Daimler Pedestrian Detection Benchmark,
2009.
HTML Version.
Dataset, Pedestrian Detection.
Dataset, Surveillance.
See also Daimler. Training set: 15,560 pedestrian and non-pedestrian samples.
6744 additional images.
Test set: a sequence with more than 21,790 images with 56,492
pedestrian labels. From a vehicle in 27 minutes of urban driving.
VGA resolution.
Dataset used in:
See also Monocular Pedestrian Detection: Survey and Experiments.
0906
Edinburgh Informatics Forum Pedestrian Database,
2010.
WWW Link.
Dataset, Human Tracking.
Dataset, Surveillance. Overhead views, of a building atrium.
Several months of observations, with trajectories (computed).
1007
Dalal, N.[Navneet],
INRIA Person Dataset,
Online2005
WWW Link.
Dataset, Human Motion. The collected dataset for the above paper, from various sources.
BibRef
0500
Enzweiler, M.[Markus],
Gavrila, D.M.[Dariu M.],
Monocular Pedestrian Detection: Survey and Experiments,
PAMI(31), No. 12, December 2009, pp. 2179-2195.
IEEE DOI
0911
Survey, Pedestrian Detection.
See also Daimler Pedestrian Detection Benchmark. wavelet-based AdaBoost cascade (
See also Detecting Pedestrians Using Patterns of Motion and Appearance. ),
HOG/linSVM (
See also Histograms of Oriented Gradients for Human Detection. ),
NN/LRF (
See also Adaptable Time-Delay Neural Network Algorithm for Image Sequence Analysis, An. ),
and combined shape-texture detection
(
See also Multi-cue Pedestrian Detection and Tracking from a Moving Vehicle. )
BibRef
Gandhi, T.[Tarak],
Trivedi, M.M.[Mohan Manubhai],
Pedestrian Protection Systems: Issues, Survey, and Challenges,
ITS(8), No. 3, September 2007, pp. 413-430.
IEEE DOI
0710
Survey, Pedestrian Detection.
BibRef
Wu, Y.[Yang],
Liu, Y.L.[Yuan-Liu],
Yuan, Z.J.[Ze-Jian],
Zheng, N.N.[Nan-Ning],
IAIR-CarPed: A psychophysically annotated dataset with fine-grained and
layered semantic labels for object recognition,
PRL(33), No. 2, 15 January 2012, pp. 218-226.
Elsevier DOI
1112
Dataset, Pedestrian Detection. Object recognition; Image database; Object detection; Pedestrian
detection; Psychophysical experiments
BibRef
Hussein, M.[Mohamed],
Porikli, F.M.[Fatih M.],
Davis, L.S.[Larry S.],
A Comprehensive Evaluation Framework and a Comparative Study for Human
Detectors,
ITS(10), No. 3, September 2009, pp. 417-427.
IEEE DOI
0909
BibRef
Joshi, A.J.[Ajay J.],
Porikli, F.M.[Fatih M.],
Scene-Adaptive Human Detection with Incremental Active Learning,
ICPR10(2760-2763).
IEEE DOI
1008
BibRef
García-Martín, Á.[Álvaro],
Martínez, J.M.[José M.],
Bescós, J.[Jesús],
A corpus for benchmarking of people detection algorithms,
PRL(33), No. 2, 15 January 2012, pp. 152-156.
Elsevier DOI
1112
Dataset, Person Detection. People detection; Ground-truth; Corpus; Dataset; Surveillance video
BibRef
Dollar, P.[Piotr],
Wojek, C.[Christian],
Schiele, B.[Bernt],
Perona, P.[Pietro],
Pedestrian Detection: An Evaluation of the State of the Art,
PAMI(34), No. 4, April 2012, pp. 743-761.
IEEE DOI
1203
BibRef
Earlier:
Pedestrian detection: A benchmark,
CVPR09(304-311).
IEEE DOI
0906
Evaluation, Pedestrian Detection. Dataset, methodology. 16 detectors over 6 datasets.
Results poor for low resolution and occlusions.
