Dumitras, A.,
Haskell, B.G.,
An Encoder-Decoder Texture Replacement Method With Application to
Content-Based Movie Coding,
CirSysVideo(14), No. 6, June 2004, pp. 825-840.
IEEE Abstract.
0407
BibRef
Earlier:
A background modeling method by texture replacement and mapping with
application to content-based movie coding,
ICIP02(I: 65-68).
IEEE DOI
0210
BibRef
Heikkilä, M.[Marko],
Pietikäinen, M.[Matti],
A Texture-Based Method for Modeling the Background and Detecting Moving
Objects,
PAMI(28), No. 4, April 2006, pp. 657-662.
IEEE DOI
0604
BibRef
Heikkila, M.,
Pietikainen, M.,
Heikkila, J.,
A Texture-based Method for Detecting Moving Objects,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
Allili, M.S.[Mohand Said],
Bouguila, N.[Nizar],
Ziou, D.[Djemel],
Finite Generalized Gaussian Mixture Modeling and Applications to Image
and Video Foreground Segmentation,
JEI(17), 2008, pp. 013005.
BibRef
0800
Earlier:
CRV07(183-190).
IEEE DOI
0705
BibRef
And:
A Robust Video Foreground Segmentation by Using Generalized Gaussian
Mixture Modeling,
CRV07(503-509).
IEEE DOI
0705
See also Hybrid SEM Algorithm for High-Dimensional Unsupervised Learning Using a Finite Generalized Dirichlet Mixture, A.
See also Thresholding-Based Segmentation Revisited Using Mixtures of Generalized Gaussian Distributions.
BibRef
Boulmerka, A.[Aissa],
Allili, M.S.[Mohand Sald],
Foreground Segmentation in Videos Combining General Gaussian Mixture
Modeling and Spatial Information,
CirSysVideo(28), No. 6, June 2018, pp. 1330-1345.
IEEE DOI
1806
BibRef
Earlier:
Background Modeling in Videos Revisited Using Finite Mixtures of
Generalized Gaussians and Spatial Information,
ICIP15(3660-3664)
IEEE DOI
1512
Cameras, Computational modeling, Heuristic algorithms,
Hidden Markov models, Jitter, Lighting, Videos,
temporal/spatial information.
Background subtraction
BibRef
El Guebaly, T.[Tarek],
Bouguila, N.[Nizar],
Background subtraction using finite mixtures of asymmetric Gaussian
distributions and shadow detection,
MVA(25), No. 5, July 2014, pp. 1145-1162.
WWW Link.
1407
BibRef
Earlier:
Infinite Generalized Gaussian Mixture Modeling and Applications,
ICIAR11(I: 201-210).
Springer DOI
1106
See also Finite asymmetric generalized Gaussian mixture models learning for infrared object detection.
See also Semantic Scene Classification with Generalized Gaussian Mixture Models.
BibRef
Zhang, B.C.[Bao-Chang],
Gao, Y.S.[Yong-Sheng],
Zhao, S.,
Zhong, B.N.[Bi-Neng],
Kernel Similarity Modeling of Texture Pattern Flow for Motion Detection
in Complex Background,
CirSysVideo(21), No. 1, January 2011, pp. 29-38.
IEEE DOI
1103
BibRef
Earlier: A1, A2, A4, Only:
Complex background modeling and motion detection based on Texture
Pattern Flow,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Zhang, B.C.[Bao-Chang],
Zhong, B.N.[Bi-Neng],
Cao, Y.[Yao],
Complex background modeling based on Texture Pattern Flow with adaptive
threshold propagation,
JVCIR(22), No. 6, August 2011, pp. 516-521.
Elsevier DOI
1108
Motion detection, Adaptive threshold propagation, GMM, Background
modeling, Background subtraction, Texture Pattern Flow, Binary
pattern, Integral histogram
BibRef
Ali, I.[Imtiaz],
Mille, J.[Julien],
Tougne, L.[Laure],
Space-time spectral model for object detection in dynamic textured
background,
PRL(33), No. 13, 1 October 2012, pp. 1710-1716.
Elsevier DOI
1208
Background model, Local Fourier transform, Dynamic texture, Object
detection
BibRef
Rivera, A.R.,
Murshed, M.,
Kim, J.,
Chae, O.,
Background Modeling Through Statistical Edge-Segment Distributions,
CirSysVideo(23), No. 8, 2013, pp. 1375-1387.
