17.1.3.5.1 Pedestrian Trajectory Analysis, Pedestrian Tracking

Chapter Contents (Back)
Tracking. Pedestrian Trajectory. Pedestrian Tracking. Trajectory Analysis.
See also Pedestrian Safety Issues, Pedestrian Behavior.
See also Target Tracking Techniques, Prediction, Trajectory Based.
See also Tracking People, Human Tracking, Pedestrian Tracking.
See also Human Motion Prediction.

Piotto, N.[Nicola], Conci, N.[Nicola], de Natale, F.G.B.[Francesco G.B.],
Syntactic Matching of Trajectories for Ambient Intelligence Applications,
MultMed(11), No. 7, November 2009, pp. 1266-1275.
IEEE DOI 0911
BibRef
And: A1, A3, A2:
Hierarchical Matching of 3D Pedestrian Trajectories for Surveillance Applications,
AVSBS09(146-151).
IEEE DOI 0909
BibRef

Pellegrini, S.[Stefano], Van Gool, L.J.[Luc J.],
Tracking with a mixed continuous-discrete Conditional Random Field,
CVIU(117), No. 10, 2013, pp. 1215-1228.
Elsevier DOI 1309
Tracking BibRef

Pellegrini, S.[Stefano], Ess, A.[Andreas], Van Gool, L.J.[Luc J.],
Improving Data Association by Joint Modeling of Pedestrian Trajectories and Groupings,
ECCV10(I: 452-465).
Springer DOI 1009
BibRef

Pellegrini, S., Ess, A.[Andreas], Schindler, K.[Konrad], Van Gool, L.J.,
You'll never walk alone: Modeling social behavior for multi-target tracking,
ICCV09(261-268).
IEEE DOI 0909
BibRef

Ess, A.[Andreas], Leibe, B.[Bastian], Van Gool, L.J.[Luc J.],
Depth and Appearance for Mobile Scene Analysis,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Liu, W., Lau, R.W.H., Wang, X.G.[Xiao-Gang], Manocha, D.[Dinesh],
Exemplar-AMMs: Recognizing Crowd Movements From Pedestrian Trajectories,
MultMed(18), No. 12, December 2016, pp. 2398-2406.
IEEE DOI 1612
Computational modeling BibRef

Antonini, G.[Gianluca], Martinez, S.V.[Santiago Venegas], Bierlaire, M.[Michel], Thiran, J.P.[Jean Philippe],
Behavioral Priors for Detection and Tracking of Pedestrians in Video Sequences,
IJCV(69), No. 2, August 2006, pp. 159-180.
Springer DOI 0606
BibRef
Earlier: A2, A1, A4, A3:
Bayesian integration of a discrete choice pedestrian behavioral model and image correlation techniques for automatic multi object tracking,
ICIP04(II: 1037-1040).
IEEE DOI 0505
BibRef

Alahi, A.[Alexandre], Marimon, D.[David], Bierlaire, M.[Michel], Kunt, M.[Murat],
A master-slave approach for object detection and matching with fixed and mobile cameras,
ICIP08(1712-1715).
IEEE DOI 0810
BibRef
Earlier: A1, A3, A4, Only:
Object Detection and Matching with Mobile Cameras Collaborating with Fixed Cameras,
M2SFA208(xx-yy). 0810
Primarily for pedestrians. BibRef

Alahi, A.[Alexandre], Vandergheynst, P.[Pierre], Bierlaire, M.[Michel], Kunt, M.[Murat],
Cascade of descriptors to detect and track objects across any network of cameras,
CVIU(114), No. 6, June 2010, pp. 624-640.
Elsevier DOI 1006
Object detection; Object tracking; Region descriptors; Cascade of descriptors; Multi-view; Mobile cameras; Pedestrian recognition BibRef