BibRef
Dollar, P.[Piotr],
Belongie, S.J.[Serge J.],
Perona, P.[Pietro],
The Fastest Pedestrian Detector in the West,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Villamizar, M.[Michael],
Andrade-Cetto, J.[Juan],
Sanfeliu, A.[Alberto],
Moreno-Noguer, F.[Francesc],
Boosted Random Ferns for Object Detection,
PAMI(40), No. 2, February 2018, pp. 272-288.
IEEE DOI
1801
Boosting, Feature extraction, Histograms, Object detection, Training,
Vegetation,
random ferns
BibRef
Villamizar, M.[Michael],
Andrade-Cetto, J.[Juan],
Sanfeliu, A.[Alberto],
Moreno-Noguer, F.[Francesc],
Bootstrapping Boosted Random Ferns for discriminative and efficient
object classification,
PR(45), No. 9, September 2012, pp. 3141-3153.
Elsevier DOI
1206
BibRef
Earlier: A1, A4, A2, A3:
Detection Performance Evaluation of Boosted Random Ferns,
IbPRIA11(67-75).
Springer DOI
1106
BibRef
Earlier:
Shared Random Ferns for Efficient Detection of Multiple Categories,
ICPR10(388-391).
IEEE DOI
1008
BibRef
And:
Efficient rotation invariant object detection using boosted Random
Ferns,
CVPR10(1038-1045).
IEEE DOI
1006
Object detection; Boosting; Bootstrapping; Random Ferns
BibRef
Villamizar, M.[Michael],
Garrell, A.[Anaís],
Sanfeliu, A.[Alberto],
Moreno-Noguer, F.[Francesc],
Interactive multiple object learning with scanty human supervision,
CVIU(149), No. 1, 2016, pp. 51-64.
Elsevier DOI
1606
BibRef
Earlier:
Online human-assisted learning using Random Ferns,
ICPR12(2821-2824).
WWW Link.
1302
Object recognition
BibRef
Villamizar, M.[Michael],
Grabner, H.[Helmut],
Moreno-Noguer, F.[Francesc],
Andrade-Cetto, J.[Juan],
Van Gool, L.J.[Luc J.],
Sanfeliu, A.[Alberto],
Efficient 3D Object Detection using Multiple Pose-Specific Classifiers,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Villamizar, M.[Michael],
Sanfeliu, A.[Alberto],
Andrade-Cetto, J.[Juan],
Local Boosted Features for Pedestrian Detection,
IbPRIA09(128-135).
Springer DOI
0906
BibRef
Earlier:
Unidimensional Multiscale Local Features for Object Detection Under
Rotation and Mild Occlusions,
IbPRIA07(II: 645-651).
Springer DOI
0706
BibRef
Earlier:
Orientation Invariant Features for Multiclass Object Recognition,
CIARP06(655-664).
Springer DOI
0611
BibRef
Earlier:
Computation of Rotation Local Invariant Features using the Integral
Image for Real Time Object Detection,
ICPR06(IV: 81-85).
IEEE DOI
0609
BibRef
Simonnet, D.,
Velastin, S.A.[Sergio A.],
Turkbeyler, E.,
Orwell, J.,
Backgroundless detection of pedestrians in cluttered conditions based
on monocular images: a review,
IET-CV(6), No. 6, 2012, pp. 540-550.
DOI Link
1301
Survey, Pedestrian Detection.
BibRef
Garci´a-Marti´n, A.,
Marti´nez, J.M.,
People detection in surveillance: classification and evaluation,
IET-CV(9), No. 5, 2015, pp. 779-788.
DOI Link
1511
image classification
BibRef
Winterlich, A.[Anthony],
Hughes, C.[Ciarán],
Kilmartin, L.[Liam],
Glavin, M.[Martin],
Jones, E.[Edward],
An oriented gradient based image quality metric for pedestrian
detection performance evaluation,
SP:IC(31), No. 1, 2015, pp. 61-75.