IEEE DOI
1308
Adaptation models
BibRef
Hong, S.[Seokjin],
Kim, J.,
Rivera, A.R.,
Song, G.,
Chae, O.,
Edge shape pattern for background modeling based on hybrid local
codes,
AVSS16(1-7)
IEEE DOI
1611
Adaptation models
BibRef
Kim, J.,
Rivera, A.R.,
Ryu, B.,
Chae, O.,
Simultaneous Foreground Detection and Classification with Hybrid
Features,
ICCV15(3307-3315)
IEEE DOI
1602
Adaptation models
BibRef
Zhang, R.,
Gong, W.,
Grzeda, V.,
Yaworski, A.,
Greenspan, M.,
An Adaptive Learning Rate Method for Improving Adaptability of
Background Models,
SPLetters(20), No. 12, 2013, pp. 1266-1269.
IEEE DOI
1311
Adaptation models
BibRef
Satpathy, A.[Amit],
Jiang, X.D.[Xu-Dong],
Eng, H.L.[How-Lung],
LBP-Based Edge-Texture Features for Object Recognition,
IP(23), No. 5, May 2014, pp. 1953-1964.
IEEE DOI
1405
BibRef
Earlier: A1, A3, A2:
Difference of Gaussian Edge-Texture Based Background Modeling for
Dynamic Traffic Conditions,
ISVC08(I: 406-417).
Springer DOI
0812
edge detection
BibRef
Shah, M.[Munir],
Deng, J.D.[Jeremiah D.],
Woodford, B.J.[Brendon J.],
Video background modeling:
Recent Approaches, Issues and Our Proposed Techniques,
MVA(25), No. 5, July 2014, pp. 1105-1119.
WWW Link.
1407
See also Self-adaptive CodeBook (SACB) model for real-time background subtraction, A.
BibRef
Basah, S.N.[Shafriza Nisha],
Bab-Hadiashar, A.[Alireza],
Hoseinnezhad, R.[Reza],
Analysis of planar-motion segmentation using affine fundamental
matrix,
IET-CV(8), No. 6, 2014, pp. 658-669.
DOI Link
1502
BibRef
Earlier: A1, A3, A2:
Conditions for Segmentation of Motion with Affine Fundamental Matrix,
ISVC09(I: 415-424).
Springer DOI
0911
BibRef
Earlier: A1, A2, A3:
Conditions for Segmentation of 2D Translations of 3D Objects,
CIAP09(82-91).
Springer DOI
0909
BibRef
Earlier: A1, A3, A2:
Limits of Motion-Background Segmentation Using Fundamental Matrix
Estimation,
DICTA08(250-256).
IEEE DOI
0812
Monte Carlo methods.
Segment 3D objects with motion information.
BibRef
Varadarajan, S.[Sriram],
Wang, H.B.[Hong-Bin],
Miller, P.[Paul],
Zhou, H.Y.[Hui-Yu],
Fast convergence of regularised Region-based Mixture of Gaussians for
dynamic background modelling,
CVIU(136), No. 1, 2015, pp. 45-58.
Elsevier DOI
1506
BibRef
Earlier:
Regularised region-based Mixture of Gaussians for dynamic background
modelling,
AVSS14(19-24)
IEEE DOI
1411
Momentum.
Convergence.
Gaussian processes
BibRef
Varadarajan, S.[Sriram],
Miller, P.[Paul],
Zhou, H.Y.[Hui-Yu],
Region-based Mixture of Gaussians modelling for foreground detection
in dynamic scenes,
PR(48), No. 11, 2015, pp. 3488-3503.
Elsevier DOI
1506
BibRef
Earlier:
Spatial mixture of Gaussians for dynamic background modelling,
AVSS13(63-68)
IEEE DOI
1311
Region based modelling
BibRef
Zhong, Z.,
Zhang, B.,
Lu, G.,
Zhao, Y.,
Xu, Y.,
An Adaptive Background Modeling Method for Foreground Segmentation,
ITS(18), No. 5, May 2017, pp. 1109-1121.
IEEE DOI
1705
Adaptation models, Intelligent transportation systems, Lighting,
Motion segmentation, Object detection, Shape, Surveillance,
Foreground segmentation, adaptive background updating,
background, modeling
BibRef
Yang, L.,
Li, J.,
Luo, Y.,
Zhao, Y.,
Cheng, H.,
Li, J.,
Deep Background Modeling Using Fully Convolutional Network,
ITS(19), No. 1, January 2018, pp. 254-262.
