Tsuji, S.,
Future Directions of Industrial Applications,
ICPR78(1144-1145).
BibRef
7800
Baird, M.L.,
Future Directions of Industrial Applications of Pattern Recognition,
ICPR78(1146).
BibRef
7800
Uno, T.,
Future Directions of Industrial Applications,
ICPR78(1147).
BibRef
7800
Weaver, J.A.,
Some Thoughts on Future Directions of Industrial Applications,
ICPR78(1148-1149).
BibRef
7800
Thompson, W.B.,
Machine Perception for Industrial Applications,
Computer(13), No. 5, May 1980, pp. 7-8.
Introduction to the special issue.
BibRef
8005
Kruger, R.P., and
Thompson, W.B.,
A Technical and Economic Assessment of Computer Vision for Industrial
Inspection and Robotic Assembly,
PIEEE(69), No. 12, December 1981, 1524-1538.
BibRef
8112
Rosenfeld, A.,
Machine Vision for Industry: Tasks, Tools, and Techniques,
IVC(3), No. 3, August 1985, pp. 122-135.
Elsevier DOI
BibRef
8508
Mundy, J.L.,
Industrial Machine Vision -- Is It Practical?,
MVAAS88(xx-yy). Life cycle of applied vision systems.
BibRef
8800
Wiitanen, W.,
A Perspective on Machine Vision at General Motors,
MVAAS88(xx-yy).
BibRef
8800
Shirai, Y.,
Robot Vision,
FGCS(1), No. 5, September 1985, pp. 325-352.
Survey, Industrial Applications.
Industrial Vision, Survey. A survey of computer techniques used in industrial applications
especially in Japan. Noticeably simple techniques that work.
BibRef
8509
Clune, E.,
Crisman, J.D.,
Klinker, G.J., and
Webb, J.A.,
Implementation and Performance of a Complex Vision System on a
Systolic Array Machine,
FGCS(4), No. 1, August 1988, pp. 13-30.
Developed from the FIDO system.
BibRef
8808
Gonzalez, R.C., and
Safabakhsh, R.,
Computer Vision Techniques for Industrial Applications and
Robot Control,
Computer(15), No. 12, December 1982, pp. 17-33.
BibRef
8212
Fu, K.S.,
Pattern Recognition for Automatic Visual Inspection,
Computer(15), No. 12, December 1982, pp. 34-41.
BibRef
8212
Jarvis, J.F.,
Research Directions in Industrial Machine Vision: A Workshop Summary,
Computer(15), No. 12, December 1982, pp. 55-61.
BibRef
8212
Wallace, A.M.[Andrew M.],
Greyscale Image Processing for Industrial Applications,
IVC(1), No. 4, November 1983, pp. 178-188.
Elsevier DOI
BibRef
8311
Hudson, D.L.[David L.],
Practical Solution Using a New Approach to Robot Vision,
IVC(1), No. 4, November 1983, pp. 234-240.
Elsevier DOI for keyboard manufacturing.
BibRef
8311
Noble, J.A.,
From Inspection to Process Understanding and Monitoring:
A View on Computer Vision in Manufacturing,
IVC(13), No. 3, April 1995, pp. 197-214.
Elsevier DOI
BibRef
9504
Chen, C.H.,
Pattern Recognition in Nondestructive Evaluation of Materials,
HPRCV97(Chapter III:1).
(Univ. Massachusetts Dartmouth)
BibRef
9700
Batchelor, B.G.,
Whelan, P.F.,
Intelligent Vision Systems for Industry,
Springer-Verlag1997, ISBN 3-540-19969-1.
WWW Link.
BibRef
9700
Murino, V.[Vittorio],
Trucco, A.[Andrea],
Underwater Computer Vision and Pattern Recognition,
CVIU(79), No. 1, July 2000, pp. 1-3.
DOI Link
0006
Intro to the section.
BibRef
Cheriet, M.,
Yang, Y.H.,
Special Issue: Vision Interface '98 - Real World Applications of
Computer Vision - Preface,
PRAI(13), No. 5, August 1999, pp. 589.
0005
BibRef
Asimopoulos, N.[Nikos],
Nadler, M.[Morton],
Non-contact velocity compensation system for handheld scanners,
PR(35), No. 2, February 2002, pp. 465-472.