Elsevier DOI
1502
Image quality
BibRef
Hosang, J.[Jan],
Benenson, R.[Rodrigo],
Dollár, P.,
Schiele, B.[Bernt],
What Makes for Effective Detection Proposals?,
PAMI(38), No. 4, April 2016, pp. 814-830.
IEEE DOI
1603
Detectors
BibRef
Zhang, S.,
Benenson, R.[Rodrigo],
Omran, M.[Mohamed],
Hosang, J.[Jan],
Schiele, B.[Bernt],
Towards Reaching Human Performance in Pedestrian Detection,
PAMI(40), No. 4, April 2018, pp. 973-986.
IEEE DOI
1804
Survey, Pedestrian Detection.
BibRef
Earlier:
How Far are We from Solving Pedestrian Detection?,
CVPR16(1259-1267)
IEEE DOI
1612
BibRef
Earlier: A2, A3, A4, A5, Only:
Ten Years of Pedestrian Detection, What Have We Learned?,
CVRoads14(613-627).
Springer DOI
1504
convolution, neural nets, object detection, pedestrians,
Caltech pedestrian dataset,
integral channel features
BibRef
Zhang, S.,
Benenson, R.[Rodrigo],
Schiele, B.[Bernt],
CityPersons: A Diverse Dataset for Pedestrian Detection,
CVPR17(4457-4465)
IEEE DOI
1711
Benchmark testing, Detectors, Image segmentation, Semantics, Tools,
Training, Urban, areas
BibRef
Lu, M.[Meng],
Blokpoel, R.[Robbin],
Joueiai, M.[Mahtab],
Enhancement of safety and comfort of cyclists at intersections,
IET-ITS(12), No. 6, August 2018, pp. 527-532.
DOI Link
1807
BibRef
Li, D.,
Zhang, Z.,
Chen, X.,
Huang, K.,
A Richly Annotated Pedestrian Dataset for Person Retrieval in Real
Surveillance Scenarios,
IP(28), No. 4, April 2019, pp. 1575-1590.
IEEE DOI
1901
feature extraction, image annotation,
image recognition, image retrieval,
multi-label learning
BibRef
Khalifa, A.F.[Ali Farouk],
Badr, E.[Eman],
Elmahdy, H.N.[Hesham N.],
A survey on human detection surveillance systems for Raspberry Pi,
IVC(85), 2019, pp. 1-13.
Elsevier DOI
1905
Human detection, Machine learning, Raspberry Pi
BibRef
Wang, X.[Xiao],
Liang, C.[Chao],
Chen, C.[Chen],
Chen, J.[Jun],
Wang, Z.[Zheng],
Han, Z.[Zhen],
Xiao, C.X.[Chun-Xia],
S3D: Scalable Pedestrian Detection via Score Scale Surface
Discrimination,
CirSysVideo(30), No. 10, October 2020, pp. 3332-3344.
IEEE DOI
2010
Feature extraction, Detectors, Proposals,
Computational efficiency, Testing, discriminant surface
BibRef
Gotovac, S.[Sven],
Zelenika, D.[Danijel],
Maruic, .[eljko],
Boic-tulic, D.[Dunja],
Visual-Based Person Detection for Search-and-Rescue with UAS:
Humans vs. Machine Learning Algorithm,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Chen, L.[Long],
Lin, S.B.[Shao-Bo],
Lu, X.K.[Xian-Kai],
Cao, D.[Dongpu],
Wu, H.[Hangbin],
Guo, C.[Chi],
Liu, C.[Chun],
Wang, F.Y.[Fei-Yue],
Deep Neural Network Based Vehicle and Pedestrian Detection for
Autonomous Driving: A Survey,
ITS(22), No. 6, June 2021, pp. 3234-3246.