IEEE DOI
1801
Adaptation models, Biological neural networks,
Computational modeling, Convolution, Feature extraction,
temporal and spatial information
BibRef
Yang, D.,
Zhao, C.,
Zhang, X.,
Huang, S.,
Background Modeling by Stability of Adaptive Features in Complex
Scenes,
IP(27), No. 3, March 2018, pp. 1112-1125.
IEEE DOI
1801
feature extraction, image motion analysis, object detection,
aforementioned unimodal models, background modeling,
self-adaptive
BibRef
Javed, S.,
Mahmood, A.,
Bouwmans, T.,
Jung, S.K.,
Spatiotemporal Low-Rank Modeling for Complex Scene Background
Initialization,
CirSysVideo(28), No. 6, June 2018, pp. 1315-1329.
IEEE DOI
1806
Computational modeling, Dynamics, Heuristic algorithms,
Principal component analysis, Robustness, Solid modeling,
spatiotemporal graph regularizations
BibRef
Jeyabharathi, D.,
Dejey,
Cut set-based Dynamic Key frame selection and Adaptive Layer-based
Background Modeling for background subtraction,
JVCIR(55), 2018, pp. 434-446.
Elsevier DOI
1809
Cut set-based Dynamic Key frame selection,
Adaptive Layer-based Background Modeling,
Object tracking
BibRef
Yoshinaga, S.,
Shimada, A.,
Nagahara, H.,
Taniguchi, R.I.,
Kajitani, K.,
Naito, T.,
Multi-layered Background Modeling for Complex Environment
Surveillance,
ACPR13(278-283)
IEEE DOI
1408
image motion analysis
BibRef
Hall, E.C.[Eric C.],
Willett, R.M.[Rebecca M.],
Foreground and background reconstruction in poisson video,
ICIP13(2484-2488)
IEEE DOI
1402
Background estimation
BibRef
Stagliano, A.[Alessandra],
Noceti, N.[Nicoletta],
Verri, A.[Alessandro],
Odone, F.[Francesca],
Background modeling through dictionary learning,
ICIP13(2524-2528)
IEEE DOI
1402
background modeling;dictionary learning;sparse coding
BibRef
Kim, J.[Jaemyun],
Rivera, A.R.[Adin Ramirez],
Song, G.[Gihun],
Ryu, B.Y.[Byung-Yong],
Chae, O.[Oksam],
Edge-segment-based Background Modeling:
Non-parametric online background update,
AVSS13(214-219)
IEEE DOI
1311
Adaptation models
BibRef
Liang, D.[Dong],
Kaneko, S.[Shun'ichi],
Hashimoto, M.[Manabu],
Iwata, K.[Kenji],
Zhao, X.Y.[Xin-Yue],
Co-occurrence probability-based pixel pairs background model for
robust object detection in dynamic scenes,
PR(48), No. 4, 2015, pp. 1374-1390.
Elsevier DOI
1502
Object detection
BibRef
Liang, D.[Dong],
Kang, B.[Bin],
Liu, X.Y.[Xin-Yu],
Gao, P.[Pan],
Tan, X.Y.[Xiao-Yang],
Kaneko, S.[Shun'ichi],
Cross-scene foreground segmentation with supervised and unsupervised
model communication,
PR(117), 2021, pp. 107995.
Elsevier DOI
2106
Foreground segmentation, Model communication, Cross-scene, Online updates
BibRef
Zhou, W.,
Kaneko, S.[Shun'ichi],
Hashimoto, M.[Manabu],
Satoh, Y.[Yutaka],
Liang, D.,
A Co-occurrence Background Model with Hypothesis on Degradation
Modification for Object Detection in Strong Background Changes,
ICPR18(1743-1748)
IEEE DOI
1812
Degradation, Lighting, Correlation, Training, Object detection,
Heuristic algorithms, Robustness
BibRef
Liang, D.[Dong],
Kaneko, S.[Shun'ichi],
Hashimoto, M.[Manabu],
Iwatao, K.[Kenji],
Zhao, X.Y.[Xin-Yue],
Satoh, Y.[Yutaka],
Co-occurrence-based adaptive background model for robust object
detection,
AVSS13(401-406)
IEEE DOI
1311
Adaptation models
BibRef
Wang, T.T.[Ting-Ting],
Liang, J.Z.[Jiu-Zhen],
Wang, X.L.[Xiao-Long],
Wang, S.Z.[Shi-Zheng],
Background modeling using Local Binary Patterns Of Motion Vector,
VCIP12(1-5).