Elsevier DOI
0201
BibRef
Malamas, E.N.[Elias N.],
Petrakis, E.G.M.[Euripides G. M.],
Zervakis, M.E.[Michalis E.],
Petit, L.[Laurent],
Legat, J.D.[Jean-Didier],
A survey on industrial vision systems, applications and tools,
IVC(21), No. 2, February 2003, pp. 171-188.
Elsevier DOI
0301
Survey, Industrial Applications.
BibRef
Vila, J.[Joan],
Calpe, J.[Javier],
Pla, F.[Filiberto],
Gómez, L.[Luis],
Connell, J.[Joseph],
Marchant, J.[John],
Calleja, J.[Javier],
Mulqueen, M.[Michael],
Muñoz, J.[Jordi],
Klaren, A.C.[Arnoud C.],
Team, T.S.[The SmartSpectra],
SmartSpectra: Applying multispectral imaging to industrial environments,
RealTimeImg(11), No. 2, April 2005, pp. 85-98.
Elsevier DOI
0506
BibRef
Paclík, P.[Pavel],
Leitner, R.[Raimund],
Duin, R.P.W.[Robert P. W.],
A study on design of object sorting algorithms in the industrial
application using hyperspectral imaging,
RealTimeIP(1), No. 2, December 2006, pp. 101-108.
Springer DOI
0001
BibRef
Billingsley, J.[John],
Bradbeer, R.[Robin], (Eds.)
Mechatronics and Machine Vision in Practice,
Springer2008, ISBN: 978-3-540-74026-1.
WWW Link.
Survey, Robotics.
BibRef
0800
Gan, Z.X.[Zhong-Xue],
Tang, Q.[Qing],
Visual Sensing and its Applications:
Integration of Laser Sensors to Industrial Robots,
Springer2011.
ISBN: 978-3-642-18286-0.
WWW Link.
1109
BibRef
Liu, C.,
Qiao , H.,
Zhang, B.,
Stable Sensorless Localization of 3-D Objects,
SMC-C(41), No. 6, November 2011, pp. 923-941.
IEEE DOI
1110
In manfacturing. 2-D is easier to analyze.
BibRef
Fenn, S.[Shannon],
Mendes, A.[Alexandre],
Budden, D.M.[David M.],
Addressing the non-functional requirements of computer vision systems:
a case study,
MVA(27), No. 1, January 2016, pp. 77-86.
WWW Link.
1601
BibRef
Hua, X.[Xin],
Zhang, C.H.[Chun-Hua],
Wei, J.[Jinda],
Hu, X.J.[Xing-Jun],
Wei, H.L.[Hong-Liang],
Wind turbine bionic blade design and performance analysis,
JVCIR(60), 2019, pp. 258-265.
Elsevier DOI
1903
Numerical simulation, Source of renewable energy, Wind turbine blade
BibRef
Scharf, D.[Dietmar],
Viet, B.L.[Bach Le],
Le, T.B.H.[Thi Bich Hoa],
Rechenberg, J.[Janine],
Tschierschke, S.[Stefan],
Vogl, E.[Ernst],
Vandone, A.[Ambra],
Giardini, M.[Mattia],
Hardware Accelerated Image Processing on an Fpga-soc Based Vision
System for Closed Loop Monitoring and Additive Manufacturing Process
Control,
CVS19(3-12).
Springer DOI
1912
BibRef
Stenz, U.[Ulrich],
Hartmann, J.[Jens],
Paffenholz, J.A.[Jens-André],
Neumann, I.[Ingo],
High-Precision 3D Object Capturing with Static and Kinematic
Terrestrial Laser Scanning in Industrial Applications: Approaches of
Quality Assessment,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Yang, Y.K.[Yi-Kun],
Jiao, S.J.[Sheng-Jie],
Li, J.B.[Jia-Bo],
Vision-based optimization of the generalized predictive active
disturbance rejection controller,
JVCIR(71), 2020, pp. 102728.
