16.7.4.6.2 Action Segmentation

Chapter Contents (Back)
Action Recognition. Human Actions. Human Motion.

Shi, Q.F.[Qin-Feng], Cheng, L.[Li], Wang, L.[Li], Smola, A.J.[Alex J.],
Human Action Segmentation and Recognition Using Discriminative Semi-Markov Models,
IJCV(93), No. 1, May 2011, pp. 22-32.
WWW Link. 1104
BibRef
Earlier: A1, A3, A2, A4:
Discriminative human action segmentation and recognition using semi-Markov model,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Wu, C., Zaheer, M., Hu, H., Manmatha, R., Smola, A.J., Krähenbühl, P.,
Compressed Video Action Recognition,
CVPR18(6026-6035)
IEEE DOI 1812
Image coding, Video compression, Training, Optical imaging, Computer vision, Streaming media BibRef

Samadani, A.A.[Ali-Akbar], Ghodsi, A.[Ali], Kulic, D.[Dana],
Discriminative functional analysis of human movements,
PRL(34), No. 15, 2013, pp. 1829-1839.
Elsevier DOI 1309
Human movement time-series analysis BibRef

Lin, J.F.S., Karg, M., Kulic, D.,
Movement Primitive Segmentation for Human Motion Modeling: A Framework for Analysis,
HMS(46), No. 3, June 2016, pp. 325-339.
IEEE DOI 1605
Algorithm design and analysis BibRef

Hoai, M.[Minh], de la Torre, F.[Fernando],
Max-Margin Early Event Detectors,
IJCV(107), No. 2, April 2014, pp. 191-202.
WWW Link. 1404
BibRef
Earlier: CVPR12(2863-2870).
IEEE DOI 1208
BibRef

Wang, Y., Hoai, M.,
Pulling Actions out of Context: Explicit Separation for Effective Combination,
CVPR18(7044-7053)
IEEE DOI 1812
Training, Feature extraction, Context modeling, Cameras, Lighting, Loss measurement, Video sequences BibRef

Hoai, M.[Minh], Lan, Z.Z.[Zhen-Zhong], de la Torre, F.[Fernando],
Joint segmentation and classification of human actions in video,
CVPR11(3265-3272).
IEEE DOI 1106
BibRef

Wang, B.[Boyu], Hoai, M.[Minh],
Back to the beginning: Starting point detection for early recognition of ongoing human actions,
CVIU(175), 2018, pp. 24-31.
Elsevier DOI 1812
Action early recognition, Online action detection, Event detection BibRef

Taralova, E.[Ekaterina], de la Torre, F.[Fernando], Hebert, M.[Martial],
Source constrained clustering,
ICCV11(1927-1934).
IEEE DOI 1201
Quantizing data from different sources. Cluster actions, not cluster subjects. BibRef

Panagiotakis, C.[Costas], Papoutsakis, K.E.[Konstantinos E.], Argyros, A.A.[Antonis A.],
A graph-based approach for detecting common actions in motion capture data and videos,
PR(79), 2018, pp. 1-11.
Elsevier DOI 1804
Common action detection, Video co-segmentation, Temporal action co-segmentation, Dynamic Time Warping BibRef

Zeng, X.X.[Xun-Xun], Chen, F.[Fei], Wang, M.Q.[Mei-Qing],
Shape group Boltzmann machine for simultaneous object segmentation and action classification,
PRL(111), 2018, pp. 43-50.
Elsevier DOI 1808
Deep Boltzmann machine, Shape prior, Object segmentation, Classification, Transformation invariance BibRef

Yan, Y.[Yan], Xu, C.L.[Chen-Liang], Cai, D.[Dawen], Corso, J.J.[Jason J.],
A Weakly Supervised Multi-task Ranking Framework for Actor-Action Semantic Segmentation,
IJCV(128), No. 5, May 2020, pp. 1414-1432.
Springer DOI 2005
BibRef
Earlier:
Weakly Supervised Actor-Action Segmentation via Robust Multi-task Ranking,
CVPR17(1022-1031)
IEEE DOI 1711
Optimization, Robustness, Semantics, Support vector machines, Training, Videos BibRef

Xu, C.L.[Chen-Liang], Hsieh, S.H.[Shao-Hang], Xiong, C.M.[Cai-Ming], Corso, J.J.[Jason J.],
Can humans fly? Action understanding with multiple classes of actors,
CVPR15(2264-2273)
IEEE DOI 1510
BibRef

Chen, J.[Jie], Li, Z.H.[Zhi-Heng], Luo, J.B.[Jie-Bo], Xu, C.L.[Chen-Liang],
Learning a Weakly-Supervised Video Actor-Action Segmentation Model With a Wise Selection,
CVPR20(9898-9908)
IEEE DOI 2008
Training, Motion segmentation, Legged locomotion, Task analysis, Computational modeling, Proposals BibRef

