24.4.14.1 Freeze-Thaw, Freeze/Thaw Analysis

Chapter Contents (Back)
Tundra. Freeze-Thaw.

Bateni, S.M., Huang, C., Margulis, S.A., Podest, E., McDonald, K.,
Feasibility of Characterizing Snowpack and the Freeze-Thaw State of Underlying Soil Using Multifrequency Active/Passive Microwave Data,
GeoRS(51), No. 7, 2013, pp. 4085-4102.
IEEE DOI Snow; Soil; Active microwave data 1307
BibRef

Podest, E., McDonald, K.C., Kimball, J.S.,
Multisensor Microwave Sensitivity to Freeze/Thaw Dynamics Across a Complex Boreal Landscape,
GeoRS(52), No. 11, November 2014, pp. 6818-6828.
IEEE DOI 1407
Backscatter BibRef

Park, S.E.[Sang-Eun],
Variations of Microwave Scattering Properties by Seasonal Freeze/Thaw Transition in the Permafrost Active Layer Observed by ALOS PALSAR Polarimetric Data,
RS(7), No. 12, 2015, pp. 15874.
DOI Link 1601
BibRef

Bateni, S.M., Margulis, S.A., Podest, E., McDonald, K.C.,
Characterizing Snowpack and the Freeze-Thaw State of Underlying Soil via Assimilation of Multifrequency Passive/Active Microwave Data: A Case Study (NASA CLPX 2003),
GeoRS(53), No. 1, January 2015, pp. 173-189.
IEEE DOI 1410
data assimilation BibRef

Jadoon, K.Z.[Khan Zaib], Weihermüller, L.[Lutz], McCabe, M.F.[Matthew F.], Moghadas, D.[Davood], Vereecken, H.[Harry], Lambot, S.[Sebastíen],
Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar,
RS(7), No. 9, 2015, pp. 12041.
DOI Link 1511
BibRef

Han, M.L.[Meng-Lei], Yang, K.[Kun], Qin, J.[Jun], Jin, R.[Rui], Ma, Y.M.[Yao-Ming], Wen, J.[Jun], Chen, Y.Y.[Ying-Ying], Zhao, L.[Long], Zhu, L.[La], Tang, W.J.[Wen-Jun],
An Algorithm Based on the Standard Deviation of Passive Microwave Brightness Temperatures for Monitoring Soil Surface Freeze/Thaw State on the Tibetan Plateau,
GeoRS(53), No. 5, May 2015, pp. 2775-2783.
IEEE DOI 1502
hydrological techniques BibRef

Hu, T.X.[Tong-Xi], Zhao, T.J.[Tian-Jie], Shi, J.C.[Jian-Cheng], Wu, S.L.[Sheng-Li], Liu, D.[Dan], Qin, H.M.[Hai-Ming], Zhao, K.[Kaiguang],
High-Resolution Mapping of Freeze/Thaw Status in China via Fusion of MODIS and AMSR2 Data,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link 1802
BibRef

Roy, A.[Alexandre], Toose, P.[Peter], Derksen, C.[Chris], Rowlandson, T.[Tracy], Berg, A.[Aaron], Lemmetyinen, J.[Juha], Royer, A.[Alain], Tetlock, E.[Erica], Helgason, W.[Warren], Sonnentag, O.[Oliver],
Spatial Variability of L-Band Brightness Temperature during Freeze/Thaw Events over a Prairie Environment,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Burgin, M.S., Colliander, A., Njoku, E.G., Chan, S.K., Cabot, F., Kerr, Y.H., Bindlish, R., Jackson, T.J., Entekhabi, D., Yueh, S.H.,
A Comparative Study of the SMAP Passive Soil Moisture Product With Existing Satellite-Based Soil Moisture Products,
GeoRS(55), No. 5, May 2017, pp. 2959-2971.
IEEE DOI 1705
calibration, moisture, remote sensing, soil, AD 2015 01 31, AMSR2 mission, ASCAT mission, Advanced Microwave Scanning Radiometer 2 mission, Aquarius Advanced Scatterometer mission, Earth fixed grid, Level 2 radiometer-only soil moisture product, NASA Soil Moisture Active Passive satellite mission, SMAP passive soil moisture product, SMOS mission, Soil Moisture and Ocean Salinity mission, brightness temperature observations, calibration, global mapping, satellite based soil moisture products, soil freeze-thaw state, BibRef