Elsevier DOI
2009
Mixing and spreading equipment for MOH material,
Batching system, Active disturbance rejection control,
Adaptive genetic algorithm
BibRef
Xie, Y.L.[Yi-Lin],
Wang, Q.[Qing],
Yao, L.B.[Lian-Bi],
Meng, X.L.[Xiao-Lin],
Yang, Y.S.[Yu-Song],
Integrated Multi-Sensor Real Time Pile Positioning Model and Its
Application for Sea Piling,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Manso-Callejo, M.Á.[Miguel-Ángel],
Cira, C.I.[Calimanut-Ionut],
Alcarria, R.[Ramón],
Arranz-Justel, J.J.[José-Juan],
Optimizing the Recognition and Feature Extraction of Wind Turbines
through Hybrid Semantic Segmentation Architectures,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Wan, J.,
Li, X.,
Dai, H.N.,
Kusiak, A.,
Martínez-García, M.,
Li, D.,
Artificial-Intelligence-Driven Customized Manufacturing Factory: Key
Technologies, Applications, and Challenges,
PIEEE(109), No. 4, April 2021, pp. 377-398.
IEEE DOI
2104
Artificial intelligence, Manufacturing, Smart manufacturing,
Adaptation models, Production facilities, Heuristic algorithms,
software-defined network
BibRef
Ji, S.H.[Sang-Hoon],
Lee, S.[Sukhan],
Yoo, S.J.[Su-Jeong],
Suh, I.[Ilhong],
Kwon, I.[Inso],
Park, F.C.[Frank C.],
Lee, S.Y.[Sangh-Young],
Kim, H.[Hongseok],
Learning-Based Automation of Robotic Assembly for Smart Manufacturing,
PIEEE(109), No. 4, April 2021, pp. 423-440.
IEEE DOI
2104
Robotic assembly, Uncertainty, Prototypes, Planning, Task analysis,
Learning systems, Smart manufacturing, Robotic assembly,
smart manufacturing
BibRef
Xu, L.[Liang],
Song, Y.K.[Yong-Kang],
Zhang, W.[Weishan],
An, Y.Y.[Yun-Yun],
Wang, Y.[Ye],
Ning, H.S.[Huan-Sheng],
An efficient foreign objects detection network for power substation,
IVC(109), 2021, pp. 104159.
Elsevier DOI
2105
Power substation, Deep learning, Foreign objects detection, FODN4PS
BibRef
Sima, R.H.[Rui-Heng],
Hao, X.P.[Xiao-Peng],
Song, J.[Jian],
Qi, H.[Hong],
Yuan, Z.D.[Zun-Dong],
Ding, L.[Lei],
Duan, Y.N.[Yu-Ning],
Research on the Temperature Transfer Relationship Between Miniature
Fixed-Point and Blackbody for On-Orbit Infrared Remote Sensor
Calibration,
GeoRS(59), No. 7, July 2021, pp. 6266-6276.
IEEE DOI
2106
Temperature measurement, Calibration, Temperature sensors,
Heating systems, Phase change materials, Remote sensing,
temperature transfer relationship
BibRef
Hu, D.L.[Dun-Li],
Zhang, Y.T.[Yu-Ting],
Li, X.F.[Xu-Feng],
Zhang, X.P.[Xiao-Ping],
Detection of material on a tray in automatic assembly line based on
convolutional neural network,
IET-IPR(15), No. 13, 2021, pp. 3400-3409.
DOI Link
2110
BibRef
Yang, X.[Xue],
Sun, S.M.[Shi-Ming],
Chen, W.[Wei],
Liu, J.[Jing],
Underwater bubble plume image generative model based on noise prior
and multi conditional labels,
IVC(119), 2022, pp. 104373.
Elsevier DOI
2202
Risks of underwater gas pipelines.
Underwater bubble plumes, Noise prior, VAEs,
Multi conditional label, Generative model, Discriminative model
BibRef
Zhou, L.F.[Long-Fei],
Zhang, L.[Lin],
Konz, N.[Nicholas],
Computer Vision Techniques in Manufacturing,
SMCS(53), No. 1, January 2023, pp. 105-117.
IEEE DOI
2301
Image edge detection, Image segmentation, Task analysis,
Robot sensing systems, Sensors, Feature detection, Assembly, survey
BibRef
Fisher, M.[Mark],
French, G.[Geoffrey],
Gorpincenko, A.[Artjoms],
Holah, H.[Helen],
Clayton, L.[Lauren],
Skirrow, R.[Rebecca],
Mackiewicz, M.[Michal],
Motion stereo at sea: Dense 3D reconstruction from image sequences
monitoring conveyor systems on board fishing vessels,
IET-IPR(17), No. 2, 2023, pp. 349-361.