Biliotti, D.[David], Antonini, G.[Gianluca], Thiran, J.P.[Jean Philippe],
Multi-Layer Hierarchical Clustering of Pedestrian Trajectories for Automatic Counting of People in Video Sequences,
Motion05(II: 50-57).
IEEE DOI 0502
BibRef

Antonini, G.[Gianluca], Thiran, J.P.[Jean Philippe],
Counting Pedestrians in Video Sequences Using Trajectory Clustering,
CirSysVideo(16), No. 8, August 2006, pp. 1008-1020.
IEEE DOI 0609
BibRef

Yang, L.[Lie], Hu, G.H.[Guang-Hua], Song, Y.H.[Yong-Hao], Li, G.F.[Guo-Feng], Xie, L.H.[Long-Han],
Intelligent video analysis: A Pedestrian trajectory extraction method for the whole indoor space without blind areas,
CVIU(196), 2020, pp. 102968.
Elsevier DOI 2006
Fisheye camera, Pedestrian detection, Object tracking, Height estimation, Trajectory extraction BibRef

Zhou, C.J.[Cheng-Ju], Wu, M.Q.[Mei-Qing], Lam, S.K.[Siew-Kei],
Group Cost-Sensitive BoostLR With Vector Form Decorrelated Filters for Pedestrian Detection,
ITS(21), No. 12, December 2020, pp. 5022-5035.
IEEE DOI 2012
Feature extraction, Decorrelation, Training, Computational complexity, Testing, Boosting, Pedestrian detection, BibRef

Haddad, S.[Sirin], Lam, S.K.[Siew-Kei],
Self-Growing Spatial Graph Network for Context-Aware Pedestrian Trajectory Prediction,
ICIP21(1029-1033)
IEEE DOI 2201
BibRef
Earlier:
Self-Growing Spatial Graph Networks for Pedestrian Trajectory Prediction,
WACV20(1140-1148)
IEEE DOI 2006
Adaptation models, Visualization, Adaptive systems, Machine learning, Predictive models, Spatial databases, Trajectory, Nonnegative Matrix Factorization. Trajectory, Predictive models, Task analysis, Dynamics, Data models BibRef

Sawas, A.[Abdullah], Abuolaim, A.[Abdullah], Afifi, M.[Mahmoud], Papagelis, M.[Manos],
A versatile computational framework for group pattern mining of pedestrian trajectories,
GeoInfo(23), No. 4, October 2019, pp. 501-531.
WWW Link. 1911
BibRef

Chen, K.[Kai], Song, X.[Xiao], Ren, X.X.[Xiao-Xiang],
Pedestrian Trajectory Prediction in Heterogeneous Traffic Using Pose Keypoints-Based Convolutional Encoder-Decoder Network,
CirSysVideo(31), No. 5, 2021, pp. 1764-1775.
IEEE DOI 2105
BibRef

Wang, R.P.[Rui-Ping], Cui, Y.[Yong], Song, X.[Xiao], Chen, K.[Kai], Fang, H.[Hong],
Multi-information-based convolutional neural network with attention mechanism for pedestrian trajectory prediction,
IVC(107), 2021, pp. 104110.
Elsevier DOI 2103
Depth map, Pose, 2D-3D size information, Convolutional neural network, Trajectory prediction BibRef

Chen, K.[Kai], Song, X.[Xiao], Yuan, H.T.[Hai-Tao], Ren, X.X.[Xiao-Xiang],
Fully Convolutional Encoder-Decoder With an Attention Mechanism for Practical Pedestrian Trajectory Prediction,
ITS(23), No. 11, November 2022, pp. 20046-20060.
IEEE DOI 2212
Trajectory, Predictive models, Feature extraction, Convolutional neural networks, Markov processes, Force, attention mechanism BibRef

