Pang, G.[Guan],
Wang, G.[Guijin],
Lin, X.G.[Xing-Gang],
Real-Time Human Detection Using Hierarchical HOG Matrices,
IEICE(E93-D), No. 3, March 2010, pp. 658-661.
WWW Link.
1003
BibRef
Cao, H.[Hui],
Yamaguchi, K.[Koichiro],
Ohta, M.[Mitsuhiko],
Naito, T.[Takashi],
Ninomiya, Y.[Yoshiki],
Feature Interaction Descriptor for Pedestrian Detection,
IEICE(E93-D), No. 9, September 2010, pp. 2656-2659.
WWW Link.
1003
BibRef
Earlier: A1, A2, A4, A5, Only:
Pedestrian Recognition Using Second-Order HOG Feature,
ACCV09(II: 628-634).
Springer DOI
0909
See also Road Image Segmentation and Recognition Using Hierarchical Bag-of-Textons Method.
BibRef
Cao, H.[Hui],
Naito, T.[Takashi],
Ninomiya, Y.[Yoshiki],
Approximate RBF kernel SVM and its applications in pedestrian
classification,
MLMotion08(xx-yy).
0810
BibRef
Hua, C.S.[Chun-Sheng],
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Pedestrian Detection by Using a Spatio-Temporal Histogram of Oriented
Gradients,
IEICE(E96-D), No. 6, June 2013, pp. 1376-1386.
WWW Link.
1306
BibRef
Satpathy, A.[Amit],
Jiang, X.D.[Xu-Dong],
Eng, H.L.[How-Lung],
Human Detection by Quadratic Classification on Subspace of Extended
Histogram of Gradients,
IP(23), No. 1, January 2014, pp. 287-297.
IEEE DOI
1402
BibRef
Earlier:
Extended Histogram of Gradients with Asymmetric Principal Component and
Discriminant Analyses for Human Detection,
CRV11(64-71).
IEEE DOI
1105
BibRef
Earlier:
Extended Histogram of Gradients feature for human detection,
ICIP10(3473-3476).
IEEE DOI
1009
gradient methods
BibRef
Kim, S.[Soojin],
Cho, K.[Kyeongsoon],
Efficient Pedestrian Detection Using Multi-Scale HOG Features with Low
Computational Complexity,
IEICE(E97-D), No. 2, February 2013, pp. 366-369.
WWW Link.
1402
BibRef
Marin, J.,
Vázquez, D.[David],
López, A.M.[Antonio M.],
Amores, J.[Jaume],
Kuncheva, L.I.,
Occlusion Handling via Random Subspace Classifiers for Human
Detection,
Cyber(44), No. 3, March 2014, pp. 342-354.
IEEE DOI
1404
image classification
BibRef
González, A.,
Vázquez, D.[David],
López, A.M.[Antonio M.],
Amores, J.[Jaume],
On-Board Object Detection: Multicue, Multimodal, and Multiview Random
Forest of Local Experts,
Cyber(47), No. 11, November 2017, pp. 3980-3990.
IEEE DOI
1710
Cameras, Detectors, Feature extraction, Laser radar,
Object detection, Radio frequency, Multicue, multimodal,
multiview (MV), object, detection
BibRef
Marin, J.[Javier],
Vazquez, D.[David],
Lopez, A.M.[Antonio M.],
Amores, J.[Jaume],
Leibe, B.[Bastian],
Random Forests of Local Experts for Pedestrian Detection,
ICCV13(2592-2599)
IEEE DOI
1403
HOG; LBP; Local Experts; Pedestrian detection; Random Forest
BibRef
Chen, P.,
Huang, C.,
Lien, C.,
Tsai, Y.,
An Efficient Hardware Implementation of HOG Feature Extraction for
Human Detection,
ITS(15), No. 2, April 2014, pp. 656-662.
IEEE DOI
1404
Approximation methods
BibRef
Whytock, T.P.[Tenika P.],
Belyaev, A.[Alexander],
Robertson, N.M.[Neil M.],
Dynamic Distance-Based Shape Features for Gait Recognition,
JMIV(50), No. 3, November 2014, pp. 314-326.
Springer DOI
1410
BibRef
Earlier:
Towards Robust Gait Recognition,
ISVC13(II:523-531).
Springer DOI
1311
BibRef
And:
Improving Robustness and Precision in GEI + HOG Action Recognition,
ISVC13(I:119-128).
Springer DOI
1310
BibRef
Li, N.[Nijun],
Cheng, X.[Xu],
Zhang, S.F.[Suo-Fei],
Wu, Z.Y.[Zhen-Yang],
Realistic human action recognition by Fast HOG3D and self-organization
feature map,
MVA(25), No. 7, October 2014, pp. 1793-1812.
WWW Link.