DOI Link
2302
BibRef
Tang, T.W.[Ta-Wei],
Hsu, H.[Hakiem],
Li, K.M.[Kuan-Ming],
Industrial anomaly detection with multiscale autoencoder and deep
feature extractor-based neural network,
IET-IPR(17), No. 6, 2023, pp. 1752-1761.
DOI Link
2305
image classification, image recognition,
inspection, unsupervised learning
BibRef
Zhang, Y.[Yang],
Cheng, L.[Le],
Peng, Y.T.[Yu-Ting],
Xu, C.M.[Cheng-Ming],
Fu, Y.W.[Yan-Wei],
Wu, B.[Bo],
Sun, G.D.[Guo-Dong],
Faster OreFSDet: A lightweight and effective few-shot object detector
for ore images,
PR(141), 2023, pp. 109664.
Elsevier DOI
2306
particle size of the ore in crushing operations.
Ore images, Few-shot object detection, Real-time, Light-weight
BibRef
Li, T.Z.[Tian-Zhu],
Ma, C.H.[Cai-Hong],
Lv, Y.Z.[Yong-Ze],
Liao, R.[Ruilin],
Yang, J.[Jin],
Liu, J.B.[Jian-Bo],
An Approach to Large-Scale Cement Plant Detection Using Multisource
Remote Sensing Imagery,
RS(16), No. 4, 2024, pp. 729.
DOI Link
2402
BibRef
Ni, Z.M.[Zi-Ming],
Chen, X.Z.[Xian-Zhong],
Hou, Q.W.[Qing-Wen],
Zhang, J.[Jie],
Increasing SAR Imaging Precision for Burden Surface Profile Jointly
Using Low-Rank and Sparsity Priors,
RS(16), No. 9, 2024, pp. 1509.
DOI Link
2405
Blast furnace monitoring.
BibRef
Qian, Y.J.[Yan-Jun],
Hulsizer, J.[Joel],
Mou, M.Y.[Ming-Yao],
Zambrano, C.V.[Consuelo Vega],
Smith, E.[Ema],
Jiang, M.[Mo],
Automatic measurement of slug flow processes from in-line videos,
IET-IPR(18), No. 8, 2024, pp. 2038-2052.
DOI Link
2406
feature extraction, length measurement, object detection,
uncertainty handling, video retrieval
BibRef
Kadeethum, T.[Teeratorn],
Downs, C.[Christine],
Harnessing Machine Learning and Data Fusion for Accurate Undocumented
Well Identification in Satellite Images,
RS(16), No. 12, 2024, pp. 2116.
DOI Link
2406
Oil and gas wells. Orphan, abandoned.
BibRef
Xiang, D.[Dong],
Chen, S.[Sizhuo],
Liu, M.[Mengna],
Shi, F.[Fan],
Cheng, X.[Xu],
Multilevel Signal Decomposition Layer-Specific Residual Network for
Blade Icing Prediction,
SPLetters(31), 2024, pp. 2160-2164.
IEEE DOI
2409
Feature extraction, Blades, Wind turbines, Data models, Data mining,
Noise, Noise measurement, Blade icing detection, wind turbine
BibRef
Xie, Y.X.[Yan-Xia],
Sun, J.H.[Jun-Hua],
Robust lockwire segmentation with multiscale boundary-driven regional
stability,
JOSA-A(40), No. 3, March 2023, pp. 397-410.
DOI Link
2503
Mechanical safety.
Biomedical imaging, Deep learning, Image quality,
Imaging techniques, Neural networks, Segmentation
BibRef
Pham, D.[Dieuthuy],
Ha, M.[Minhtuan],
San, C.[Cao],
Xiao, C.Y.[Chang-Yan],
Accurate stacked-sheet counting method based on deep learning,
JOSA-A(37), No. 7, July 2020, pp. 1206-1218.