Song, X.[Xiao], Chen, K.[Kai], Li, X.[Xu], Sun, J.H.[Jing-Han], Hou, B.C.[Bao-Cun], Cui, Y.[Yong], Zhang, B.C.[Bao-Chang], Xiong, G.[Gang], Wang, Z.L.[Zi-Lie],
Pedestrian Trajectory Prediction Based on Deep Convolutional LSTM Network,
ITS(22), No. 6, June 2021, pp. 3285-3302.
IEEE DOI 2106
Trajectory, Predictive models, Neural networks, Force, Mathematical model, Feature extraction, Tensors, neural network BibRef

Zhang, P.[Pu], Xue, J.R.[Jian-Ru], Zhang, P.F.[Peng-Fei], Zheng, N.N.[Nan-Ning], Ouyang, W.L.[Wan-Li],
Social-Aware Pedestrian Trajectory Prediction via States Refinement LSTM,
PAMI(44), No. 5, May 2022, pp. 2742-2759.
IEEE DOI 2204
BibRef
Earlier: A1, A5, A3, A2, A4:
SR-LSTM: State Refinement for LSTM Towards Pedestrian Trajectory Prediction,
CVPR19(12077-12086).
IEEE DOI 2002
Trajectory, Feature extraction, Legged locomotion, Predictive models, Neurons, Message passing, Adaptation models, message passing BibRef

Quan, R., Zhu, L., Wu, Y., Yang, Y.,
Holistic LSTM for Pedestrian Trajectory Prediction,
IP(30), 2021, pp. 3229-3239.
IEEE DOI 2103
Trajectory, Vehicle dynamics, Logic gates, Dynamics, Roads, Correlation, Task analysis, Pedestrian trajectory prediction, pedestrian intention BibRef

Zhou, Y.[Yutao], Wu, H.Y.[Hua-Yi], Cheng, H.Q.[Hong-Quan], Qi, K.L.[Kun-Lun], Hu, K.[Kai], Kang, C.G.[Chao-Gui], Zheng, J.[Jie],
Social graph convolutional LSTM for pedestrian trajectory prediction,
IET-ITS(15), No. 3, 2021, pp. 396-405.
DOI Link 2106
BibRef

Zamboni, S.[Simone], Kefato, Z.T.[Zekarias Tilahun], Girdzijauskas, S.[Sarunas], Norén, C.[Christoffer], Col, L.D.[Laura Dal],
Pedestrian trajectory prediction with convolutional neural networks,
PR(121), 2022, pp. 108252.
Elsevier DOI 2109
Trajectory prediction, Pedestrian prediction, Convolutional neural networks BibRef

Yao, H.Y.[Hai-Yan], Wan, W.G.[Wang-Gen], Li, X.[Xiang],
End-to-End Pedestrian Trajectory Forecasting with Transformer Network,
IJGI(11), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Kong, W.[Wei], Liu, Y.[Yun], Li, H.[Hui], Wang, C.X.[Chuan-Xu], Tao, Y.[Ye], Kong, X.Z.[Xiang-Zhen],
GSTA: Pedestrian trajectory prediction based on global spatio-temporal association of graph attention network,
PRL(160), 2022, pp. 90-97.
Elsevier DOI 2208
Pedestrian trajectory, Trajectory prediction, Receptive field, Attention mechanism, Spatio-temporal garph, Graph convolution BibRef

Li, L.H.[Lin-Hui], Zhou, B.[Bin], Lian, J.[Jing], Wang, X.C.[Xue-Cheng], Zhou, Y.F.[Ya-Fu],
Multi-PPTP: Multiple Probabilistic Pedestrian Trajectory Prediction in the Complex Junction Scene,
ITS(23), No. 8, August 2022, pp. 13758-13768.
IEEE DOI 2208
Trajectory, Predictive models, Junctions, Feature extraction, Semantics, Real-time systems, Automobiles, Autonomous driving, trajectory prediction BibRef

Pang, S.M.[Shu Min], Cao, J.X.[Jin Xin], Jian, M.Y.[Mei Ying], Lai, J.[Jian], Yan, Z.Y.[Zhen Ying],
BR-GAN: A Pedestrian Trajectory Prediction Model Combined With Behavior Recognition,
ITS(23), No. 12, December 2022, pp. 24609-24620.
IEEE DOI 2212
Trajectory, Behavioral sciences, Predictive models, Semantics, Generative adversarial networks, Legged locomotion, Software, trajectory prediction BibRef