Xu, C.L.[Chen-Liang], Ding, L.[Li],
Weakly-Supervised Action Segmentation with Iterative Soft Boundary Assignment,
CVPR18(6508-6516)
IEEE DOI 1812
Videos, Hidden Markov models, Training, Task analysis, Decoding, Computational modeling, Recurrent neural networks BibRef

Qian, H.[Hangwei], Pan, S.J.[Sinno Jialin], Miao, C.Y.[Chun-Yan],
Weakly-supervised sensor-based activity segmentation and recognition via learning from distributions,
AI(292), 2021, pp. 103429.
Elsevier DOI 2102
Human activity recognition, Sensor readings segmentation, Kernel mean embedding BibRef

Sun, X.[Xiao], Long, X.[Xiang], He, D.L.[Dong-Liang], Wen, S.L.[Shi-Lei], Lian, Z.H.[Zhou-Hui],
VSRNet: End-to-end video segment retrieval with text query,
PR(119), 2021, pp. 108027.
Elsevier DOI 2106
Video segment retrieval, Video retrieval, Description localization BibRef


Ishikawa, Y.[Yuchi], Kasai, S.[Seito], Aoki, Y.[Yoshimitsu], Kataoka, H.[Hirokatsu],
Alleviating Over-segmentation Errors by Detecting Action Boundaries,
WACV21(2321-2330)
IEEE DOI 2106
Segmenting actions. Smoothing methods, Refining, Feature extraction, Task analysis BibRef

Vignolo, A.[Alessia], Noceti, N.[Nicoletta], Sciutti, A.[Alessandra], Odone, F.[Francesca], Sandini, G.[Giulio],
Learning dictionaries of kinematic primitives for action classification,
ICPR21(5965-5972)
IEEE DOI 2105
Visualization, Dictionaries, Motion segmentation, Kinematics, Encoding, Synchronization BibRef

Li, J., Todorovic, S.,
Set-Constrained Viterbi for Set-Supervised Action Segmentation,
CVPR20(10817-10826)
IEEE DOI 2008
Training, Hidden Markov models, Viterbi algorithm, Neural networks, Feature extraction, TV, Task analysis BibRef

Huang, Y., Sugano, Y., Sato, Y.,
Improving Action Segmentation via Graph-Based Temporal Reasoning,
CVPR20(14021-14031)
IEEE DOI 2008
Task analysis, Convolution, Cognition, Predictive models, Computer vision, Cameras, Glass BibRef

Bai, R., Zhao, Q., Zhou, S., Li, Y., Zhao, X., Wang, J.,
Continuous Action Recognition and Segmentation in Untrimmed Videos,
ICPR18(2534-2539)
IEEE DOI 1812
Videos, Feature extraction, Motion segmentation, Hidden Markov models, Pattern recognition, Task analysis, Computer vision BibRef

Jain, H., Harit, G.,
Unsupervised Temporal Segmentation of Human Action Using Community Detection,
ICIP18(1892-1896)
IEEE DOI 1809
Videos, Motion segmentation, Training, Indexes, Hidden Markov models, Clustering algorithms, Shape, community detection, unsupervised action segmentation BibRef

Kuehne, H.[Hilde], Gall, J.[Juergen], Serre, T.[Thomas],
An end-to-end generative framework for video segmentation and recognition,
WACV16(1-8)
IEEE DOI 1606
Data models BibRef

Li, S., Li, K., Fu, Y.,
Temporal Subspace Clustering for Human Motion Segmentation,
ICCV15(4453-4461)
IEEE DOI 1602
Clustering methods BibRef

Lu, J.[Jiasen], Xu, R.[Ran], Corso, J.J.[Jason J.],
Human action segmentation with hierarchical supervoxel consistency,
CVPR15(3762-3771)
IEEE DOI 1510
BibRef

Kim, Y.[Yelin], Chen, J.X.[Ji-Xu], Chang, M.C.[Ming-Ching], Wang, X.[Xin], Provost, E.M., Lyu, S.W.[Si-Wei],
Modeling transition patterns between events for temporal human action segmentation and classification,
FG15(1-8)
IEEE DOI 1508
dynamic programming BibRef

Ghodrati, A.[Amir], Pedersoli, M.[Marco], Tuytelaars, T.[Tinne],
Coupling video segmentation and action recognition,
WACV14(618-625)
IEEE DOI 1406
BibRef

Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Accumulation Methods, Motion Histograms for Human Action Recognition .


Last update:Oct 24, 2021 at 16:35:58