16.7.2.7.3 Short-Term Traffic Flow Prediction, Forecast

Chapter Contents (Back)
Flow Prediction. Short Term Traffic Forecast. Traffic Flow. Prediction. Traffic Prediction.
See also Traffic Congestion, Not Image Analysis.
See also Transportation Mode, Travel Mode, Transport Mode Detection.
See also Traffic Origin-Destination Analysis.

Tan, M.C., Wong, S.C., Xu, M.C., Guan, Z.R., Zhang, P.,
An Aggregation Approach to Short-Term Traffic Flow Prediction,
ITS(10), No. 1, March 2009, pp. 60-69.
IEEE DOI 0903
BibRef

Ghosh, B., Basu, B., O'Mahony, M.,
Multivariate Short-Term Traffic Flow Forecasting Using Time-Series Analysis,
ITS(10), No. 2, June 2009, pp. 246-254.
IEEE DOI 0906
BibRef

Tchrakian, T.T., Basu, B., O'Mahony, M.,
Real-Time Traffic Flow Forecasting Using Spectral Analysis,
ITS(13), No. 2, June 2012, pp. 519-526.
IEEE DOI 1206
BibRef

Chan, K.Y.[Kit Yan], Dillon, T.S., Singh, J., Chang, E.,
Neural-Network-Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg-Marquardt Algorithm,
ITS(13), No. 2, June 2012, pp. 644-654.
IEEE DOI 1206
BibRef

Lippi, M., Bertini, M., Frasconi, P.,
Short-Term Traffic Flow Forecasting: An Experimental Comparison of Time-Series Analysis and Supervised Learning,
ITS(14), No. 2, 2013, pp. 871-882.
IEEE DOI 1307
Graphical models; Time series analysis; Intelligent transportation systems; traffic forecasting BibRef

Jeong, Y.S., Byon, Y.J., Castro-Neto, M.M., Easa, S.M.,
Supervised Weighting-Online Learning Algorithm for Short-Term Traffic Flow Prediction,
ITS(14), No. 4, 2013, pp. 1700-1707.
IEEE DOI 1312
Artificial neural networks BibRef

Daraghmi, Y., Yi, C., Chiang, T.,
Negative Binomial Additive Models for Short-Term Traffic Flow Forecasting in Urban Areas,
ITS(15), No. 2, April 2014, pp. 784-793.
IEEE DOI 1404
Additives BibRef

Tselentis, D.I., Vlahogianni, E.I., Karlaftis, M.G.,
Improving short-term traffic forecasts: To combine models or not to combine?,
IET-ITS(9), No. 2, 2015, pp. 193-201.
DOI Link 1504
autoregressive processes BibRef

Kehagias, D., Salamanis, A., Tzovaras, D.,
Speed pattern recognition technique for short-term traffic forecasting based on traffic dynamics,
IET-ITS(9), No. 6, 2015, pp. 646-653.
DOI Link 1509
forecasting theory BibRef

Fusco, G., Colombaroni, C., Isaenko, N.,
Comparative analysis of implicit models for real-time short-term traffic predictions,
IET-ITS(10), No. 4, 2016, pp. 270-278.
DOI Link 1606
Bayes methods BibRef

Tan, H., Wu, Y., Shen, B., Jin, P.J., Ran, B.,
Short-Term Traffic Prediction Based on Dynamic Tensor Completion,
ITS(17), No. 8, August 2016, pp. 2123-2133.
IEEE DOI 1608
Data models BibRef

Zhang, W., Tang, J., Kristian, H., Zou, Y., Wang, Y.,
Hybrid short-term prediction of traffic volume at ferry terminal based on data fusion,
IET-ITS(10), No. 8, 2016, pp. 524-534.
DOI Link 1610
data handling BibRef