Wu, X.[Xuerui], Jin, S.G.[Shuang-Gen], Chang, L.[Liang],
Monitoring Bare Soil Freeze-Thaw Process Using GPS-Interferometric Reflectometry: Simulation and Validation,
RS(10), No. 1, 2017, pp. xx-yy.
DOI Link 1802
BibRef

Luo, L.H.[Li-Hui], Ma, W.[Wei], Zhang, Z.Q.[Zhong-Qiong], Zhuang, Y.L.[Yan-Li], Zhang, Y.[Yaonan], Yang, J.Q.[Jin-Qiang], Cao, X.C.[Xue-Cheng], Liang, S.T.[Song-Tao], Mu, Y.[Yanhu],
Freeze/Thaw-Induced Deformation Monitoring and Assessment of the Slope in Permafrost Based on Terrestrial Laser Scanner and GNSS,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Zheng, D., Wang, X., van der Velde, R., Zeng, Y., Wen, J., Wang, Z., Schwank, M., Ferrazzoli, P., Su, Z.,
L-Band Microwave Emission of Soil Freeze-Thaw Process in the Third Pole Environment,
GeoRS(55), No. 9, September 2017, pp. 5324-5338.
IEEE DOI 1709
geochemistry, soil, ELBARA-III radiometer, L-band microwave emission, Tor Vergata discrete emission model, climate change, diurnal cycle measure, seasonally frozen Tibetan grassland site, soil effective temperature, soil freeze-thaw process, Soil Moisture and Ocean Salinity (SMOS), Soil Moisture Active Passive (SMAP), Tibetan Plateau, Tor Vergata model, soil, freeze/thaw, (F/T) BibRef

Kraatz, S.[Simon], Jacobs, J.M.[Jennifer M.], Schröder, R.[Ronny], Cho, E.[Eunsang], Cosh, M.[Michael], Seyfried, M.[Mark], Prueger, J.[John], Livingston, S.[Stan],
Evaluation of SMAP Freeze/Thaw Retrieval Accuracy at Core Validation Sites in the Contiguous United States,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
BibRef

Kim, Y.[Youngwook], Kimball, J.S.[John S.], Xu, X.L.[Xiao-Lan], Dunbar, R.S.[R. Scott], Colliander, A.[Andreas], Derksen, C.[Chris],
Global Assessment of the SMAP Freeze/Thaw Data Record and Regional Applications for Detecting Spring Onset and Frost Events,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Zhang, X.F.[Xue-Fei], Zhang, H.[Hong], Wang, C.[Chao], Tang, Y.X.[Yi-Xian], Zhang, B.[Bo], Wu, F.[Fan], Wang, J.[Jing], Zhang, Z.J.[Zheng-Jia],
Time-Series InSAR Monitoring of Permafrost Freeze-Thaw Seasonal Displacement over Qinghai-Tibetan Plateau Using Sentinel-1 Data,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Yang, C.[Cheng], Wu, T.H.[Tong-Hua], Yao, J.[Jimin], Li, R.[Ren], Xie, C.W.[Chang-Wei], Hu, G.J.[Guo-Jie], Zhu, X.F.[Xiao-Fan], Zhang, Y.H.[Ying-Hui], Ni, J.[Jie], Hao, J.M.[Jun-Ming], Li, X.F.[Xiang-Fei], Ma, W.[Wensi], Wen, A.[Amin],
An Assessment of Using Remote Sensing-based Models to Estimate Ground Surface Soil Heat Flux on the Tibetan Plateau during the Freeze-thaw Process,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002
BibRef

