20.4.2 Gene Expression, Genome

Chapter Contents (Back)
Gene Expression. Genome Analysis.

Damiance, Jr., A.P.G.[Antonio P.G.], Zhao, L.[Liang], Carvalho, A.C.P.L.F.[Andre C.P.L.F.],
A dynamical model with adaptive pixel moving for microarray images segmentation,
RealTimeImg(10), No. 4, August 2004, pp. 189-195.
Elsevier DOI 0410
Gene expression analysis. BibRef

Zhang, Q.[Qiong], Zhang, Y.S.[Ying-Sha],
Hierarchical clustering of gene expression profiles with graphics hardware acceleration,
PRL(27), No. 6, 15 April 2006, pp. 676-681.
Elsevier DOI Hierarchical clustering; Graphics processing units (GPUs); Gene expression profile; Microarray 0604
BibRef

Mitra, S.[Sushmita], Banka, H.[Haider],
Multi-Objective Evolutionary Biclustering of Gene Expression Data,
PR(39), No. 12, December 2006, pp. 2464-2477.
Elsevier DOI 0609
Multi-objective optimization; Microarray; Genetic algorithms; Knowledge discovery BibRef

Lee, J.G.[Jian-Guo], Zhang, C.S.[Chang-Shui],
Classification of gene-expression data: The manifold-based metric learning way,
PR(39), No. 12, December 2006, pp. 2450-2463.
Elsevier DOI 0609
Gene expression; Metric learning; Manifold learning; Nearest neighbor BibRef

Lin, T.C.[Tsun-Chen], Liu, R.S.[Ru-Sheng], Chen, C.Y.[Chien-Yu], Chao, Y.T.[Ya-Ting], Chen, S.Y.[Shu-Yuan],
Pattern classification in DNA microarray data of multiple tumor types,
PR(39), No. 12, December 2006, pp. 2426-2438.
Elsevier DOI 0609
Gene expression profiling; Cancer classification; Genetic algorithm; Silhouette statistics BibRef

Liang, F.M.[Fa-Ming], Wang, N.[Naisyin],
Dynamic agglomerative clustering of gene expression profiles,
PRL(28), No. 9, 1 July 2007, pp. 1062-1076.
Elsevier DOI 0704
Dynamic agglomerative clustering; Gene expression profile; Mini-cluster gene; Scattered gene; Silhouette width; Singleton gene BibRef

Kaban, A.[Ata],
On Bayesian classification with Laplace priors,
PRL(28), No. 10, 15 July 2007, pp. 1271-1282.
Elsevier DOI 0706
Laplace prior; Variational Bayes; Sparsity; Shrinkage effect; Predictive features; Microarray gene expressions BibRef

Cao, K.[Kajia], Zhu, Q.M.[Qiu-Ming], Iqbal, J.[Javeed], Chan, J.W.C.[John W.C.],
A trend pattern assessment approach to microarray gene expression profiling data analysis,
PRL(28), No. 12, 1 September 2007, pp. 1472-1482.
Elsevier DOI 0707
Gene expression profiling; Microarray data analysis; Boundary points; Dynamical patterns; Trend evaluations; Fisher's discriminate criterion BibRef

Wang, H.Q.[Hong-Qiang], Wong, H.S.[Hau-San], Huang, D.S.[De-Shuang], Shu, J.[Jun],
Extracting gene regulation information for cancer classification,
PR(40), No. 12, December 2007, pp. 3379-3392.
Elsevier DOI 0709
Cancer classification; Gene expression levels; Gene regulation; Microarray; Prediction strength BibRef

Groot, P.[Perry], Gilissen, C.[Christian], Egmont-Petersen, M.[Michael],
Error probabilities for local extrema in gene expression data,
PRL(28), No. 15, 1 November 2007, pp. 2133-2142.
Elsevier DOI 0711
Statistics; Scale-space theory; Bivariate Gaussian integration; Gene expression BibRef

