Damiance, Jr., A.P.G.[Antonio P.G.],
Zhao, L.[Liang],
Carvalho, A.C.P.L.F.[Andre C.P.L.F.],
A dynamical model with adaptive pixel moving for microarray images
segmentation,
RealTimeImg(10), No. 4, August 2004, pp. 189-195.
Elsevier DOI
0410
Gene expression analysis.
BibRef
Zhang, Q.[Qiong],
Zhang, Y.S.[Ying-Sha],
Hierarchical clustering of gene expression profiles with graphics
hardware acceleration,
PRL(27), No. 6, 15 April 2006, pp. 676-681.
Elsevier DOI Hierarchical clustering; Graphics processing units (GPUs); Gene
expression profile; Microarray
0604
BibRef
Mitra, S.[Sushmita],
Banka, H.[Haider],
Multi-Objective Evolutionary Biclustering of Gene Expression Data,
PR(39), No. 12, December 2006, pp. 2464-2477.
Elsevier DOI
0609
Multi-objective optimization; Microarray; Genetic algorithms;
Knowledge discovery
BibRef
Lee, J.G.[Jian-Guo],
Zhang, C.S.[Chang-Shui],
Classification of gene-expression data:
The manifold-based metric learning way,
PR(39), No. 12, December 2006, pp. 2450-2463.
Elsevier DOI
0609
Gene expression; Metric learning; Manifold learning; Nearest neighbor
BibRef
Lin, T.C.[Tsun-Chen],
Liu, R.S.[Ru-Sheng],
Chen, C.Y.[Chien-Yu],
Chao, Y.T.[Ya-Ting],
Chen, S.Y.[Shu-Yuan],
Pattern classification in DNA microarray data of multiple tumor types,
PR(39), No. 12, December 2006, pp. 2426-2438.
Elsevier DOI
0609
Gene expression profiling; Cancer classification;
Genetic algorithm; Silhouette statistics
BibRef
Liang, F.M.[Fa-Ming],
Wang, N.[Naisyin],
Dynamic agglomerative clustering of gene expression profiles,
PRL(28), No. 9, 1 July 2007, pp. 1062-1076.
Elsevier DOI
0704
Dynamic agglomerative clustering; Gene expression profile;
Mini-cluster gene; Scattered gene; Silhouette width; Singleton gene
BibRef
Kaban, A.[Ata],
On Bayesian classification with Laplace priors,
PRL(28), No. 10, 15 July 2007, pp. 1271-1282.
Elsevier DOI
0706
Laplace prior; Variational Bayes; Sparsity; Shrinkage effect;
Predictive features; Microarray gene expressions
BibRef
Cao, K.[Kajia],
Zhu, Q.M.[Qiu-Ming],
Iqbal, J.[Javeed],
Chan, J.W.C.[John W.C.],
A trend pattern assessment approach to microarray gene expression
profiling data analysis,
PRL(28), No. 12, 1 September 2007, pp. 1472-1482.
Elsevier DOI
0707
Gene expression profiling; Microarray data analysis; Boundary points;
Dynamical patterns; Trend evaluations; Fisher's discriminate criterion
BibRef
Wang, H.Q.[Hong-Qiang],
Wong, H.S.[Hau-San],
Huang, D.S.[De-Shuang],
Shu, J.[Jun],
Extracting gene regulation information for cancer classification,
PR(40), No. 12, December 2007, pp. 3379-3392.
Elsevier DOI
0709
Cancer classification; Gene expression levels; Gene regulation;
Microarray; Prediction strength
BibRef
Groot, P.[Perry],
Gilissen, C.[Christian],
Egmont-Petersen, M.[Michael],
Error probabilities for local extrema in gene expression data,
PRL(28), No. 15, 1 November 2007, pp. 2133-2142.