DOI Link
2503
Biomedical imaging, Deep learning, Image quality,
Imaging systems, Machine vision, Neural networks
BibRef
Liu, Y.[Yi],
Zhang, C.S.[Chang-Sheng],
Dong, X.J.[Xing-Jun],
Ning, J.X.[Jia-Xu],
Point Cloud-Based Deep Learning in Industrial Production: A Survey,
Surveys(57), No. 7, February 2025, pp. xx-yy.
DOI Link
2503
Deep learning, point cloud, industrial production, real-time
BibRef
Costanzino, A.[Alex],
Ramirez, P.Z.[Pierluigi Zama],
Lisanti, G.[Giuseppe],
di Stefano, L.[Luigi],
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping,
CVPR24(17234-17243)
IEEE DOI
2410
Point cloud compression, Memory management, Feature extraction,
Manufacturing, Anomaly detection, anomaly,
layer pruning
BibRef
Rolih, B.[Blaž],
Ameln, D.[Dick],
Vaidya, A.[Ashwin],
Akcay, S.[Samet],
Divide and Conquer: High-Resolution Industrial Anomaly Detection via
Memory Efficient Tiled Ensemble,
VAND24(3866-3875)
IEEE DOI
2410
Training, Image resolution, Tiles, Memory management, Stacking,
Graphics processing units, Anomaly Detection,
High-resolution processing
BibRef
Costanzino, A.[Alex],
Ramirez, P.Z.[Pierluigi Zama],
del Moro, M.[Mirko],
Aiezzo, A.[Agostino],
Lisanti, G.[Giuseppe],
Salti, S.[Samuele],
di Stefano, L.[Luigi],
Test Time Training for Industrial Anomaly Segmentation,
VAND24(3910-3920)
IEEE DOI
2410
Training, Quality control, Feature extraction,
Standards, anomaly, anomaly detection, anomaly segmentation,
anomaly scores
BibRef
Lee, H.W.[Ho-Weng],
Lai, S.H.[Shang-Hong],
TAB: Text-Align Anomaly Backbone Model for Industrial Inspection
Tasks,
VAND24(3921-3929)
IEEE DOI Code:
WWW Link.
2410
Location awareness, Training, Visualization, Source coding,
Training data, Inspection, Feature extraction, Anomaly Detection,
KSDD2
BibRef
Fang, Z.[Zheng],
Wang, X.Y.[Xiao-Yang],
Li, H.C.[Hao-Cheng],
Liu, J.J.[Jie-Jie],
Hu, Q.[Qiugui],
Xiao, J.[Jimin],
FastRecon: Few-shot Industrial Anomaly Detection via Fast Feature
Reconstruction,
ICCV23(17435-17444)
IEEE DOI Code:
WWW Link.
2401
BibRef
Sukel, M.[Maarten],
Rudinac, S.[Stevan],
Worring, M.[Marcel],
GIGO, Garbage In, Garbage Out: An Urban Garbage Classification Dataset,
MMMod23(I: 527-538).
Springer DOI
2304
BibRef
Artola, A.[Aitor],
Kolodziej, Y.[Yannis],
Morel, J.M.[Jean-Michel],
Ehret, T.[Thibaud],
GLAD: A Global-to-Local Anomaly Detector,
WACV23(5490-5499)
IEEE DOI
2302
Anomalies in production.
Adaptation models, Perturbation methods, Neural networks,
Production, Machine learning, Detectors
BibRef
Rudolph, M.[Marco],
Wehrbein, T.[Tom],
Rosenhahn, B.[Bodo],
Wandt, B.[Bastian],
Asymmetric Student-Teacher Networks for Industrial Anomaly Detection,
WACV23(2591-2601)
IEEE DOI
2302
Training, Location awareness, Neural networks, Estimation,
Algorithms: Image recognition and understanding, object detection
BibRef
Liu, C.[Chuang],
Liu, J.[Jun],
Zhang, M.J.[Mei-Juan],
Liu, R.R.[Rui-Rui],
Dong, G.F.[Guang-Feng],
Wang, Z.[Zhen],
Liu, Z.J.[Zhong-Jian],
Calculation of Salt Heap Volume Based on Point Cloud Surface
Reconstruction,
ICRVC22(200-203)
IEEE DOI
2301
Point cloud compression, Training, Surface reconstruction,
Solid modeling, Laser radar, Volume measurement, Point cloud, Volume
BibRef
Tao, L.M.[Li-Ming],
Xia, R.[Renbo],
Zhao, J.B.[Ji-Bin],
Li, Y.H.[Ying-Hao],
Zou, H.[Hangbo],
Wang, F.Y.[Fang-Yuan],
A High-Accuracy Slotted Hole Detector,
ICRVC22(136-141)
IEEE DOI
2301
Geometry, Image segmentation, Image edge detection, Fitting,
Detectors, Filtering algorithms, projective invariant
BibRef
Zhang, S.L.[Shi-Ling],
Dai, L.J.[Liang-Jun],
Deng, B.J.[Bao-Jia],
Liu, Z.Q.[Zi-Qi],
Altitude Correction of Surface Control Field Strength of Converter
Valve Hall Fittings Based on Ultraviolet Spectrum Image Analysis,
ICIVC22(818-824)
IEEE DOI
2301
Power equipment monitoring.