1410
BibRef
Cheng, X.[Xu],
Li, N.[Nijun],
Zhou, T.[Tongchi],
Zhou, L.[Lin],
Wu, Z.Y.[Zhen-Yang],
Robust Superpixel Tracking with Weighted Multiple-Instance Learning,
IEICE(E98-D), No. 4, April 2015, pp. 980-984.
WWW Link.
1505
BibRef
Liu, Y.F.[Yi-Feng],
Zeng, L.[Lin],
Huang, Y.[Yan],
An efficient HOG-ALBP feature for pedestrian detection,
SIViP(8), No. S1, December 2014, pp. 125-134.
WWW Link.
1411
BibRef
Hua, C.S.[Chun-Sheng],
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Iwasaki, S.[Shun],
Miyagawa, K.[Keisuke],
Li, B.[Bo],
Onboard monocular pedestrian detection by combining spatio-temporal hog
with structure from motion algorithm,
MVA(26), No. 2-3, April 2015, pp. 161-183.
Springer DOI
1504
BibRef
Wu, S.[Si],
Laganière, R.[Robert],
Payeur, P.[Pierre],
Improving pedestrian detection with selective gradient
self-similarity feature,
PR(48), No. 8, 2015, pp. 2364-2376.
Elsevier DOI
1505
Pedestrian detection
BibRef
Wu, S.[Si],
Wang, S.,
Laganière, R.[Robert],
Liu, C.,
Wong, H.S.,
Xu, Y.,
Exploiting Target Data to Learn Deep Convolutional Networks for
Scene-Adapted Human Detection,
IP(27), No. 3, March 2018, pp. 1418-1432.
IEEE DOI
1801
Adaptation models, Data models, Detectors, Feature extraction,
Labeling, Training, Human detection, convolutional network,
self-paced learning
BibRef
Kim, W.J.[Won-Jun],
Han, J.J.[Jae-Joon],
Directional coherence-based spatiotemporal descriptor for object
detection in static and dynamic scenes,
MVA(28), No. 1-2, February 2017, pp. 49-59.
Springer DOI
1702
Histogram of orientations
BibRef
Liu, B.Z.[Bao-Zhen],
Wu, H.[Hang],
Su, W.H.[Wei-Hua],
Sun, J.G.[Jing-Gong],
Sector-ring HOG for rotation-invariant human detection,
SP:IC(54), No. 1, 2017, pp. 1-10.
Elsevier DOI
1704
Rotation-invariant detection
BibRef
Liu, B.Z.[Bao-Zhen],
Wu, H.[Hang],
Su, W.H.[Wei-Hua],
Zhang, W.C.[Wen-Chang],
Sun, J.G.[Jing-Gong],
Rotation-invariant object detection using Sector-ring HOG and boosted
random ferns,
VC(34), No. 5, May 2018, pp. 707-719.
WWW Link.
1804
BibRef
Errami, M.[Mounir],
Rziza, M.[Mohammed],
An Efficient Pedestrian Detector Based on Saliency and HOG Features
Modeling,
ISVC16(II: 101-107).
Springer DOI
1701
BibRef
Balasubramanian, P.,
Pathak, S.,
Mittal, A.,
Improving Gradient Histogram Based Descriptors for Pedestrian
Detection in Datasets with Large Variations,
Robust16(1177-1186)
IEEE DOI
1612
BibRef
Yuan, X.[Xu],
Cai-nian, L.[Li],
Xiao-liang, X.[Xu],
Mei, J.[Jiang],
Jian-guo, Z.[Zhang],
A two-stage hog feature extraction processor embedded with SVM for
pedestrian detection,
ICIP15(3452-3455)
IEEE DOI
1512
FPGA
BibRef
Mahmoud, A.[Ali],
El-Barkouky, A.[Ahmed],
Graham, J.[James],
Farag, A.[Aly],
Pedestrian detection using mixed partial derivative based histogram
of oriented gradients,
ICIP14(2334-2337)
IEEE DOI
1502
Histogram of Oriented Gradients
BibRef
Miramontes-Jaramillo, D.[Daniel],
Kober, V.[Vitaly],
Díaz-Ramírez, V.H.[Víctor Hugo],
Rotation Invariant Tracking Algorithm Based on Circular HOGs,
MCPR15(115-124).
Springer DOI
1506
BibRef
Earlier:
A Robust Tracking Algorithm Based on HOGs Descriptor,
CIARP14(54-61).
Springer DOI
1411
BibRef
Earlier:
CWMA: Circular Window Matching Algorithm,
CIARP13(I:439-446).
Springer DOI
1311
BibRef
Beltrán-Herrera, A.,
Vázquez-Santacruz, E.,
Gamboa-Zuñiga, M.,
Real-Time Classification of Lying Bodies by HOG Descriptors,
MCPR14(211-220).