Elsevier DOI
0711
Statistics; Scale-space theory; Bivariate Gaussian integration; Gene expression
BibRef
Son, Y.S.[Young Sook],
Baek, J.S.[Jang-Sun],
A modified correlation coefficient based similarity measure for
clustering time-course gene expression data,
PRL(29), No. 3, 1 February 2008, pp. 232-242.
Elsevier DOI
0801
Pearson's correlation coefficient; Spearmann's correlation coefficient;
Modified correlation coefficient; Similarity; Clustering;
Time-course gene expression data
BibRef
Mancuso, K.[Katherine],
Hendrickson, A.E.[Anita E.],
Connor, Jr., T.B.[Thomas B.],
Mauck, M.C.[Matthew C.],
Kinsella, J.J.[James J.],
Hauswirth, W.W.[William W.],
Neitz, J.[Jay],
Neitz, M.[Maureen],
Recombinant adeno-associated virus targets passenger gene expression to
cones in primate retina,
JOSA-A(24), No. 5, May 2007, pp. 1411-1416.
WWW Link.
0801
BibRef
Fraser, K.[Karl],
Wang, Z.D.[Zi-Dong],
Li, Y.M.[Yong-Min],
Kellam, P.[Paul],
Liu, X.H.[Xiao-Hui],
Can graph-cutting improve microarray gene expression reconstructions?,
PRL(29), No. 16, 1 December 2008, pp. 2129-2136.
Elsevier DOI
0811
cDNA; Two channel; Microarrays; Background reconstruction; Graph-edge cuts
BibRef
Liew, A.W.C.[Alan Wee-Chung],
Law, N.F.[Ngai-Fong],
Cao, X.Q.[Xiao-Qin],
Yan, H.[Hong],
Statistical power of Fisher test for the detection of short periodic
gene expression profiles,
PR(42), No. 4, April 2009, pp. 549-556.
Elsevier DOI
0812
Gene expression profiles; Periodicity detection; Fisher exact test;
g-Statistic; Short signal
BibRef
Geng, B.[Bo],
Zhou, X.B.[Xiao-Bo],
Hung, Y.S.,
Growing enzyme gene networks by integration of gene expression, motif
sequence, and metabolic information,
PR(42), No. 4, April 2009, pp. 557-561.
Elsevier DOI
0812
Gene networks; Gene expression; Motif sequence; Metabolic reaction
BibRef
Hong, J.H.[Jin-Hyuk],
Cho, S.B.[Sung-Bae],
Gene boosting for cancer classification based on gene expression
profiles,
PR(42), No. 9, September 2009, pp. 1761-1767.
Elsevier DOI
0905
Gene selection; Cancer classification; Wrapper method; Filter method; Boosting
BibRef
Zhao, H.Y.[Hong-Ya],
Chan, K.L.[Kwok Leung],
Cheng, L.M.[Lee-Ming],
Yan, H.[Hong],
A probabilistic relaxation labeling framework for reducing the noise
effect in geometric biclustering of gene expression data,
PR(42), No. 11, November 2009, pp. 2578-2588.
Elsevier DOI
0907
Gene expression data analysis; Clustering; Biclustering; Hough
transform; Probabilistic relaxation labeling
BibRef
Mukhopadhyay, A.[Anirban],
Maulik, U.[Ujjwal],
Towards improving fuzzy clustering using support vector machine:
Application to gene expression data,
PR(42), No. 11, November 2009, pp. 2744-2763.
Elsevier DOI
0907
Microarray gene expression data; Fuzzy clustering; Cluster validity
indices; Variable string length genetic algorithm; Support vector
machines; Gene ontology
BibRef
Gupta, N.[Neelima],
Aggarwal, S.[Seema],
MIB: Using mutual information for biclustering gene expression data,
PR(43), No. 8, August 2010, pp. 2692-2697.
Elsevier DOI
1006
Biclustering; Gene expression data; Mutual information; GO term and
transcription factor binding site
BibRef
Pittelkow, Y.E.[Yvonne E.],
Wilson, S.R.[Susan R.],
A novel statistical model for finding patterns in cell-cycle
transcription data,
PRL(31), No. 14, 15 October 2010, pp. 2126-2132.