Electrodes, Substations, Image databases, Fitting, High-voltage techniques,
Insulators, Valves, infrared imager, simulation calculation
BibRef
Zhang, S.L.[Shi-Ling],
Detection of Decomposition Products of SF6 Gas Based on Gas
Chromatography and Optical Cavity Detection and Its Field Application,
ICIVC22(756-761)
IEEE DOI
2301
Heating systems, Semiconductor lasers, Circuit breakers,
Sulfur hexafluoride, Metals, Hafnium, Detectors, latent defect
BibRef
Xie, W.Z.[Wen-Zhuo],
Wang, X.[Xuehua],
Li, S.P.[Shi-Ping],
Xu, W.[Wei],
Duan, X.[Xianbao],
A Household Garbage Classification and Collection Device Based on
Machine Vision and Deep Learning,
ICRVC22(209-214)
IEEE DOI
2301
Waste management, Training, Waste materials, Machine vision,
Transfer learning, Software, Recycling, machine vision, MobileNetV2
BibRef
Kalitsios, G.[Georgios],
Lazaridis, L.[Lazaros],
Psaltis, A.[Athanasios],
Axenopoulos, A.[Apostolos],
Daras, P.[Petros],
Vision-Enhanced System For Human-Robot Disassembly Factory Cells:
Introducing A New Screw Dataset,
ICRVC22(204-208)
IEEE DOI
2301
Visualization, Service robots, Semantic segmentation,
Object detection, WEEE recycling, Robotic disassembly, Scene analysis
BibRef
Agarwal, S.[Shivaank],
Gudi, R.[Ravindra],
Saxena, P.[Paresh],
One-Shot learning based classification for segregation of plastic
waste,
DICTA20(1-3)
IEEE DOI
2201
Databases, Digital images, Plastics, Resins,
Convolutional neural networks, Deep Learning, Plastic Waste Segregation
BibRef
Yang, Z.J.[Zi-Jiang],
Watari, T.[Tetsushi],
Ichigozaki, D.[Daisuke],
Mitsutoshi, A.[Akita],
Takahashi, H.[Hiroaki],
Suga, Y.[Yoshinori],
Liao, W.K.[Wei-Keng],
Choudhary, A.[Alok],
Agrawal, A.[Ankit],
Heterogeneous Feature Fusion Based Machine Learning on Shallow-wide and
Heterogeneous-sparse Industrial Datasets,
IML20(566-577).
Springer DOI
2103
BibRef
Li, Y.X.[Yi-Xin],
Hu, F.[Fu],
Qin, J.[Jian],
Ryan, M.[Michael],
Wang, R.[Ray],
Liu, Y.[Ying],
A Hybrid Machine Learning Approach for Energy Consumption Prediction in
Additive Manufacturing,
IML20(622-636).
Springer DOI
2103
BibRef
Rosati, R.[Riccardo],
Romeo, L.[Luca],
Cecchini, G.[Gianalberto],
Tonetto, F.[Flavio],
Perugini, L.[Luca],
Ruggeri, L.[Luca],
Viti, P.[Paolo],
Frontoni, E.[Emanuele],
Bias from the Wild Industry 4.0:
Are We Really Classifying the Quality or Shotgun Series?,
IML20(637-649).
Springer DOI
2103
BibRef
Berns, F.[Fabian],
Ramsdorf, T.[Timo],
Beecks, C.[Christian],
Machine Learning for Storage Location Prediction in Industrial High Bay
Warehouses,
IML20(650-661).