Zhou, H.[Hao], Ren, D.C.[Dong-Chun], Yang, X.[Xu], Fan, M.Y.[Ming-Yu], Huang, H.[Hai],
CSR: Cascade Conditional Variational Auto Encoder with Socially-aware Regression for Pedestrian Trajectory Prediction,
PR(133), 2023, pp. 109030.
Elsevier DOI 2210
Pedestrian trajectory prediction, Socially-aware model, Conditional variational autoencoder (CVAE) BibRef

Wang, D.F.[Da-Feng], Liu, H.B.[Hong-Bo], Wang, N.[Naiyao], Wang, Y.Y.[Yi-Yang], Wang, H.[Hua], McLoone, S.[Seán],
SEEM: A Sequence Entropy Energy-Based Model for Pedestrian Trajectory All-Then-One Prediction,
PAMI(45), No. 1, January 2023, pp. 1070-1086.
IEEE DOI 2212
Trajectory, Predictive models, Generators, Entropy, Stability analysis, Potential energy, Training, potential energy regularization BibRef

Lian, J.[Jing], Yu, F.N.[Feng-Ning], Li, L.H.[Lin-Hui], Zhou, Y.[Yafu],
Causal Temporal-Spatial Pedestrian Trajectory Prediction With Goal Point Estimation and Contextual Interaction,
ITS(23), No. 12, December 2022, pp. 24499-24509.
IEEE DOI 2212
Trajectory, Predictive models, Feature extraction, Transformers, Task analysis, Semantics, Decoding, transformer BibRef

Korbmacher, R.[Raphael], Tordeux, A.[Antoine],
Review of Pedestrian Trajectory Prediction Methods: Comparing Deep Learning and Knowledge-Based Approaches,
ITS(23), No. 12, December 2022, pp. 24126-24144.
IEEE DOI 2212
Trajectory, Predictive models, Force, Microscopy, Mathematical models, Knowledge based systems, Dynamics, knowledge-based models BibRef

Kothari, P.[Parth], Alahi, A.[Alexandre],
Safety-Compliant Generative Adversarial Networks for Human Trajectory Forecasting,
ITS(24), No. 4, April 2023, pp. 4251-4261.
IEEE DOI 2304
Trajectory, Predictive models, Generators, Forecasting, Transformers, Biological system modeling, Generative adversarial networks, multimodality BibRef

Chen, W.H.[Wei-Huang], Yang, Z.G.[Zhi-Gang], Xue, L.Y.[Ling-Yang], Duan, J.H.[Jing-Hai], Sun, H.B.[Hong-Bin], Zheng, N.N.[Nan-Ning],
Multimodal Pedestrian Trajectory Prediction Using Probabilistic Proposal Network,
CirSysVideo(33), No. 6, June 2023, pp. 2877-2891.
IEEE DOI 2306
Trajectory, Proposals, Probabilistic logic, Transformers, Generators, Task analysis, Predictive models, proposal BibRef

Zhu, W.J.[Wen-Jun], Liu, Y.H.[Yang-Hong], Zhang, M.Y.[Meng-Yi], Yi, Y.[Yang],
Reciprocal Consistency Prediction Network for Multi-Step Human Trajectory Prediction,
ITS(24), No. 6, June 2023, pp. 6042-6052.
IEEE DOI 2306
Trajectory, Predictive models, Reliability, Forecasting, Bidirectional control, Training, Target tracking, Neural network, predictive confidence BibRef