Zheng, L.[Liang], Zhu, C.[Chuang], Zhu, N.[Ning], He, T.[Tian], Dong, N.[Ni], Huang, H.[Helai],
Feature selection-based approach for urban short-term travel speed prediction,
IET-ITS(12), No. 6, August 2018, pp. 474-484.
DOI Link 1807
BibRef

Sun, B.[Bin], Cheng, W.[Wei], Goswami, P.[Prashant], Bai, G.H.[Guo-Hua],
Short-term traffic forecasting using self-adjusting k-nearest neighbours,
IET-ITS(12), No. 1, February 2018, pp. 41-48.
DOI Link 1801
BibRef

Ding, C., Duan, J., Zhang, Y., Wu, X., Yu, G.,
Using an ARIMA-GARCH Modeling Approach to Improve Subway Short-Term Ridership Forecasting Accounting for Dynamic Volatility,
ITS(19), No. 4, April 2018, pp. 1054-1064.
IEEE DOI 1804
Analytical models, Forecasting, Mathematical model, Predictive models, Public transportation, Reliability, prediction interval BibRef

Cheng, S.F.[Shi-Fen], Lu, F.[Feng], Peng, P.[Peng], Wu, S.[Sheng],
A Spatiotemporal Multi-View-Based Learning Method for Short-Term Traffic Forecasting,
IJGI(7), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Wang, X.X.[Xiang-Xue], Xu, L.H.[Lun-Hui],
Wavelet-based short-term forecasting with improved threshold recognition for urban expressway traffic conditions,
IET-ITS(12), No. 6, August 2018, pp. 463-473.
DOI Link 1807
BibRef

Zhou, T.[Teng], Jiang, D.Z.[Da-Zhi], Lin, Z.Z.[Zhi-Zhe], Han, G.Q.[Guo-Qiang], Xu, X.M.[Xue-Miao], Qin, J.[Jing],
Hybrid dual Kalman filtering model for short-term traffic flow forecasting,
IET-ITS(13), No. 6, June 2019, pp. 1023-1032.
DOI Link 1906
BibRef

Cui, Z.H.[Zhi-Han], Huang, B.[Boyu], Dou, H.W.[Hao-Wen], Tan, G.[Guanru], Zheng, S.Q.[Shi-Qiang], Zhou, T.[Teng],
GSA-ELM: A hybrid learning model for short-term traffic flow forecasting,
IET-ITS(16), No. 1, 2022, pp. 41-52.
DOI Link 2112
BibRef

Cai, L.R.[Ling-Ru], Chen, Q.[Qian], Cai, W.H.[Wei-Hong], Xu, X.M.[Xue-Miao], Zhou, T.[Teng], Qin, J.[Jing],
SVRGSA: a hybrid learning based model for short-term traffic flow forecasting,
IET-ITS(13), No. 9, September 2019, pp. 1348-1355.
DOI Link 1908
BibRef

Chen, X.Q.M.[Xi-Qun Michael], Zhang, S.C.[Shuai-Chao], Li, L.[Li],
Multi-model ensemble for short-term traffic flow prediction under normal and abnormal conditions,
IET-ITS(13), No. 2, February 2019, pp. 260-268.
DOI Link 1902
BibRef

Diao, Z., Zhang, D., Wang, X., Xie, K., He, S., Lu, X., Li, Y.,
A Hybrid Model for Short-Term Traffic Volume Prediction in Massive Transportation Systems,
ITS(20), No. 3, March 2019, pp. 935-946.
IEEE DOI 1903
Predictive models, Forecasting, Transportation, Autoregressive processes, Discrete wavelet transforms, Gaussian process (GP) BibRef

Mackenzie, J., Roddick, J.F., Zito, R.,
An Evaluation of HTM and LSTM for Short-Term Arterial Traffic Flow Prediction,
ITS(20), No. 5, May 2019, pp. 1847-1857.
IEEE DOI 1905
Roads, Neural networks, Prediction algorithms, Traffic control, Predictive models, Timing, Arterial road networks, traffic-flow prediction BibRef