Springer DOI
2103
BibRef
Gan, B.,
Zhang, C.,
Research on the algorithm of urban waste classification and recycling
based on deep learning technology,
CVIDL20(232-236)
IEEE DOI
2102
backpropagation, environmental science computing,
image recognition, incineration, municipal solid waste,
Migration learning
BibRef
Nilsson, F.,
Jakobsen, J.,
Alonso-Fernandez, F.,
Detection and Classification of Industrial Signal Lights for Factory
Floors,
ISCV20(1-6)
IEEE DOI
2011
factory automation, maintenance engineering, mass production,
product customisation, production engineering computing,
Computer Vision
BibRef
Kassubeck, M.,
Malek, T.,
Mühlhausen, M.,
Kappel, M.,
Castillo, S.,
Dittrich, M.,
Magnor, M.,
Optical Quality Control for Adaptive Polishing Processes,
SSIAI20(90-94)
IEEE DOI
2009
cameras, computerised instrumentation, image processing, polishing,
quality control, rendering (computer graphics),
Polishing
BibRef
Bormann, R.[Richard],
de Brito, B.F.[Bruno Ferreira],
Lindermayr, J.[Jochen],
Omainska, M.[Marco],
Patel, M.[Mayank],
Towards Automated Order Picking Robots for Warehouses and Retail,
CVS19(185-198).
Springer DOI
1912
BibRef
Yuan, B.,
Giera, B.,
Guss, G.,
Matthews, I.,
Mcmains, S.,
Semi-Supervised Convolutional Neural Networks for In-Situ Video
Monitoring of Selective Laser Melting,
WACV19(744-753)
IEEE DOI
1904
image classification, laser materials processing,
learning (artificial intelligence), melting, neural nets,
Convolutional neural networks
BibRef
Brandão, S.[Susana],
Marques, M.[Manuel],
Hot Tiles: A Heat Diffusion Based Descriptor for Automatic Tile Panel
Assembly,
CVAA16(I: 768-782).
Springer DOI
1611
BibRef
Mueller, M.,
Voegtle, T.,
Determination of Steering Wheel Angles During Car Alignment By Image
Analysis Methods,
ISPRS16(B5: 77-83).
DOI Link
1610
In industrial automation.
BibRef
Duval, L.,
Moreaud, M.,
Couprie, C.,
Jeulin, D.,
Talbot, H.,
Angulo, J.,
Image processing for materials characterization:
Issues, challenges and opportunities,
ICIP14(4862-4866)
IEEE DOI
1502
Image segmentation
BibRef
Ulu, E.[Erva],
Zhang, R.[Rusheng],
Yumer, M.E.[Mehmet Ersin],
Kara, L.B.[Levent Burak],
A Data-Driven Investigation and Estimation of Optimal Topologies under
Variable Loading Configurations,
CompIMAGE14(387-399).
Springer DOI
1407
structural mechanics.
BibRef
Garibotto, G.[Giovanni],
Murrieri, P.[Pierpaolo],
White Paper on Industrial Applications of Computer Vision and Pattern
Recognition,
CIAP13(II:721-730).
Springer DOI
1309
BibRef
Nagel, T.[Tim],
Zhang, C.[Chao],
Liu, S.[Steven],
Kalman Filter based leak localization applied to pneumatic systems,
ICARCV12(1777-1782).
IEEE DOI
1304
BibRef
Yu, H.L.[Hong-Liang],
Liu, W.L.[Wan-Li],
Dong, H.J.[Hui-Jun],
Research on recognition of working condition for calciner and grate
cooler based on expert system,
ICARCV12(1733-1737).
IEEE DOI
1304
BibRef
Wang, X.H.[Xiao-Hong],
Li, H.[Hui],
Meng, Q.J.[Qing-Jin],
Design of process control system of rotary klin process for nickel iron
production,
ICARCV12(1738-1742).
IEEE DOI
1304
BibRef
Wang, X.H.[Xiao-Hong],
Wang, X.H.[Xiao-Hong],
Lu, S.Z.[Shi-Zeng],
Jing, S.H.[Shao-Hong],
Intelligence control method and application for decomposing furnace,
ICARCV12(1743-1748).