Elsevier DOI
1003
h-Profile plots; Covariance biplots; Time course experiment; Periodic
genes; Absolute sine model; Gene expression microarrays
BibRef
Cheng, K.O.,
Law, N.F.,
Siu, W.C.,
Iterative bicluster-based least square framework for estimation of
missing values in microarray gene expression data,
PR(45), No. 4, April 2012, pp. 1281-1289.
Elsevier DOI
1112
Missing value imputation; Biclustering; Iterative estimation; Gene
expression analysis
BibRef
Yu, Z.W.[Zhi-Wen],
Wong, H.S.[Hau-San],
You, J.[Jane],
Yu, G.X.[Guo-Xian],
Han, G.Q.[Guo-Qiang],
Hybrid cluster ensemble framework based on the random combination of
data transformation operators,
PR(45), No. 5, May 2012, pp. 1826-1837.
Elsevier DOI
1201
Cluster ensemble; Data transformation; Data mining; Gene expression profile
BibRef
Zhang, W.F.[Wei-Feng],
Liu, C.C.[Chao-Chun],
Yan, H.[Hong],
Clustering of temporal gene expression data by regularized spline
regression and an energy based similarity measure,
PR(43), No. 12, December 2010, pp. 3969-3976.
Elsevier DOI
1003
Spline model; Regularized regression; Energy operator; Temporal gene
expression data analysis; Clustering
BibRef
Yan, D.[Dechun],
Wang, J.J.[Jia-Jun],
Biclustering of gene expression data based on related genes and
conditions extraction,
PR(46), No. 4, April 2013, pp. 1170-1182.
Elsevier DOI
1301
Biclustering; Microarray; Gene expression data; Missing data
estimation
BibRef
Roy, S.[Swarup],
Bhattacharyya, D.K.[Dhruba K.],
Kalita, J.K.[Jugal K.],
CoBi: Pattern Based Co-Regulated Biclustering of Gene Expression Data,
PRL(34), No. 14, 2013, pp. 1669-1678.
Elsevier DOI
1308
Biclustering
BibRef
Derfoul, R.,
Le Guyader, C.,
A Relaxed Problem of Registration Based on the Saint Venant-Kirchhoff
Material Stored Energy for the Mapping of Mouse Brain Gene Expression
Data to a Neuroanatomical Mouse Atlas,
SIIMS(7), No. 4, 2014, pp. 2175-2195.
DOI Link
1412
BibRef
Liu, Z.[Zhe],
Song, Y.Q.[Yu-Qing],
Xie, C.H.[Cong-Hua],
Tang, Z.[Zheng],
A new clustering method of gene expression data based on multivariate
Gaussian mixture models,
SIViP(10), No. 1, February 2016, pp. 359-368.
WWW Link.
1601
BibRef
Rosati, P.[Paolo],
Lupascu, C.A.[Carmen A.],
Tegolo, D.[Domenico],
Analysis of low-correlated spatial gene expression patterns: a
clustering approach in the mouse brain data hosted in the Allen Brain
Atlas,
IET-CV(12), No. 7, October 2018, pp. 996-1006.
DOI Link
1809
BibRef
Wang, Y.,
Li, X.,
Ruiz, R.,
Weighted General Group Lasso for Gene Selection in Cancer
Classification,
Cyber(49), No. 8, August 2019, pp. 2860-2873.
IEEE DOI
1905
Cancer, Mutual information, Gene expression,
Biological information theory, Tumors, Biological processes,
joint mutual information
BibRef
Wang, Y.H.[Yun-He],
Bian, C.[Chuang],
Wong, K.C.[Ka-Chun],
Li, X.T.[Xiang-Tao],
Yang, S.X.[Sheng-Xiang],
Multiobjective Deep Clustering and its Applications in Single-cell
RNA-seq Data,
SMCS(52), No. 8, August 2022, pp. 5016-5027.