Son, Y.S.[Young Sook], Baek, J.S.[Jang-Sun],
A modified correlation coefficient based similarity measure for clustering time-course gene expression data,
PRL(29), No. 3, 1 February 2008, pp. 232-242.
Elsevier DOI 0801
Pearson's correlation coefficient; Spearmann's correlation coefficient; Modified correlation coefficient; Similarity; Clustering; Time-course gene expression data BibRef

Mancuso, K.[Katherine], Hendrickson, A.E.[Anita E.], Connor, Jr., T.B.[Thomas B.], Mauck, M.C.[Matthew C.], Kinsella, J.J.[James J.], Hauswirth, W.W.[William W.], Neitz, J.[Jay], Neitz, M.[Maureen],
Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina,
JOSA-A(24), No. 5, May 2007, pp. 1411-1416.
WWW Link. 0801
BibRef

Fraser, K.[Karl], Wang, Z.D.[Zi-Dong], Li, Y.M.[Yong-Min], Kellam, P.[Paul], Liu, X.H.[Xiao-Hui],
Can graph-cutting improve microarray gene expression reconstructions?,
PRL(29), No. 16, 1 December 2008, pp. 2129-2136.
Elsevier DOI 0811
cDNA; Two channel; Microarrays; Background reconstruction; Graph-edge cuts BibRef

Liew, A.W.C.[Alan Wee-Chung], Law, N.F.[Ngai-Fong], Cao, X.Q.[Xiao-Qin], Yan, H.[Hong],
Statistical power of Fisher test for the detection of short periodic gene expression profiles,
PR(42), No. 4, April 2009, pp. 549-556.
Elsevier DOI 0812
Gene expression profiles; Periodicity detection; Fisher exact test; g-Statistic; Short signal BibRef

Geng, B.[Bo], Zhou, X.B.[Xiao-Bo], Hung, Y.S.,
Growing enzyme gene networks by integration of gene expression, motif sequence, and metabolic information,
PR(42), No. 4, April 2009, pp. 557-561.
Elsevier DOI 0812
Gene networks; Gene expression; Motif sequence; Metabolic reaction BibRef

Hong, J.H.[Jin-Hyuk], Cho, S.B.[Sung-Bae],
Gene boosting for cancer classification based on gene expression profiles,
PR(42), No. 9, September 2009, pp. 1761-1767.
Elsevier DOI 0905
Gene selection; Cancer classification; Wrapper method; Filter method; Boosting BibRef

Zhao, H.Y.[Hong-Ya], Chan, K.L.[Kwok Leung], Cheng, L.M.[Lee-Ming], Yan, H.[Hong],
A probabilistic relaxation labeling framework for reducing the noise effect in geometric biclustering of gene expression data,
PR(42), No. 11, November 2009, pp. 2578-2588.
Elsevier DOI 0907
Gene expression data analysis; Clustering; Biclustering; Hough transform; Probabilistic relaxation labeling BibRef

Mukhopadhyay, A.[Anirban], Maulik, U.[Ujjwal],
Towards improving fuzzy clustering using support vector machine: Application to gene expression data,
PR(42), No. 11, November 2009, pp. 2744-2763.
Elsevier DOI 0907
Microarray gene expression data; Fuzzy clustering; Cluster validity indices; Variable string length genetic algorithm; Support vector machines; Gene ontology BibRef

Gupta, N.[Neelima], Aggarwal, S.[Seema],
MIB: Using mutual information for biclustering gene expression data,
PR(43), No. 8, August 2010, pp. 2692-2697.
Elsevier DOI 1006
Biclustering; Gene expression data; Mutual information; GO term and transcription factor binding site BibRef

Pittelkow, Y.E.[Yvonne E.], Wilson, S.R.[Susan R.],
A novel statistical model for finding patterns in cell-cycle transcription data,
PRL(31), No. 14, 15 October 2010, pp. 2126-2132.
Elsevier DOI 1003
h-Profile plots; Covariance biplots; Time course experiment; Periodic genes; Absolute sine model; Gene expression microarrays BibRef