Feng, X., Ling, X., Zheng, H., Chen, Z., Xu, Y.,
Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction,
ITS(20), No. 6, June 2019, pp. 2001-2013.
IEEE DOI 1906
Kernel, Support vector machines, Predictive models, Correlation, Prediction algorithms, Real-time systems, Forecasting, spatial-temporal correlation BibRef

Zhu, Z., Chen, X., Zhang, X., Zhang, L.,
Probabilistic Data Fusion for Short-Term Traffic Prediction With Semiparametric Density Ratio Model,
ITS(20), No. 7, July 2019, pp. 2459-2469.
IEEE DOI 1907
Data integration, Predictive models, Probabilistic logic, Data models, Time series analysis, Artificial neural networks, probability distribution BibRef

Duan, P., Mao, G., Liang, W., Zhang, D.,
A Unified Spatio-Temporal Model for Short-Term Traffic Flow Prediction,
ITS(20), No. 9, September 2019, pp. 3212-3223.
IEEE DOI 1909
Roads, Predictive models, Correlation, Data models, Computational modeling, Neural networks, Network topology, unified BibRef

Ma, D.F.[Dong-Fang], Sheng, B.[Bowen], Ma, X.L.[Xiao-Long], Jin, S.[Sheng],
Fuzzy hybrid framework with dynamic weights for short-term traffic flow prediction by mining spatio-temporal correlations,
IET-ITS(14), No. 2, February 2020, pp. 73-81.
DOI Link 2002
BibRef

Gu, Y., Lu, W., Xu, X., Qin, L., Shao, Z., Zhang, H.,
An Improved Bayesian Combination Model for Short-Term Traffic Prediction With Deep Learning,
ITS(21), No. 3, March 2020, pp. 1332-1342.
IEEE DOI 2003
Predictive models, Deep learning, Correlation, Neural networks, Bayes methods, Data models, Roads, Urban road, microwave data BibRef

Han, L.[Lei], Huang, Y.S.[Yi-Shao],
Short-term traffic flow prediction of road network based on deep learning,
IET-ITS(14), No. 6, June 2020, pp. 495-503.
DOI Link 2005
BibRef

Tong, X.H.[Xiao-Hua], Wang, R.J.[Run-Jie], Shi, W.Z.[Wen-Zhong], Li, Z.Y.[Zhi-Yuan],
An Approach for Filter Divergence Suppression in a Sequential Data Assimilation System and Its Application in Short-Term Traffic Flow Forecasting,
IJGI(9), No. 6, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Li, Z., Zheng, Z., Washington, S.,
Short-Term Traffic Flow Forecasting: A Component-Wise Gradient Boosting Approach With Hierarchical Reconciliation,
ITS(21), No. 12, December 2020, pp. 5060-5072.
IEEE DOI 2012
Forecasting, Boosting, Predictive models, Correlation, Australia, Urban areas, Roads, Traffic volume forecasting, gradient boosting, hierarchical reconciliation BibRef

Wang, R.J.[Run-Jie], Shi, W.Z.[Wen-Zhong], Liu, X.[Xianglei], Li, Z.Y.[Zhi-Yuan],
An Adaptive Cutoff Frequency Selection Approach for Fast Fourier Transform Method and Its Application into Short-Term Traffic Flow Forecasting,
IJGI(9), No. 12, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Zhang, Z.[Zhao], Jiao, X.H.[Xiao-Hong],
A deep network with analogous self-attention for short-term traffic flow prediction,
IET-ITS(15), No. 7, 2021, pp. 902-915.
DOI Link 2106
BibRef

Tao, Y.Y.[Yan-Yun], Wang, X.[Xiang], Zheng, J.Y.[Jian-Ying], E, W.J.[Wen-Juan], Zhao, P.[Po], Meng, S.W.[Shi-Wei],
Deep tree neural network for multiple-time-step prediction of short-term speed and confidence estimation,
IET-ITS(15), No. 3, 2021, pp. 446-462.
DOI Link 2106
BibRef