IEEE DOI
1304
BibRef
Yong, Y.[Yang],
Position variable structure control for water hydraulic vane actuator,
ICARCV12(1170-1174).
IEEE DOI
1304
BibRef
Crenganis, M.[Minai],
Breaz, R.[Radu],
Racz, G.[Gabriel],
Bologa, O.[Octavian],
Inverse kinematics of a 7 DOF manipulator using Adaptive Neuro-Fuzzy
Inference Systems,
ICARCV12(1232-1237).
IEEE DOI
1304
BibRef
Vardy, A.[Andrew],
Accelerated Patch Sorting by a Robotic Swarm,
CRV12(314-321).
IEEE DOI
1207
Vision to find clusters of objects and evaluate whether they match.
BibRef
McNabb, K.A.[Kari-Ann],
Case studies of applying LiDAR for the electrical utility, mining, and
water resources industries,
CGC10(212).
PDF File.
1006
BibRef
Sardis, E.S.,
Applying Multi-Agents Technologies in Industrial Plants,
WSSIP09(1-4).
IEEE DOI
0906
BibRef
Yilmazturk, F.,
Kulur, S.,
Terzi, N.,
Determination of Displacements in Load Tests with Digital Multimedia
Photogrammetry,
ISPRS08(B5: 719 ff).
PDF File.
0807
BibRef
Li, J.S.[Jian-Song],
Optimizing Design and Analysis of Industrial Photogrammetric Network,
ISPRS08(B5: 95 ff).
PDF File.
0807
BibRef
Hirano, Y.[Yutaka],
Garcia, C.[Christophe],
Sukthankar, R.[Rahul],
Hoogs, A.[Anthony],
Industry and Object Recognition:
Applications, Applied Research and Challenges,
CLOR06(49-64).
Springer DOI
0711
BibRef
Sun, Y.[Yan],
Fu, P.[Ping],
Jiang, H.J.[Hua-Jun],
Xiao, J.[Jun],
Automatic feed system based on machine vision,
ICARCV04(II: 783-786).
IEEE DOI
0412
BibRef
Balthasar, D.,
Erdmann, T.,
Pellenz, J.,
Rehrmann, V.,
Zeppen, J.,
Priese, L.,
Real-time Detection of Arbitrary Objects in Alternating Industrial
Environments,
SCIA01(O-Tu3B).
0206
BibRef
Mann, S.[Steve],
Vitrionic sensors: Computer vision for an intelligent touchless water
faucet and intelligent plumbing systems,
CVPR01(Demos 15-16).
0110
BibRef
Hashimoto, M.,
Sumi, K.,
Genetic labeling and its application to depalletizing robot vision,
WACV94(177-186).
IEEE Abstract.
0403
BibRef
Soini, A.,
Technology transfer from research to industry,
SCIA99(Invited Talk).
BibRef
9900
Wen, J.Y.[Jian-Yong],
High-tech approaches of computer vision in industry,
CAIP93(711-715).
Springer DOI
9309
BibRef
She, A.C.,
Hjelmstad, K.D.,
Huang, T.S.,
Nondestructive Evaluation of Civil Structures and Materials
Using Stereo Camera Measurements,
ICPR92(I:708-711).
IEEE DOI
BibRef
9200
Persoon, E.,
Nijholt, G.,
Maguire, G.,
O'Brien, J.,
Industrial image processing by means of an image recognition integrated
system,
ICPR90(II: 402-407).
IEEE DOI
9008
BibRef
White, S.,
Technology innovations and product design issues in machine vision:
The Technical Arts Corporation experience,
BMVC90(xx-yy).
PDF File.
9009
BibRef
Sanfeliu, A.,
Font, J.,
Orteu, I.,
An architecture based on hybrid systems for analyzing 3D industrial
scenes,
ICPR88(I: 368-370).
IEEE DOI
8811
BibRef
Komuro, A.,
Edamatsu, K.,
Automatic Visual Sorting Method of Compressors with
Stamped Marks,
ICPR80(245-247).
BibRef
8000
Graminski, E.L., and
Kirsh, R.A.,
Image Analysis in Paper Manufacturing,
PRIP77(137-143).
BibRef
7700
Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Factory Automation - General Vision Systems .