Cheng, K.O., Law, N.F., Siu, W.C.,
Iterative bicluster-based least square framework for estimation of missing values in microarray gene expression data,
PR(45), No. 4, April 2012, pp. 1281-1289.
Elsevier DOI 1112
Missing value imputation; Biclustering; Iterative estimation; Gene expression analysis BibRef

Yu, Z.W.[Zhi-Wen], Wong, H.S.[Hau-San], You, J.[Jane], Yu, G.X.[Guo-Xian], Han, G.Q.[Guo-Qiang],
Hybrid cluster ensemble framework based on the random combination of data transformation operators,
PR(45), No. 5, May 2012, pp. 1826-1837.
Elsevier DOI 1201
Cluster ensemble; Data transformation; Data mining; Gene expression profile BibRef

Zhang, W.F.[Wei-Feng], Liu, C.C.[Chao-Chun], Yan, H.[Hong],
Clustering of temporal gene expression data by regularized spline regression and an energy based similarity measure,
PR(43), No. 12, December 2010, pp. 3969-3976.
Elsevier DOI 1003
Spline model; Regularized regression; Energy operator; Temporal gene expression data analysis; Clustering BibRef

Yan, D.[Dechun], Wang, J.J.[Jia-Jun],
Biclustering of gene expression data based on related genes and conditions extraction,
PR(46), No. 4, April 2013, pp. 1170-1182.
Elsevier DOI 1301
Biclustering; Microarray; Gene expression data; Missing data estimation BibRef

Roy, S.[Swarup], Bhattacharyya, D.K.[Dhruba K.], Kalita, J.K.[Jugal K.],
CoBi: Pattern Based Co-Regulated Biclustering of Gene Expression Data,
PRL(34), No. 14, 2013, pp. 1669-1678.
Elsevier DOI 1308
Biclustering BibRef

Derfoul, R., Le Guyader, C.,
A Relaxed Problem of Registration Based on the Saint Venant-Kirchhoff Material Stored Energy for the Mapping of Mouse Brain Gene Expression Data to a Neuroanatomical Mouse Atlas,
SIIMS(7), No. 4, 2014, pp. 2175-2195.
DOI Link 1412
BibRef

Liu, Z.[Zhe], Song, Y.Q.[Yu-Qing], Xie, C.H.[Cong-Hua], Tang, Z.[Zheng],
A new clustering method of gene expression data based on multivariate Gaussian mixture models,
SIViP(10), No. 1, February 2016, pp. 359-368.
WWW Link. 1601
BibRef

Rosati, P.[Paolo], Lupascu, C.A.[Carmen A.], Tegolo, D.[Domenico],
Analysis of low-correlated spatial gene expression patterns: a clustering approach in the mouse brain data hosted in the Allen Brain Atlas,
IET-CV(12), No. 7, October 2018, pp. 996-1006.
DOI Link 1809
BibRef

Wang, Y., Li, X., Ruiz, R.,
Weighted General Group Lasso for Gene Selection in Cancer Classification,
Cyber(49), No. 8, August 2019, pp. 2860-2873.
IEEE DOI 1905
Cancer, Mutual information, Gene expression, Biological information theory, Tumors, Biological processes, joint mutual information BibRef

Wang, Y.H.[Yun-He], Bian, C.[Chuang], Wong, K.C.[Ka-Chun], Li, X.T.[Xiang-Tao], Yang, S.X.[Sheng-Xiang],
Multiobjective Deep Clustering and its Applications in Single-cell RNA-seq Data,
SMCS(52), No. 8, August 2022, pp. 5016-5027.
IEEE DOI 2208
Clustering algorithms, Gene expression, Optimization, RNA, Sequential analysis, Feature extraction, Sociology, single-cell RNA-seq dataset BibRef