Gao, H.R.[Hui-Ran], Nie, N.[Ning], Zhang, W.C.[Wan-Chang], Chen, H.[Hao],
Monitoring the spatial distribution and changes in permafrost with passive microwave remote sensing,
PandRS(170), 2020, pp. 142-155.
Elsevier DOI 2011
Permafrost, Surface soil freeze/thaw states, Passive microwave remote sensing, The frost index, Northeastern China BibRef

Wu, X.R.[Xue-Rui], Dong, Z.N.[Zhou-Nan], Jin, S.G.[Shuang-Gen], He, Y.[Yang], Song, Y.Z.[Ye-Zhi], Ma, W.X.[Wen-Xiao], Yang, L.[Lei],
First Measurement of Soil Freeze/Thaw Cycles in the Tibetan Plateau Using CYGNSS GNSS-R Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Han, W.X.[Wei-Xiao], Huang, C.L.[Chun-Lin], Duan, H.T.[Hong-Tao], Gu, J.[Juan], Hou, J.L.[Jin-Liang],
Lake Phenology of Freeze-Thaw Cycles Using Random Forest: A Case Study of Qinghai Lake,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Chai, M.T.[Ming-Tang], Li, G.Y.[Guo-Yu], Ma, W.[Wei], Cao, Y.P.[Ya-Peng], Wu, G.[Gang], Mu, Y.H.[Yan-Hu], Chen, D.[Dun], Zhang, J.[Jun], Zhou, Z.W.[Zhi-Wei], Zhou, Y.[Yu], Du, Q.S.[Qing-Song],
Assessment of Freeze-Thaw Hazards and Water Features along the China-Russia Crude Oil Pipeline in Permafrost Regions,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Holst, C.[Christoph], Janßen, J.[Jannik], Schmitz, B.[Berit], Blome, M.[Martin], Dercks, M.[Malte], Schoch-Baumann, A.[Anna], Blöthe, J.[Jan], Schrott, L.[Lothar], Kuhlmann, H.[Heiner], Medic, T.[Tomislav],
Increasing Spatio-Temporal Resolution for Monitoring Alpine Solifluction Using Terrestrial Laser Scanners and 3D Vector Fields,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link 2104
TLS. Monitoring the gradual movements of soil masses due to freeze-thaw activity. BibRef

Nakata, Y.[Yasutaka], Hayamizu, M.[Masato], Ishiyama, N.[Nobuo], Torita, H.[Hiroyuki],
Observation of Diurnal Ground Surface Changes Due to Freeze-Thaw Action by Real-Time Kinematic Unmanned Aerial Vehicle,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Lu, Y.F.[Yue-Feng], Liu, C.[Cong], Ge, Y.[Yong], Hu, Y.L.[Yu-Long], Wen, Q.[Qiao], Fu, Z.L.[Zhong-Liang], Wang, S.B.[Shao-Bo], Liu, Y.[Yong],
Spatiotemporal Characteristics of Freeze-Thawing Erosion in the Source Regions of the Chin-Sha, Ya-Lung and Lantsang Rivers on the Basis of GIS,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Wang, B.H.[Bao-Hang], Zhang, Q.[Qin], Pepe, A.[Antonio], Mastro, P.[Pietro], Zhao, C.Y.[Chao-Ying], Lu, Z.[Zhong], Zhu, W.[Wu], Yang, C.S.[Cheng-Sheng], Zhang, J.[Jing],
Analysis of Groundwater Depletion/Inflation and Freeze-Thaw Cycles in the Northern Urumqi Region with the SBAS Technique and an Adjusted Network of Interferograms,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Rouyet, L.[Line], Liu, L.[Lin], Strand, S.M.[Sarah Marie], Christiansen, H.H.[Hanne Hvidtfeldt], Lauknes, T.R.[Tom Rune], Larsen, Y.[Yngvar],
Seasonal InSAR Displacements Documenting the Active Layer Freeze and Thaw Progression in Central-Western Spitsbergen, Svalbard,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link 2108
BibRef