IEEE DOI
1302
BibRef
Zhang, X.G.[Xian-Guo],
Tian, Y.H.[Yong-Hong],
Huang, T.J.[Tie-Jun],
Gao, W.[Wen],
Low-complexity and high-efficiency background modeling for surveillance
video coding,
VCIP12(1-6).
IEEE DOI
1302
BibRef
Yumiba, R.[Ryo],
Miyoshi, M.[Masanori],
Fujiyoshi, H.[Hironobu],
Moving object detection with background model based on spatio-temporal
texture,
WACV11(352-359).
IEEE DOI
1101
BibRef
Zhong, F.[Fan],
Jiang, X.B.[Xin-Bo],
Qin, X.Y.[Xue-Ying],
Peng, Q.S.[Qun-Sheng],
Motion-based easy initialization of online foreground segmentation,
CVRS12(52-57).
IEEE DOI
1302
BibRef
Zhong, F.[Fan],
Qin, X.Y.[Xue-Ying],
Peng, Q.S.[Qun-Sheng],
Transductive segmentation of live video with non-stationary background,
CVPR10(2189-2196).
IEEE DOI
1006
BibRef
Murai, Y.[Yasuhiro],
Fujiyoshi, H.[Hironobu],
Kazui, M.[Masato],
Incident Detection Based on Dynamic Background Modeling and Statistical
Learning Using Spatio-Temporal Features,
MVA09(156-).
PDF File.
0905
BibRef
Wu, X.Y.[Xiao-Yu],
Wang, Y.S.[Yang-Sheng],
Li, J.T.[Ji-Tuo],
Video Background Segmentation Using Adaptive Background Models,
CIAP09(623-632).
Springer DOI
0909
BibRef
Su, S.T.[Shu-Te],
Chen, Y.Y.[Yung-Yaw],
Moving Object Segmentation Using Improved Running Gaussian Average
Background Model,
DICTA08(24-31).
IEEE DOI
0812
BibRef
Murai, Y.[Yasuhiro],
Fujiyoshi, H.[Hironobu],
Kanade, T.[Takeo],
Combined Object Detection and Segmentation by Using Space-Time Patches,
ACCV07(I: 915-924).
Springer DOI
0711
BibRef
Crnojevic, V.[Vladimir],
Antic, B.[Borislav],
Culibrk, D.[Dubravko],
Optimal wavelet differencing method for robust motion detection,
ICIP09(645-648).
IEEE DOI
0911
BibRef
Culibrk, D.[Dubravko],
Antic, B.[Borislav],
Crnojevic, V.[Vladimir],
Real-time Stable Texture Regions Extraction for Motion-based Object
Segmentation,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Ahn, J.K.[Jae-Kyun],
Kim, C.S.[Chang-Su],
Real-time segmentation of objects from video sequences with
non-stationary backgrounds using spatio-temporal coherence,
ICIP08(1544-1547).
IEEE DOI
0810
BibRef
Ramirez-Rivera, A.[Adin],
Murshed, M.[Mahbub],
Chae, O.[Oksam],
Object detection through edge behavior modeling,
AVSBS11(273-278).
IEEE DOI
1111
BibRef
And: A2, A1, A3:
Moving Edge Segment Matching for the Detection of Moving Object,
ICIAR11(I: 274-283).
Springer DOI
1106
BibRef
Dewan, M.A.A.[M. Ali Akber],
Hossain, M.J.[M. Julius],
Chae, O.[Oksam],
Background Independent Moving Object Segmentation Using Edge Similarity
Measure,
ICIAR07(318-329).
Springer DOI
0708
BibRef
Yu, H.C.[Hong-Chuan],
Bennamoun, M.,
A Phase Correlation Approach to Active Vision,
CAIP05(57).
Springer DOI
0509
Motion of object and background.
BibRef
Russell, D.M.,
Gong, S.G.[Shao-Gang],
Segmenting Highly Textured Nonstationary Background,
BMVC07(xx-yy).
PDF File.
0709
BibRef
Earlier:
Minimum Cuts of A Time-Varying Background,
BMVC06(II:809).
PDF File.
0609
BibRef
Earlier:
A highly efficient block-based dynamic background model,
AVSBS05(417-422).
IEEE DOI
0602
BibRef
Zhong, J.[Jing],
Sclaroff, S.,
Segmenting foreground objects from a dynamic textured background via a
robust Kalman filter,
ICCV03(44-50).
IEEE DOI
0311
BibRef
Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Motion Sequence, Background Subtraction .