,
Image color analysis, Frequency estimation, frequency selectivity
BibRef
Luo, L.Q.[Lu-Qing],
Tang, L.[Lulu],
Zhou, W.Y.[Wan-Yi],
Wang, S.Z.[Shi-Zheng],
Yang, Z.X.[Zhi-Xin],
PU-EVA: An Edge-Vector based Approximation Solution for
Flexible-scale Point Cloud Upsampling,
ICCV21(16188-16197)
IEEE DOI
2203
Point cloud compression, Training, Surface reconstruction,
Semantics, Linear approximation, Network architecture,
3D from multiview and other sensors
BibRef
Li, R.H.[Rui-Hui],
Li, X.Z.[Xian-Zhi],
Heng, P.A.[Pheng-Ann],
Fu, C.W.[Chi-Wing],
Point Cloud Upsampling via Disentangled Refinement,
CVPR21(344-353)
IEEE DOI
2111
Surface reconstruction, Pipelines,
Generators, Surface roughness, Rough surfaces
BibRef
Qian, Y.[Yue],
Hou, J.H.[Jun-Hui],
Kwong, S.[Sam],
He, Y.[Ying],
Pugeo-net: A Geometry-centric Network for 3d Point Cloud Upsampling,
ECCV20(XIX:752-769).
Springer DOI
2011
BibRef
Li, R.,
Li, X.,
Fu, C.,
Cohen-Or, D.,
Heng, P.,
PU-GAN: A Point Cloud Upsampling Adversarial Network,
ICCV19(7202-7211)
IEEE DOI
2004
feature extraction, image reconstruction, neural nets,
latent space, upsample points, working GAN network,
Network architecture
BibRef
Wang, Y.F.[Yi-Fan],
Wu, S.H.[Shi-Hao],
Huang, H.[Hui],
Cohen-Or, D.[Daniel],
Sorkine-Hornung, O.[Olga],
Patch-Based Progressive 3D Point Set Upsampling,
CVPR19(5951-5960).
IEEE DOI
2002
BibRef
Yu, L.,
Li, X.,
Fu, C.,
Cohen-Or, D.,
Heng, P.,
PU-Net: Point Cloud Upsampling Network,
CVPR18(2790-2799)
IEEE DOI
1812
Feature extraction, Convolution,
Geometry, Training, Surface reconstruction, Image reconstruction
BibRef
Tsuchiya, A.,
Sugimura, D.,
Hamamoto, T.,
Depth upsampling by depth prediction,
ICIP17(1662-1666)
IEEE DOI
1803
Cameras, Color, DH-HEMTs, Estimation, Image color analysis,
Image sequences, Motion estimation, Depth prediction,
Spatio-temporal coherency
BibRef
Konno, Y.,
Tanaka, M.,
Okutomi, M.,
Yanagawa, Y.,
Kinoshita, K.,
Kawade, M.,
Depth map upsampling by self-guided residual interpolation,
ICPR16(1394-1399)
IEEE DOI
1705
Algorithm design and analysis, Art, Estimation, Image resolution,
Indexes, Interpolation, Sensors
BibRef
Dong, Y.,
Lin, C.,
Zhao, Y.,
Yao, C.,
Hou, J.,
Depth map up-sampling with texture edge feature via sparse
representation,
VCIP16(1-4)
IEEE DOI
1701
Color
BibRef
Schneider, N.[Nick],
Schneider, L.[Lukas],
Pinggera, P.[Peter],
Franke, U.[Uwe],
Pollefeys, M.[Marc],
Stiller, C.[Christoph],
Semantically Guided Depth Upsampling,
GCPR16(37-48).
Springer DOI
1611
BibRef
Fukushima, N.,
Takeuchi, K.,
Kojima, A.,
Self-similarity matching with predictive linear upsampling for depth
map,
3DTV-CON16(1-4)
IEEE DOI
1610
edge detection
BibRef
Krishnamurthy, S.,
Ramakrishnan, K.R.,
Image-guided depth map upsampling using normalized cuts-based
segmentation and smoothness priors,
ICIP16(554-558)
IEEE DOI
1610
Color
BibRef
Liu, W.,
Chen, X.,
Yang, J.,
Wu, Q.,
Robust weighted least squares for guided depth upsampling,
ICIP16(559-563)
IEEE DOI
1610
Color
BibRef
Riegler, G.[Gernot],
Ranftl, R.[René],
Rüther, M.[Matthias],
Pock, T.[Thomas],
Bischof, H.[Horst],
Depth Restoration via Joint Training of a Global Regression Model and
CNNs,
BMVC15(xx-yy).
DOI Link
1601
Denoising and upscaling of depth maps.
BibRef
Kim, Y.J.[Young-Jung],
Choi, S.[Sunghwan],
Oh, C.[Changjae],
Sohn, K.H.[Kwang-Hoon],
A majorize-minimize approach for high-quality depth upsampling,
ICIP15(392-396)
IEEE DOI
1512
Depth map upsampling
BibRef
Zuo, Y.F.[Yi-Fan],
An, P.[Ping],
Zheng, S.[Shuai],
Zhang, Z.Y.[Zhao-Yang],
Depth upsampling method via Markov random fields without
edge-misaligned artifacts,
ICIP15(2324-2328)
IEEE DOI
1512
Markov Random Field (MRF), depth map upsampling, depth recovery
BibRef
Schedl, D.C.,
Birklbauer, C.,
Bimber, O.,
Directional Super-Resolution by Means of Coded Sampling and Guided
Upsampling,
ICCP15(1-10)
IEEE DOI
1511
cameras
BibRef
Gong, X.J.[Xiao-Jin],
Ren, J.Q.[Jian-Qiang],
Lai, B.S.[Bai-Sheng],
Yan, C.H.[Chao-Hua],
Qian, H.[Hui],
Guided Depth Upsampling via a Cosparse Analysis Model,
FusionOutdoor14(738-745)
IEEE DOI
1409
Guided depth upsampling
BibRef
Dai, L.Q.[Long-Quan],
Wang, H.X.[Hao-Xing],
Mei, X.[Xing],
Zhang, X.P.[Xiao-Peng],
Depth Map Upsampling via Compressive Sensing,
ACPR13(90-94)
IEEE DOI
1408
compressed sensing
BibRef
Ferstl, D.[David],
Reinbacher, C.[Christian],
Ranftl, R.[Rene],
Ruether, M.[Matthias],
Bischof, H.[Horst],
Image Guided Depth Upsampling Using Anisotropic Total Generalized
Variation,
ICCV13(993-1000)
IEEE DOI
1403
anisotropic tensor
BibRef
Liu, M.Y.[Ming-Yu],
Tuzel, O.[Oncel],
Taguchi, Y.[Yuichi],
Joint Geodesic Upsampling of Depth Images,
CVPR13(169-176)
IEEE DOI
1309
depth, filtering, geodesic, upsampling
BibRef
Schwarz, S.[Sebastian],
Sjostrom, M.[Marten],
Olsson, R.[Roger],
Incremental depth upscaling using an edge weighted optimization concept,
3DTV12(1-4).
IEEE DOI
1212
BibRef
Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Creating Super Resolution Image from Video .