Wang, J.[Jing], Wang, C.[Chao], Zhang, H.[Hong], Tang, Y.X.[Yi-Xian], Duan, W.[Wei], Dong, L.[Longkai],
Freeze-Thaw Deformation Cycles and Temporal-Spatial Distribution of Permafrost along the Qinghai-Tibet Railway Using Multitrack InSAR Processing,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Gao, H.R., Zhang, Z.J., Zhang, W.C., Chen, H., Xi, M.J.,
Spatial Downscaling Based on Spectrum Analysis for Soil Freeze/Thaw Status Retrieved From Passive Microwave,
GeoRS(60), 2022, pp. 1-11.
IEEE DOI 2112
Soil, Spatial resolution, Microwave theory and techniques, Microwave imaging, Surface soil, Spectral analysis, spectral analysis BibRef

Han, W.X.[Wei-Xiao], Huang, C.L.[Chun-Lin], Gu, J.[Juan], Hou, J.L.[Jin-Liang], Zhang, Y.[Ying],
Spatial-Temporal Distribution of the Freeze-Thaw Cycle of the Largest Lake (Qinghai Lake) in China Based on Machine Learning and MODIS from 2000 to 2020,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Tenkanen, M.[Maria], Tsuruta, A.[Aki], Rautiainen, K.[Kimmo], Kangasaho, V.[Vilma], Ellul, R.[Raymond], Aalto, T.[Tuula],
Utilizing Earth Observations of Soil Freeze/Thaw Data and Atmospheric Concentrations to Estimate Cold Season Methane Emissions in the Northern High Latitudes,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Chen, Y.[Yueli], Wang, L.X.[Ling-Xiao], Bernier, M.[Monique], Ludwig, R.[Ralf],
Retrieving Freeze/Thaw Cycles Using Sentinel-1 Data in Eastern Nunavik (Quebec, Canada),
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Ma, D.Y.[De-Ying], Motagh, M.[Mahdi], Liu, G.X.[Guo-Xiang], Zhang, R.[Rui], Wang, X.W.[Xiao-Wen], Zhang, B.[Bo], Xiang, W.[Wei], Yu, B.[Bing],
Thaw Settlement Monitoring and Active Layer Thickness Retrieval Using Time Series COSMO-SkyMed Imagery in Iqaluit Airport,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Huang, L.C.[Ling-Cao], Lantz, T.C.[Trevor C.], Fraser, R.H.[Robert H.], Tiampo, K.F.[Kristy F.], Willis, M.J.[Michael J.], Schaefer, K.[Kevin],
Accuracy, Efficiency, and Transferability of a Deep Learning Model for Mapping Retrogressive Thaw Slumps across the Canadian Arctic,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Wang, J.[Jian], Jiang, L.[Lingmei], Rautiainen, K.[Kimmo], Zhang, C.[Cheng], Xiao, Z.Q.[Zhi-Qiang], Li, H.[Heng], Yang, J.W.[Jian-Wei], Cui, H.Z.[Hui-Zhen],
Daily High-Resolution Land Surface Freeze/Thaw Detection Using Sentinel-1 and AMSR2 Data,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Zhou, H.Y.[Hua-Yun], Zhao, L.[Lin], Wang, L.X.[Ling-Xiao], Xing, Z.[Zanpin], Zou, D.[Defu], Hu, G.J.[Guo-Jie], Xie, C.W.[Chang-Wei], Pang, Q.Q.[Qiang-Qiang], Liu, G.Y.[Guang-Yue], Du, E.[Erji], Liu, S.B.[Shi-Bo], Qiao, Y.P.[Yong-Ping], Zhao, J.T.[Jian-Ting], Li, Z.B.[Zhi-Bin], Liu, Y.D.[Ya-Dong],