IEEE DOI
2208
Clustering algorithms, Gene expression, Optimization, RNA,
Sequential analysis, Feature extraction, Sociology,
single-cell RNA-seq dataset
BibRef
Pandit, D.[Dhiren],
Dhodiya, J.[Jayesh],
Patel, Y.[Yogeshwari],
Molecular cancer classification on microarrays gene expression data
using wavelet-based deep convolutional neural network,
IJIST(32), No. 6, 2022, pp. 2262-2280.
DOI Link
2212
Brownian motion, clustering, deep learning, extraction,
Kalman filter, preprocessing, selection
BibRef
Symeonidi, A.[Aikaterini],
Nicolaou, A.[Anguelos],
Johannes, F.[Frank],
Christlein, V.[Vincent],
Recursive Convolutional Neural Networks for Epigenomics,
ICPR21(2567-2574)
IEEE DOI
2105
Deep learning, Genomics, Tools, Data models, Pattern recognition,
Convolutional neural networks, Gene expression
BibRef
Pham, C.[Chau],
Pham, V.[Vung],
Dang, T.[Tommy],
Genexplorer: Visualizing and Comparing Gene Expression Levels via
Differential Charts,
ISVC20(I:248-259).
Springer DOI
2103
BibRef
Bombrun, M.[Maxime],
Ranefall, P.[Petter],
Lindblad, J.[Joakim],
Allalou, A.[Amin],
Partel, G.[Gabriele],
Solorzano, L.[Leslie],
Qian, X.Y.[Xiao-Yan],
Nilsson, M.[Mats],
Wählby, C.[Carolina],
Decoding Gene Expression in 2D and 3D,
SCIA17(II: 257-268).
Springer DOI
1706
BibRef
Sahoo, P.,
Acharya, S.,
Saha, S.,
Automatic generation of biclusters from gene expression data using
multi-objective simulated annealing approach,
ICPR16(2174-2179)
IEEE DOI
1705
Clustering algorithms, Computer science,
Gene expression, Linear programming, Simulated annealing, AMOSA,
Biclustering, Gene expression data, Microarray technology,
Multi-objective, optimization
BibRef
Borovec, J.[Jirí],
Kybic, J.[Jan],
Binary Pattern Dictionary Learning for Gene Expression Representation
in Drosophila Imaginal Discs,
MCBMIIA16(II: 555-569).
Springer DOI
1704
BibRef
Adametz, D.[David],
Rey, M.[Mélanie],
Roth, V.[Volker],
Information Bottleneck for Pathway-Centric Gene Expression Analysis,
GCPR14(81-91).
Springer DOI
1411
BibRef
Rogowski, M.,
Cannistraci, C.V.,
Alanis-Lobato, G.,
Weber, P.P.,
Ravasi, T.,
Schulze, J.P.,
Acevedo-Feliz, D.,
Observing change in crowded data sets in 3D space:
Visualizing gene expression in human tissues,
3DUI13(173-174)
IEEE DOI
1406
biology computing
BibRef
Heinrich, J.[Julian],
Seifert, R.[Robert],
Burch, M.[Michael],
Weiskopf, D.[Daniel],
BiCluster Viewer: A Visualization Tool for Analyzing Gene Expression
Data,
ISVC11(I: 641-652).
Springer DOI
1109
BibRef
Kurkure, U.[Uday],
Le, Y.H.[Yen H.],
Paragios, N.[Nikos],
Carson, J.P.[James P.],
Ju, T.[Tao],
Kakadiaris, I.A.[Ioannis A.],
Landmark/image-based deformable registration of gene expression data,
CVPR11(1089-1096).
IEEE DOI
1106
BibRef
Chiu, T.Y.[Tai-Yu],
Hsu, T.C.[Ting-Chieh],
Wang, J.S.[Jia-Shung],
AP-Based Consensus Clustering for Gene Expression Time Series,
ICPR10(2512-2515).