IEEE DOI
2106
Feature extraction, Proposals, Object detection,
Computational modeling, Residual neural networks, Detectors,
survey
BibRef
Niedzielski, T.[Tomasz],
Jurecka, M.[Miroslawa],
Mizinski, B.[Bartlomiej],
Pawul, W.[Wojciech],
Motyl, T.[Tomasz],
First Successful Rescue of a Lost Person Using the Human Detection
System: A Case Study from Beskid Niski (SE Poland),
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Cao, J.[Jiale],
Pang, Y.W.[Yan-Wei],
Xie, J.[Jin],
Khan, F.S.[Fahad Shahbaz],
Shao, L.[Ling],
From Handcrafted to Deep Features for Pedestrian Detection: A Survey,
PAMI(44), No. 9, September 2022, pp. 4913-4934.
IEEE DOI
2208
Feature extraction, Proposals, Cameras, Deep learning, Task analysis,
Object detection, Support vector machines, Pedestrian detection,
multi-spectral pedestrian detection
BibRef
Armando, M.[Matthieu],
Boissieux, L.[Laurence],
Boyer, E.[Edmond],
Franco, J.S.[Jean-Sébastien],
Humenberger, M.[Martin],
Legras, C.[Christophe],
Leroy, V.[Vincent],
Marsot, M.[Mathieu],
Pansiot, J.[Julien],
Pujades, S.[Sergi],
Rekik, R.[Rim],
Rogez, G.[Grégory],
Swamy, A.[Anilkumar],
Wuhrer, S.[Stefanie],
4DHumanOutfit: A multi-subject 4D dataset of human motion sequences
in varying outfits exhibiting large displacements,
CVIU(237), 2023, pp. 103836.
Elsevier DOI Code:
WWW Link.
2311
Digital human modeling, Multi-view reconstruction, Human motion database
BibRef
Ghari, B.[Bahareh],
Tourani, A.[Ali],
Shahbahrami, A.[Asadollah],
Gaydadjiev, G.[Georgi],
Pedestrian detection in low-light conditions: A comprehensive survey,
IVC(148), 2024, pp. 105106.
Elsevier DOI
2407
Survey, Low Light.
Survey, Pedestrian Detection. Pedestrian detection, Object detection, Autonomous vehicles
BibRef
Hagn, K.[Korbinian],
Grau, O.[Oliver],
Validation of Pedestrian Detectors by Classification of Visual
Detection Impairing Factors,
SafeDrive22(476-491).
Springer DOI
2304
BibRef
Wiedemer, T.[Thaddäus],
Wolf, S.[Stefan],
Schumann, A.[Arne],
Ma, K.[Kaisheng],
Beyerer, J.[Jürgen],
Few-Shot Supervised Prototype Alignment for Pedestrian Detection on
Fisheye Images,
L3D-IVU22(4141-4152)
IEEE DOI
2210
Training, Couplings, Adaptation models, Schedules, Surveillance, Prototypes
BibRef
Specker, A.,
Schumann, A.,
Beyerer, J.,
An Evaluation Of Design Choices For Pedestrian Attribute Recognition
In Video,
ICIP20(2331-2335)
IEEE DOI
2011
Computational modeling, Solid modeling, Task analysis, retrieval
BibRef
Specker, A.[Andreas],
Beyerer, J.[Jürgen],
ReidTrack: Reid-only Multi-target Multi-camera Tracking,
AICity23(5442-5452)
IEEE DOI
2309
BibRef
Specker, A.[Andreas],
Florin, L.[Lucas],
Cormier, M.[Mickael],
Beyerer, J.[Jürgen],
Improving Multi-Target Multi-Camera Tracking by Track Refinement and
Completion,
AICity22(3198-3208)
IEEE DOI
2210
Conferences, Urban areas, Topology, Pattern recognition,
Task analysis, Artificial intelligence
BibRef
Specker, A.[Andreas],
Stadler, D.[Daniel],
Florin, L.[Lucas],
Beyerer, J.[Jürgen],
An Occlusion-aware Multi-target Multi-camera Tracking System,
AICity21(4168-4177)
IEEE DOI
2109
Visualization, Target tracking, Urban areas,
Feature extraction, Information filters, Data mining
BibRef
Köhl, P.,
Specker, A.,
Schumann, A.,
Beyerer, J.,
The MTA Dataset for Multi Target Multi Camera Pedestrian Tracking by
Weighted Distance Aggregation,
VUHCS20(4489-4498)
IEEE DOI
2008
BibRef
Earlier: Dataset, Pedestrians
Cameras, Target tracking, Task analysis, Synchronization, Games, Data privacy
BibRef
Neumann, L.[Luká],
Karg, M.[Michelle],
Zhang, S.S.[Shan-Shan],
Scharfenberger, C.[Christian],
Piegert, E.[Eric],
Mistr, S.[Sarah],
Prokofyeva, O.[Olga],
Thiel, R.[Robert],
Vedaldi, A.[Andrea],
Zisserman, A.[Andrew],
Schiele, B.[Bernt],
NightOwls: A Pedestrians at Night Dataset,
ACCV18(I:691-705).