Characteristics of Freeze-Thaw Cycles in an Endorheic Basin on the Qinghai-Tibet Plateau Based on SBAS-InSAR Technology,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Witharana, C.[Chandi], Udawalpola, M.R.[Mahendra R.], Liljedahl, A.K.[Anna K.], Jones, M.K.W.[Melissa K. Ward], Jones, B.M.[Benjamin M.], Hasan, A.[Amit], Joshi, D.[Durga], Manos, E.[Elias],
Automated Detection of Retrogressive Thaw Slumps in the High Arctic Using High-Resolution Satellite Imagery,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Chen, J.[Jie], Zhang, J.[Jing], Wu, T.H.[Tong-Hua], Hao, J.M.[Jun-Ming], Wu, X.D.[Xiao-Dong], Ma, X.[Xuyan], Zhu, X.F.[Xiao-Fan], Lou, P.Q.[Pei-Qing], Zhang, L.[Lina],
Activity and Kinematics of Two Adjacent Freeze-Thaw-Related Landslides Revealed by Multisource Remote Sensing of Qilian Mountain,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Lv, S.N.[Shao-Ning], Wen, J.[Jun], Simmer, C.[Clemens], Zeng, Y.J.[Yi-Jian], Guo, Y.Y.[Yuan-Yuan], Su, Z.[Zhongbo],
A Novel Freeze-Thaw State Detection Algorithm Based on L-Band Passive Microwave Remote Sensing,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Wang, R.J.[Rui-Jie], Wang, Y.J.[Yan-Jiao], Yan, F.[Feng],
Vegetation Growth Status and Topographic Effects in Frozen Soil Regions on the Qinghai-Tibet Plateau,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Wang, X.Q.[Xi-Qiang], Chen, R.S.[Ren-Sheng], Han, C.[Chuntan], Yang, Y.[Yong], Liu, J.F.[Jun-Feng], Liu, Z.W.[Zhang-Wen], Guo, S.H.[Shu-Hai],
Estimation of Soil Freeze Depth in Typical Snowy Regions Using Reanalysis Dataset: A Case Study in Heilongjiang Province, China,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Fu, C.W.[Chun-Wei], Hu, Z.Y.[Ze-Yong], Yang, Y.X.[Yao-Xian], Deng, M.S.[Ming-Shan], Yu, H.P.[Hai-Peng], Lu, S.[Shan], Wu, D.[Di], Fan, W.W.[Wei-Wei],
Responses of Soil Freeze-Thaw Processes to Climate on the Tibetan Plateau from 1980 to 2016,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Ma, S.[Shen], Zhao, J.Y.[Jing-Yi], Chen, J.[Ji], Zhang, S.H.[Shou-Hong], Dong, T.[Tianchun], Mei, Q.H.[Qi-Hang], Hou, X.[Xin], Liu, G.J.[Guo-Jun],
Ground Surface Freezing and Thawing Index Distribution in the Qinghai-Tibet Engineering Corridor and Factors Analysis Based on GeoDetector Technique,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Fang, X.W.[Xue-Wei], Wang, A.[Anqi], Lyu, S.H.[Shi-Hua], Fraedrich, K.[Klaus],
Dynamics of Freezing/Thawing Indices and Frozen Ground from 1961 to 2010 on the Qinghai-Tibet Plateau,
RS(15), No. 14, 2023, pp. 3478.
DOI Link 2307
BibRef

Wang, S.[Shuo], Sheng, Y.[Yu], Ran, Y.[Youhua], Wang, B.Q.[Bing-Quan], Cao, W.[Wei], Peng, E.[Erxing], Peng, C.Y.[Chen-Yang],
Predict Seasonal Maximum Freezing Depth Changes Using Machine Learning in China over the Last 50 Years,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link 2308
BibRef


Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Terrain Analysis of Mars, Craters, Minerals .


Last update:Mar 25, 2024 at 16:07:51