Chen, H.[Hao], Liu, Y.[Yinhua], Hu, C.[Chuan], Zhang, X.[Xi],
Vulnerable Road User Trajectory Prediction for Autonomous Driving Using a Data-Driven Integrated Approach,
ITS(24), No. 7, July 2023, pp. 7306-7317.
IEEE DOI 2307
Trajectory, Predictive models, Roads, Long short term memory, Vehicle dynamics, Safety, Behavioral sciences, Autonomous driving, VRU intention BibRef

Xie, C.[Ce], Li, Y.M.[Yuan-Man], Liang, R.Q.[Rong-Qin], Dong, L.[Li], Li, X.[Xia],
Synchronous Bi-directional Pedestrian Trajectory Prediction with Error Compensation,
ACCV22(VI:699-715).
Springer DOI 2307
BibRef

Zhong, X.[Xian], Yan, X.[Xu], Yang, Z.W.[Zheng-Wei], Huang, W.X.[Wen-Xin], Jiang, K.[Kui], Liu, R.W.[Ryan Wen], Wang, Z.[Zheng],
Visual Exposes You: Pedestrian Trajectory Prediction Meets Visual Intention,
ITS(24), No. 9, September 2023, pp. 9390-9400.
IEEE DOI 2310
BibRef

Zhu, W.J.[Wen-Jun], Liu, Y.H.[Yang-Hong], Wang, P.[Peng], Zhang, M.[Mengyi], Wang, T.[Tian], Yi, Y.[Yang],
Tri-HGNN: Learning triple policies fused hierarchical graph neural networks for pedestrian trajectory prediction,
PR(143), 2023, pp. 109772.
Elsevier DOI 2310
Trajectory prediction, Hierarchical policy, Graph neural networks, BibRef

Golchoubian, M.[Mahsa], Ghafurian, M.[Moojan], Dautenhahn, K.[Kerstin], Azad, N.L.[Nasser Lashgarian],
Pedestrian Trajectory Prediction in Pedestrian-Vehicle Mixed Environments: A Systematic Review,
ITS(24), No. 11, November 2023, pp. 11544-11567.
IEEE DOI 2311
BibRef

Cheng, H.[Hao], Liu, M.M.[Meng-Meng], Chen, L.[Lin], Broszio, H.[Hellward], Sester, M.[Monika], Yang, M.Y.[Michael Ying],
GATraj: A graph- and attention-based multi-agent trajectory prediction model,
PandRS(205), 2023, pp. 163-175.
Elsevier DOI 2311
Trajectory prediction, Graph model, Autonomous driving, Pedestrian, Mixture density network BibRef

Liu, F.[Fugang], Duan, S.[Songnan], Juan, W.[Wang],
A pedestrian trajectory prediction method based on improved LSTM network,
IET-IPR(18), No. 2, 2024, pp. 379-387.
DOI Link 2402
image processing BibRef

Zhou, J.[Jincao], Bai, X.[Xin], Fu, W.P.[Wei-Ping], Ning, B.[Benyu], Li, R.[Rui],
Pedestrian intention estimation and trajectory prediction based on data and knowledge-driven method,
IET-ITS(18), No. 2, 2024, pp. 315-331.
DOI Link 2402
autonomous driving, Bayes methods, intelligent transportation systems, pedestrians, road safety BibRef

Liu, Q.K.[Quan-Kai], Sang, H.F.[Hai-Feng], Wang, J.[Jinyu], Chen, W.X.[Wang-Xing], Liu, Y.L.[Yu-Long],
Non-probability sampling network based on anomaly pedestrian trajectory discrimination for pedestrian trajectory prediction,
IVC(143), 2024, pp. 104954.
Elsevier DOI 2403
Pedestrian trajectory prediction, Non-probability sampling network, Subtraction fusion network, First-person view BibRef

Peng, Y.S.[Yu-Sheng], Zhang, G.F.[Gao-Feng], Shi, J.[Jun], Li, X.Y.[Xiang-Yu], Zheng, L.P.[Li-Ping],
MRGTraj: A Novel Non-Autoregressive Approach for Human Trajectory Prediction,
CirSysVideo(34), No. 4, April 2024, pp. 2318-2331.
IEEE DOI Code:
WWW Link. 2404
Decoding, Trajectory, Predictive models, Pedestrians, Codes, Gaussian distribution, Feature extraction, Trajectory prediction, social interaction BibRef