Springer DOI
1906
BibRef
Rasouli, A.[Amir],
Kotseruba, I.[Iuliia],
Tsotsos, J.K.[John K.],
It's Not All About Size: On the Role of Data Properties in Pedestrian
Detection,
CVRoads18(I:210-225).
Springer DOI
1905
BibRef
Eiselein, V.,
Bochinski, E.,
Sikora, T.,
Assessing post-detection filters for a generic pedestrian detector in
a tracking-by-detection scheme,
AVSS17(1-6)
IEEE DOI
1806
filtering theory, object detection, object tracking, pedestrians,
traffic engineering computing, video signal processing,
Visualization
BibRef
Imaeda, Y.[Yuki],
Hirayama, T.[Takatsugu],
Kawanishi, Y.[Yasutomo],
Deguchi, D.[Daisuke],
Ide, I.[Ichiro],
Murase, H.[Hiroshi],
Pedestrian Detectability Estimation Considering Visual Adaptation to
Drastic Illumination Change,
IEICE(E101-D), No. 5, May 2018, pp. 1457-1461.
WWW Link.
1805
BibRef
Mao, J.,
Xiao, T.,
Jiang, Y.,
Cao, Z.,
What Can Help Pedestrian Detection?,
CVPR17(6034-6043)
IEEE DOI
1711
Convolution, Detectors, Feature extraction, Heating systems,
Image edge detection, Image segmentation, Semantics
BibRef
Swetha, S.[Sirnam],
Mishra, A.[Anand],
Hegde, G.M.[Guruprasad M.],
Jawahar, C.V.,
Efficient object annotation for surveillance and automotive
applications,
CVAST16(1-6)
IEEE DOI
1606
computer vision. Annotation for pedestrians.
BibRef
Yuan, Y.[Yuan],
Lin, W.S.[Wei-Si],
Fang, Y.M.[Yu-Ming],
Is pedestrian detection robust for surveillance?,
ICIP15(2776-2780)
IEEE DOI
1512
BibRef
Ninomiya, H.[Hiroki],
Ohki, H.[Hidehiro],
Gyohten, K.[Keiji],
Sueda, N.[Naomichi],
An evaluation on robustness and brittleness of HOG features of human
detection,
FCV11(1-5).
IEEE DOI
1102
BibRef
Tosato, D.[Diego],
Farenzena, M.[Michela],
Cistani, M.[Marco],
Murino, V.[Vittorio],
A Re-evaluation of Pedestrian Detection on Riemannian Manifolds,
ICPR10(3308-3311).
IEEE DOI
1008
See also Multi-class Classification on Riemannian Manifolds for Video Surveillance.
BibRef
Westall, P.,
Ford, J.J.,
O'Shea, P.,
Hrabar, S.,
Evaluation of Maritime Vision Techniques for Aerial Search of Humans in
Maritime Environments,
DICTA08(176-183).
IEEE DOI
0812
BibRef
Bertozzi, M.,
Broggi, A.,
Grisleri, P.,
Tibaldi, A.,
del Rose, M.,
A tool for vision based pedestrian detection performance evaluation,
IVS04(784-789).
IEEE DOI
0411
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Counting People, Transportation System Monitoring, Queues .