Tian, Z.[Zhongda],
Approach for Short-Term Traffic Flow Prediction Based on Empirical Mode Decomposition and Combination Model Fusion,
ITS(22), No. 9, September 2021, pp. 5566-5576.
IEEE DOI 2109
Predictive models, Roads, Training, Empirical mode decomposition, Optimization, Prediction algorithms, Biological system modeling, improved fruit fly optimization algorithm BibRef

Yu, Y.D.[Ya-Dong], Zhang, Y.[Yong], Qian, S.[Sean], Wang, S.F.[Shao-Fan], Hu, Y.L.[Yong-Li], Yin, B.C.[Bao-Cai],
A Low Rank Dynamic Mode Decomposition Model for Short-Term Traffic Flow Prediction,
ITS(22), No. 10, October 2021, pp. 6547-6560.
IEEE DOI 2110
Predictive models, Detectors, Neural networks, Roads, Time series analysis, Machine learning, Data models, low rank representation BibRef

Cheng, S.[Shifen], Lu, F.[Feng], Peng, P.[Peng],
Short-Term Traffic Forecasting by Mining the Non-Stationarity of Spatiotemporal Patterns,
ITS(22), No. 10, October 2021, pp. 6365-6383.
IEEE DOI 2110
Roads, Predictive models, Spatiotemporal phenomena, Adaptation models, Forecasting, Vehicle dynamics, temporal non-stationarity BibRef

Qu, Z.W.[Zhao-Wei], Haitao, L.[Li], Li, Z.H.[Zhi-Hui], Tao, Z.[Zhong],
Short-Term Traffic Flow Forecasting Method With M-B-LSTM Hybrid Network,
ITS(23), No. 1, January 2022, pp. 225-235.
IEEE DOI 2201
Forecasting, Machine learning, Predictive models, Data models, Uncertainty, Recurrent neural networks, Probability distribution, data stochasticity BibRef

Liu, J.[Jin], Wu, N.Q.[Nai-Qi], Qiao, Y.[Yan], Li, Z.W.[Zhi-Wu],
Short-Term Traffic Flow Forecasting Using Ensemble Approach Based on Deep Belief Networks,
ITS(23), No. 1, January 2022, pp. 404-417.
IEEE DOI 2201
Forecasting, Predictive models, Object oriented modeling, Machine learning, Neural networks, Transportation, traffic flow forecasting BibRef

Zhao, L.[Leina], Wen, X.Y.[Xin-Yu], Wang, Y.P.[Yan-Peng], Shao, Y.M.[Yi-Ming],
A novel hybrid model of ARIMA-MCC and CKDE-GARCH for urban short-term traffic flow prediction,
IET-ITS(16), No. 2, 2022, pp. 206-217.
DOI Link 2201
BibRef

Sun, Z.Y.[Zhao-Yun], Hu, Y.J.[Yuan-Jiao], Li, W.[Wei], Feng, S.W.[Shao-Wei], Pei, L.[Lili],
Prediction model for short-term traffic flow based on a K-means-gated recurrent unit combination,
IET-ITS(16), No. 5, 2022, pp. 675-690.
DOI Link 2204
BibRef

Ma, C.X.[Chang-Xi], Dai, G.[Guowen], Zhou, J.[Jibiao],
Short-Term Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and LSTM_BILSTM Method,
ITS(23), No. 6, June 2022, pp. 5615-5624.
IEEE DOI 2206
Time series analysis, Predictive models, Fractals, Data models, Correlation, Biological neural networks, Training, urban road section BibRef