IEEE DOI
1008
BibRef
Myasnikova, E.,
Surkova, S.,
Samsonova, M.,
Reinitz, J.,
Estimation of Errors in Gene Expression Data Introduced by Diffractive
Blurring of Confocal Images,
IMVIP09(53-58).
IEEE DOI
0909
BibRef
Wahid, C.M.M.[Choudhury Muhammad Mufassil],
Ali, A.B.M.S.[A.B.M. Shawkat],
Tickle, K.[Kevin],
Impact of Feature Selection on Support Vector Machine Using Microarray
Gene Expression Data,
ICMV09(189-193).
IEEE DOI
0912
BibRef
Gong, Y.C.[Yun-Chao],
Chen, C.L.[Chuan-Liang],
Semi-supervised method for gene expression data classification with
Gaussian fields and harmonic functions,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Kashef, R.[Rasha],
Kamel, M.S.[Mohamed S.],
Efficient Bisecting k -Medoids and Its Application in Gene Expression
Analysis,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Okun, O.[Oleg],
Priisalu, H.[Helen],
Random Forest for Gene Expression Based Cancer Classification:
Overlooked Issues,
IbPRIA07(II: 483-490).
Springer DOI
0706
BibRef
Mitra, S.[Sushmita],
Banka, H.[Haider],
Pal, S.K.[Sankar K.],
A MOE framework for Biclustering of Microarray Data,
ICPR06(I: 1154-1157).
IEEE DOI
0609
Gene expression data.
BibRef
An, J.Y.[Ji-Yuan],
Chen, Y.P.P.[Yi-Ping Phoebe],
Finding Rule Groups to Classify High Dimensional Gene Expression
Datasets,
ICPR06(I: 1196-1199).
IEEE DOI
0609
BibRef
Harpaz, R.[Rave],
Haralick, R.M.[Robert M.],
Exploiting the Geometry of Gene Expression Patterns for Unsupervised
Learning,
ICPR06(II: 670-674).
IEEE DOI
0609
BibRef
Song, J.Z.,
Duan, K.M.,
Surette, M.,
The Wavelet Transformation for Temporal Gene Expression Analysis,
BioInfo05(III: 148-148).
IEEE DOI
0507
BibRef
Ahammad, P.[Parvez],
Harmon, C.L.[Cyrus L.],
Hammonds, A.[Ann],
Sastry, S.S.[S. Shankar],
Rubin, G.M.[Gerald M.],
Joint Nonparametric Alignment for Analyzing Spatial Gene Expression
Patterns in Drosophila Imaginal Discs,
CVPR05(II: 755-760).
IEEE DOI
0507
BibRef
Fraser, K.,
O'Neill, P.,
Wang, Z.D.[Zi-Dong],
Liu, X.H.[Xiao-Hui],
'Copasetic analysis': automated analysis of biological gene expression
images,
ICARCV04(II: 1061-1066).
IEEE DOI
0412
BibRef
Syeda-Mahmood, T.F.,
Order-preserving clustering and its application to gene expression data,
ICPR04(IV: 637-640).
IEEE DOI
0409
BibRef
Mitra, P.,
Majumder, D.D.,
Feature selection and gene clustering from gene expression data,
ICPR04(II: 343-346).
IEEE DOI
0409
BibRef
Xuan, J.H.[Jian-Hua],
Dong, Y.B.[Yi-Bin],
Khan, J.,
Hoffman, E.,
Clarke, R.,
Wang, Y.[Yue],
Robust Feature Selection by Weighted Fisher Criterion for Multiclass
Prediction in Gene Expression Profiling,
ICPR04(II: 291-294).
IEEE DOI
0409
BibRef
Wei, W.[Wu],
Xin, L.[Liu],
Min, X.[Xu],
Jinrong, P.[Peng],
Setiono, R.,
A hybrid SOM-SVM method for analyzing zebra fish gene expression,
ICPR04(II: 323-326).
IEEE DOI
0409
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Extraction and Analysis of Cells .