Springer DOI
1407
BibRef
Arie, M.[Makoto],
Shibata, M.[Masatoshi],
Terabayashi, K.[Kenji],
Moro, A.[Alessandro],
Umeda, K.[Kazunori],
Fast human detection using template matching for gradient images and
aSC descriptors based on subtraction stereo,
ICIP13(3118-3122)
IEEE DOI
1402
Human detection
BibRef
Takahisa, K.[Kishino],
Sun, Z.[Zhe],
Micheletto, R.[Ruggero],
A Fast and Precise HOG-Adaboost Based Visual Support System Capable to
Recognize Pedestrian and Estimate Their Distance,
ACVR13(20-29).
Springer DOI
1309
BibRef
Salas, Y.S.[Yainuvis Socarrás],
Bermudez, D.V.[David Vázquez],
López Peña, A.M.[Antonio M.],
Gomez, D.G.[David Gerónimo],
Gevers, T.[Theo],
Improving HOG with Image Segmentation: Application to Human Detection,
ACIVS12(178-189).
Springer DOI
1209
BibRef
Kittipanya-Ngam, P.[Panachit],
Lung, E.H.[Eng How],
HOG-Based Descriptors on Rotation Invariant Human Detection,
VS10(143-152).
Springer DOI
1109
BibRef
Geismann, P.[Philip],
Knoll, A.[Alois],
Speeding Up HOG and LBP Features for Pedestrian Detection by
Multiresolution Techniques,
ISVC10(I: 243-252).
Springer DOI
1011
BibRef
Zeng, C.B.[Cheng-Bin],
Ma, H.D.[Hua-Dong],
Ming, A.[Anlong],
Fast human detection using mi-sVM and a cascade of HOG-LBP features,
ICIP10(3845-3848).
IEEE DOI
1009
BibRef
Dong, L.[Li],
Yu, X.G.[Xin-Guo],
Li, L.Y.[Li-Yuan],
Hoe, J.K.E.[Jerry Kah Eng],
HOG based multi-stage object detection and pose recognition for service
robot,
ICARCV10(2495-2500).
IEEE DOI
1109
BibRef
Wang, X.Y.[Xioa-Yu],
Han, T.X.[Tony X.],
Yan, S.C.[Shui-Cheng],
An HOG-LBP Human Detector with Partial Occlusion Handling,
ICCV09(32-39).
IEEE DOI
0909
BibRef
Lillywhite, K.[Kirt],
Lee, D.J.[Dah-Jye],
Zhang, D.[Dong],
Real-time human detection using histograms of oriented gradients on a
GPU,
WACV09(1-6).
IEEE DOI
0912
See also feature construction method for general object recognition, A.
BibRef
Chuang, C.H.[Cheng-Hsiung],
Huang, S.S.[Shih-Shinh],
Fu, L.C.[Li-Chen],
Hsiao, P.Y.[Pei-Yung],
Monocular multi-human detection using Augmented Histograms of Oriented
Gradients,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Watanabe, T.[Tomoki],
Ito, S.[Satoshi],
Two Co-occurrence Histogram Features Using Gradient Orientations and
Local Binary Patterns for Pedestrian Detection,
ACPR13(415-419)
IEEE DOI
1408
application specific integrated circuits
BibRef
Watanabe, T.[Tomoki],
Ito, S.[Satoshi],
Yokoi, K.[Kentaro],
Co-occurrence Histograms of Oriented Gradients for Pedestrian Detection,
PSIVT09(37-47).
Springer DOI
0901
BibRef
Mu, Y.D.[Ya-Dong],
Yan, S.C.[Shui-Cheng],
Liu, Y.[Yi],
Huang, T.[Thomas],
Zhou, B.F.[Bing-Feng],
Discriminative local binary patterns for human detection in personal
album,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Wang, C.C.R.[Chi-Chen Raxle],
Lien, J.J.J.[Jenn-Jier James],
AdaBoost Learning for Human Detection Based on Histograms of Oriented
Gradients,
ACCV07(I: 885-895).
Springer DOI
0711
BibRef
Zhu, Q.A.[Qi-Ang],
Yeh, M.C.[Mei-Chen],
Cheng, K.T.[Kwang-Ting],
Avidan, S.[Shai],
Fast Human Detection Using a Cascade of Histograms of Oriented
Gradients,
CVPR06(II: 1491-1498).
IEEE DOI
0606
BibRef
Dalal, N.[Navneet],
Triggs, B.[Bill],
Histograms of Oriented Gradients for Human Detection,
CVPR05(I: 886-893).
IEEE DOI
0507
Award, Longuet-Higgins.
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Motion Based Human Detection, Spatio-Temporal Analysis, Pedestrians .