Cheng, Z.Y.[Ze-Yang], Lu, J.[Jian], Zhou, H.J.[Hua-Jian], Zhang, Y.B.[Yi-Bin], Zhang, L.[Lin],
Short-Term Traffic Flow Prediction: An Integrated Method of Econometrics and Hybrid Deep Learning,
ITS(23), No. 6, June 2022, pp. 5231-5244.
IEEE DOI 2206
Predictive models, Hidden Markov models, Deep learning, Neural networks, Reactive power, Time series analysis, spatiotemporal heatmap BibRef

Fang, M.Y.[Meng-Yuan], Tang, L.[Luliang], Yang, X.[Xue], Chen, Y.[Yang], Li, C.K.[Chao-Kui], Li, Q.Q.[Qing-Quan],
FTPG: A Fine-Grained Traffic Prediction Method With Graph Attention Network Using Big Trace Data,
ITS(23), No. 6, June 2022, pp. 5163-5175.
IEEE DOI 2206
Roads, Predictive models, Sensors, Estimation, Data models, Urban areas, Real-time systems, Short-term traffic prediction, turn level BibRef

Furtlehner, C.[Cyril], Lasgouttes, J.M.[Jean-Marc], Attanasi, A.[Alessandro], Pezzulla, M.[Marco], Gentile, G.[Guido],
Short-Term Forecasting of Urban Traffic Using Spatio-Temporal Markov Field,
ITS(23), No. 8, August 2022, pp. 10858-10867.
IEEE DOI 2208
Data models, Predictive models, Belief propagation, Markov processes, Indexes, Forecasting, Convergence, machine learning BibRef

Yan, H.[He], Qi, Y.[Yong], Ye, Q.L.[Qiao-Lin], Yu, D.J.[Dong-Jun],
Robust Least Squares Twin Support Vector Regression With Adaptive FOA and PSO for Short-Term Traffic Flow Prediction,
ITS(23), No. 9, September 2022, pp. 14542-14556.
IEEE DOI 2209
Predictive models, Data models, Support vector machines, Computational modeling, Adaptation models, Optimization, Training, short-term traffic flow prediction BibRef

Jin, J.C.[Jun-Chen], Rong, D.D.[Ding-Ding], Zhang, T.[Tong], Ji, Q.Y.[Qing-Yuan], Guo, H.F.[Hai-Feng], Lv, Y.S.[Yi-Sheng], Ma, X.L.[Xiao-Liang], Wang, F.Y.[Fei-Yue],
A GAN-Based Short-Term Link Traffic Prediction Approach for Urban Road Networks Under a Parallel Learning Framework,
ITS(23), No. 9, September 2022, pp. 16185-16196.
IEEE DOI 2209
Roads, Predictive models, Data models, Recurrent neural networks, Generators, Deep learning, Wasserstein generative adversarial network BibRef

Tao, Q.H.[Qing-Hua], Li, Z.[Zhen], Xu, J.[Jun], Lin, S.[Shu], de Schutter, B.[Bart], Suykens, J.A.K.[Johan A. K.],
Short-Term Traffic Flow Prediction Based on the Efficient Hinging Hyperplanes Neural Network,
ITS(23), No. 9, September 2022, pp. 15616-15628.
IEEE DOI 2209
Predictive models, Artificial neural networks, Neurons, Feature extraction, Analysis of variance, Data models, variables analysis BibRef

Zhang, Y.[Yang], Xin, D.R.[Dong-Rong],
A Diverse Ensemble Deep Learning Method for Short-Term Traffic Flow Prediction Based on Spatiotemporal Correlations,
ITS(23), No. 9, September 2022, pp. 16715-16727.
IEEE DOI 2209
Roads, Predictive models, Correlation, Deep learning, Spatiotemporal phenomena, Prediction algorithms, convolutional neural network BibRef

Shu, W.N.[Wan-Neng], Cai, K.[Ken], Xiong, N.N.[Neal Naixue],
A Short-Term Traffic Flow Prediction Model Based on an Improved Gate Recurrent Unit Neural Network,
ITS(23), No. 9, September 2022, pp. 16654-16665.
IEEE DOI 2209
Predictive models, Adaptation models, Time series analysis, Prediction algorithms, Mathematical model, short-term traffic flow prediction BibRef