Pandit, D.[Dhiren], Dhodiya, J.[Jayesh], Patel, Y.[Yogeshwari],
Molecular cancer classification on microarrays gene expression data using wavelet-based deep convolutional neural network,
IJIST(32), No. 6, 2022, pp. 2262-2280.
DOI Link 2212
Brownian motion, clustering, deep learning, extraction, Kalman filter, preprocessing, selection BibRef


Yang, Y.[Yan], Hossain, M.Z.[Md Zakir], Stone, E.A.[Eric A], Rahman, S.[Shafin],
Exemplar Guided Deep Neural Network for Spatial Transcriptomics Analysis of Gene Expression Prediction,
WACV23(5028-5037)
IEEE DOI 2302
Deep learning, Neural networks, Benchmark testing, Transformers, Throughput, Gene expression, Applications: Biomedical/healthcare/medicine BibRef

Symeonidi, A.[Aikaterini], Nicolaou, A.[Anguelos], Johannes, F.[Frank], Christlein, V.[Vincent],
Recursive Convolutional Neural Networks for Epigenomics,
ICPR21(2567-2574)
IEEE DOI 2105
Deep learning, Genomics, Tools, Data models, Pattern recognition, Convolutional neural networks, Gene expression BibRef

Pham, C.[Chau], Pham, V.[Vung], Dang, T.[Tommy],
Genexplorer: Visualizing and Comparing Gene Expression Levels via Differential Charts,
ISVC20(I:248-259).
Springer DOI 2103
BibRef

Bombrun, M.[Maxime], Ranefall, P.[Petter], Lindblad, J.[Joakim], Allalou, A.[Amin], Partel, G.[Gabriele], Solorzano, L.[Leslie], Qian, X.Y.[Xiao-Yan], Nilsson, M.[Mats], Wählby, C.[Carolina],
Decoding Gene Expression in 2D and 3D,
SCIA17(II: 257-268).
Springer DOI 1706
BibRef

Sahoo, P., Acharya, S., Saha, S.,
Automatic generation of biclusters from gene expression data using multi-objective simulated annealing approach,
ICPR16(2174-2179)
IEEE DOI 1705
Clustering algorithms, Computer science, Gene expression, Linear programming, Simulated annealing, AMOSA, Biclustering, Gene expression data, Microarray technology, Multi-objective, optimization BibRef

Borovec, J.[Jirí], Kybic, J.[Jan],
Binary Pattern Dictionary Learning for Gene Expression Representation in Drosophila Imaginal Discs,
MCBMIIA16(II: 555-569).
Springer DOI 1704
BibRef

Adametz, D.[David], Rey, M.[Mélanie], Roth, V.[Volker],
Information Bottleneck for Pathway-Centric Gene Expression Analysis,
GCPR14(81-91).
Springer DOI 1411
BibRef

Rogowski, M., Cannistraci, C.V., Alanis-Lobato, G., Weber, P.P., Ravasi, T., Schulze, J.P., Acevedo-Feliz, D.,
Observing change in crowded data sets in 3D space: Visualizing gene expression in human tissues,
3DUI13(173-174)
IEEE DOI 1406
biology computing BibRef

Heinrich, J.[Julian], Seifert, R.[Robert], Burch, M.[Michael], Weiskopf, D.[Daniel],
BiCluster Viewer: A Visualization Tool for Analyzing Gene Expression Data,
ISVC11(I: 641-652).
Springer DOI 1109
BibRef

Kurkure, U.[Uday], Le, Y.H.[Yen H.], Paragios, N.[Nikos], Carson, J.P.[James P.], Ju, T.[Tao], Kakadiaris, I.A.[Ioannis A.],
Landmark/image-based deformable registration of gene expression data,
CVPR11(1089-1096).
IEEE DOI 1106
BibRef

Chiu, T.Y.[Tai-Yu], Hsu, T.C.[Ting-Chieh], Wang, J.S.[Jia-Shung],
AP-Based Consensus Clustering for Gene Expression Time Series,
ICPR10(2512-2515).
IEEE DOI 1008
BibRef