Mirzahossein, H.[Hamid], Gholampour, I.[Iman], Sajadi, S.R.[Sayed Reza], Zamani, A.H.[Amir Hossein],
A hybrid deep and machine learning model for short-term traffic volume forecasting of adjacent intersections,
IET-ITS(16), No. 11, 2022, pp. 1648-1663.
DOI Link 2210
BibRef

Jiang, Y.L.[Yun-Liang], Fan, J.B.[Jin-Bin], Liu, Y.[Yong], Zhang, X.T.[Xiong-Tao],
Deep Graph Gaussian Processes for Short-Term Traffic Flow Forecasting From Spatiotemporal Data,
ITS(23), No. 11, November 2022, pp. 20177-20186.
IEEE DOI 2212
Gaussian processes, Feature extraction, Spatiotemporal phenomena, Monitoring, Kernel, Predictive models, Data models, traffic flow forecasting BibRef

Huang, S.[Shuai], Sun, D.[Dihua], Zhao, M.[Min], Chen, J.[Jin], Chen, R.[Rui],
Short-term traffic flow prediction approach incorporating vehicle functions from RFID-ELP data for urban road sections,
IET-ITS(17), No. 1, 2023, pp. 144-164.
DOI Link 2301
BibRef

Xia, M.R.[Meng-Ran], Jin, D.W.[Da-Wei], Chen, J.Y.[Jing-Yu],
Short-Term Traffic Flow Prediction Based on Graph Convolutional Networks and Federated Learning,
ITS(24), No. 1, January 2023, pp. 1191-1203.
IEEE DOI 2301
Predictive models, Data models, Forecasting, Training, Computational modeling, Roads, Data privacy, horizontal local road network BibRef

Zhou, S.H.[Sheng-Han], Wei, C.F.[Chao-Fan], Song, C.F.[Chao-Fei], Pan, X.[Xing], Chang, W.B.[Wen-Bing], Yang, L.C.[Lin-Chao],
Short-Term Traffic Flow Prediction of the Smart City Using 5G Internet of Vehicles Based on Edge Computing,
ITS(24), No. 2, February 2023, pp. 2229-2238.
IEEE DOI 2302
Roads, 5G mobile communication, Smart cities, Transportation, Predictive models, Prediction algorithms, Computational modeling, smart city BibRef

Varga, B.[Balázs], Pereira, M.[Mike], Kulcsár, B.[Balázs], Pariota, L.[Luigi], Péni, T.[Tamás],
Data-Driven Distance Metrics for Kriging-Short-Term Urban Traffic State Prediction,
ITS(24), No. 6, June 2023, pp. 6268-6279.
IEEE DOI 2306
Prediction algorithms, Measurement, Detectors, Kernel, Deep learning, Correlation, Neural networks, Kriging, spatio-temporal prediction, traffic flow prediction BibRef

Yang, Z.J.[Zi-Jing], Wang, C.[Cheng],
Short-term traffic flow prediction based on AST-MTL-CNN-GRU,
IET-ITS(17), No. 11, 2023, pp. 2205-2220.
DOI Link 2311
convolutional neural network, gate recurrent unit, short-term traffic flow prediction, spatiotemporal separation attention mechanism BibRef

Li, K.[Kai], Bai, W.H.[Wei-Hua], Huang, S.W.[Shao-Wei], Tan, G.[Guanru], Zhou, T.[Teng], Li, K.Q.[Ke-Qin],
Lag-related noise shrinkage stacked LSTM network for short-term traffic flow forecasting,
IET-ITS(18), No. 2, 2024, pp. 244-257.
DOI Link 2402
intelligent transportation systems, traffic information systems, traffic modeling, management and control BibRef

Yan, X.[Xiao], Gan, X.H.[Xiang-Hua], Tang, J.J.[Jing-Jing], Zhang, D.P.[Da-Peng], Wang, R.[Rui],
ProSTformer: Progressive Space-Time Self-Attention Model for Short-Term Traffic Flow Forecasting,
ITS(25), No. 9, September 2024, pp. 10802-10816.
IEEE DOI Code:
WWW Link. 2409
Forecasting, Transformers, Spatiotemporal phenomena, Computational modeling, Predictive models, spatial-temporal learning BibRef

Wang, H.X.[Hao-Xu], Wang, Z.W.[Zhi-Wen], Li, L.[Long], Yang, K.K.[Kang-Kang], Zeng, J.X.[Jing-Xiao], Zhao, Y.B.[Yi-Bin], Zhang, J.[Jindou],
SARO-MB3-BiGRU: A novel model for short-term traffic flow forecasting in the context of big data,
IET-ITS(18), No. 11, 2024, pp. 2097-2113.
DOI Link 2411
artificial intelligence, big data-driven, intelligent transportation systems, optimisation, Short-term traffic flow prediction BibRef

Liu, L.[Limei], Duan, P.[Peibo], Chen, Z.[Zhuo], Zhang, J.H.[Jing-Hui], Feng, S.Y.[Si-Yuan], Yue, W.W.[Wen-Wei], Wang, Y.[Yibo], Rong, J.[Jia],
Spatiotemporal Generalization Graph Neural Network-Based Prediction Models by Considering Morphological Diversity in Traffic Networks,
ITS(26), No. 7, July 2025, pp. 9993-10007.
IEEE DOI 2507
Correlation, Transfer learning, Spatiotemporal phenomena, Predictive models, Topology, Network topology, Training, causality BibRef

Xu, C.C.[Cheng-Cheng], Shao, Y.C.[Yong-Cheng], Ma, C.X.[Chen-Xiang], Han, M.[Mingmin], Tong, H.[Hao], Peng, C.[Chang],
A Geometric Deep Learning Approach to Traffic Flow Shockwave Prediction on Freeways Using Vehicle Trajectory Data and HD Map,
ITS(26), No. 7, July 2025, pp. 9907-9917.
IEEE DOI 2507
Trajectory, Predictive models, Accuracy, Roads, Graph neural networks, Attention mechanisms, Feature extraction, wavelet transform BibRef


Li, Y.[Yang], Ren, Q.Q.[Qian-Qian], Jin, H.[Hu], Han, M.[Meng],
LSTN:Long Short-Term Traffic Flow Forecasting with Transformer Networks,
ICPR22(4793-4800)
IEEE DOI 2212
Recurrent neural networks, Roads, Time series analysis, Transformers, Forecasting, Task analysis BibRef

Mallick, T.[Tanwi], Balaprakash, P.[Prasanna], Rask, E.[Eric], Macfarlane, J.[Jane],
Transfer Learning with Graph Neural Networks for Short-Term Highway Traffic Forecasting,
ICPR21(10367-10374)
IEEE DOI 2105
Road transportation, Training, Recurrent neural networks, Transfer learning, Predictive models, Traffic control BibRef

Li, Q., Wang, H.,
Elman short-term traffic flow prediction model based on association rules,
CVIDL20(673-678)
IEEE DOI 2102
backpropagation, data mining, recurrent neural nets, road traffic, time series, traffic engineering computing, time series factors, Elman neural network BibRef

Liu, D., Hui, S., Li, L., Liu, Z., Zhang, Z.,
A Method For Short-Term Traffic Flow Forecasting Based On GCN-LSTM,
CVIDL20(364-368)
IEEE DOI 2102
convolutional neural nets, data reduction, intelligent transportation systems, LSTM BibRef

Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Missing Data in Traffic Flow, Data Imputation, Prediction, Forecast .


Last update:Oct 6, 2025 at 14:07:43