Myasnikova, E., Surkova, S., Samsonova, M., Reinitz, J.,
Estimation of Errors in Gene Expression Data Introduced by Diffractive Blurring of Confocal Images,
IMVIP09(53-58).
IEEE DOI 0909
BibRef

Wahid, C.M.M.[Choudhury Muhammad Mufassil], Ali, A.B.M.S.[A.B.M. Shawkat], Tickle, K.[Kevin],
Impact of Feature Selection on Support Vector Machine Using Microarray Gene Expression Data,
ICMV09(189-193).
IEEE DOI 0912
BibRef

Gong, Y.C.[Yun-Chao], Chen, C.L.[Chuan-Liang],
Semi-supervised method for gene expression data classification with Gaussian fields and harmonic functions,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Kashef, R.[Rasha], Kamel, M.S.[Mohamed S.],
Efficient Bisecting k -Medoids and Its Application in Gene Expression Analysis,
ICIAR08(xx-yy).
Springer DOI 0806
BibRef

Okun, O.[Oleg], Priisalu, H.[Helen],
Random Forest for Gene Expression Based Cancer Classification: Overlooked Issues,
IbPRIA07(II: 483-490).
Springer DOI 0706
BibRef

Mitra, S.[Sushmita], Banka, H.[Haider], Pal, S.K.[Sankar K.],
A MOE framework for Biclustering of Microarray Data,
ICPR06(I: 1154-1157).
IEEE DOI 0609
Gene expression data. BibRef

An, J.Y.[Ji-Yuan], Chen, Y.P.P.[Yi-Ping Phoebe],
Finding Rule Groups to Classify High Dimensional Gene Expression Datasets,
ICPR06(I: 1196-1199).
IEEE DOI 0609
BibRef

Harpaz, R.[Rave], Haralick, R.M.[Robert M.],
Exploiting the Geometry of Gene Expression Patterns for Unsupervised Learning,
ICPR06(II: 670-674).
IEEE DOI 0609
BibRef

Song, J.Z., Duan, K.M., Surette, M.,
The Wavelet Transformation for Temporal Gene Expression Analysis,
BioInfo05(III: 148-148).
IEEE DOI 0507
BibRef

Ahammad, P.[Parvez], Harmon, C.L.[Cyrus L.], Hammonds, A.[Ann], Sastry, S.S.[S. Shankar], Rubin, G.M.[Gerald M.],
Joint Nonparametric Alignment for Analyzing Spatial Gene Expression Patterns in Drosophila Imaginal Discs,
CVPR05(II: 755-760).
IEEE DOI 0507
BibRef

Fraser, K., O'Neill, P., Wang, Z.D.[Zi-Dong], Liu, X.H.[Xiao-Hui],
'Copasetic analysis': automated analysis of biological gene expression images,
ICARCV04(II: 1061-1066).
IEEE DOI 0412
BibRef

Syeda-Mahmood, T.F.,
Order-preserving clustering and its application to gene expression data,
ICPR04(IV: 637-640).
IEEE DOI 0409
BibRef

Mitra, P., Majumder, D.D.,
Feature selection and gene clustering from gene expression data,
ICPR04(II: 343-346).
IEEE DOI 0409
BibRef

Xuan, J.H.[Jian-Hua], Dong, Y.B.[Yi-Bin], Khan, J., Hoffman, E., Clarke, R., Wang, Y.[Yue],
Robust Feature Selection by Weighted Fisher Criterion for Multiclass Prediction in Gene Expression Profiling,
ICPR04(II: 291-294).
IEEE DOI 0409
BibRef

Wei, W.[Wu], Xin, L.[Liu], Min, X.[Xu], Jinrong, P.[Peng], Setiono, R.,
A hybrid SOM-SVM method for analyzing zebra fish gene expression,
ICPR04(II: 323-326).
IEEE DOI 0409
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Extraction and Analysis of Cells .


Last update:May 22, 2023 at 22:32:27