Xie, J.J.[Jia-Jia], Zhang, S.[Sheng], Xia, B.[Beihao], Xiao, Z.[Zhu], Jiang, H.B.[Hong-Bo], Zhou, S.[Siwang], Qin, Z.[Zheng], Chen, H.Y.[Hong-Yang],
Pedestrian Trajectory Prediction Based on Social Interactions Learning With Random Weights,
MultMed(26), 2024, pp. 7503-7515.
IEEE DOI 2405
Pedestrians, Trajectory, Generative adversarial networks, Training, Long short term memory, Task analysis, Predictive models, graph with random weights BibRef

Wong, C.[Conghao], Xia, B.[Beihao], Zou, Z.Q.[Zi-Qian], Wang, Y.L.[Yu-Long], You, X.G.[Xin-Ge],
SocialCircle: Learning the Angle-based Social Interaction Representation for Pedestrian Trajectory Prediction,
CVPR24(19005-19015)
IEEE DOI 2410
Training, Pedestrians, Uncertainty, Toy manufacturing industry, Predictive models, Mathematical models BibRef

Pei, Z.[Zhao], Zhang, J.Q.[Jia-Qing], Zhang, W.W.[Wen-Wen], Wang, M.[Miao], Wang, J.N.[Jia-Ning], Yang, Y.H.[Yee-Hong],
Autofocusing for Synthetic Aperture Imaging Based on Pedestrian Trajectory Prediction,
CirSysVideo(34), No. 5, May 2024, pp. 3551-3562.
IEEE DOI 2405
Pedestrians, Trajectory, Cameras, Apertures, Task analysis, Predictive models, Vehicle dynamics, Light field, occlusion, human social behavior simulation BibRef

Chen, X.B.[Xiao-Bo], Zhang, H.[Huanjia], Deng, F.[Fuwen], Liang, J.[Jun], Yang, J.[Jian],
Stochastic Non-Autoregressive Transformer-Based Multi-Modal Pedestrian Trajectory Prediction for Intelligent Vehicles,
ITS(25), No. 5, May 2024, pp. 3561-3574.
IEEE DOI Code:
WWW Link. 2405
Trajectory, Pedestrians, Predictive models, Transformers, Feature extraction, Intelligent vehicles, multi-modal prediction BibRef

Yang, J.[Jing], Chen, Y.[Yuehai], Du, S.[Shaoyi], Chen, B.D.[Ba-Dong], Principe, J.C.[Jose C.],
IA-LSTM: Interaction-Aware LSTM for Pedestrian Trajectory Prediction,
Cyber(54), No. 7, July 2024, pp. 3904-3917.
IEEE DOI 2407
Pedestrians, Trajectory, Predictive models, Feature extraction, Vehicle dynamics, Task analysis, Dynamics, Correntropy, pedestrian trajectory prediction BibRef

Zhang, Z.M.[Zheng-Ming], Ding, Z.M.[Zheng-Ming], Tian, R.[Renran],
Decouple Ego-View Motions for Predicting Pedestrian Trajectory and Intention,
IP(33), 2024, pp. 4716-4727.
IEEE DOI 2409
Pedestrians, Trajectory, Predictive models, Autonomous vehicles, Roads, Cameras, Automobiles, Pedestrian trajectory prediction, pedestrian intention BibRef

Nayak, A.[Anshul], Eskandarian, A.[Azim], Doerzaph, Z.[Zachary], Ghorai, P.[Prasenjit],
Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing Uncertainty,
ITS(25), No. 9, September 2024, pp. 11317-11329.
IEEE DOI 2409
Trajectory, Uncertainty, Predictive models, Probabilistic logic, Artificial neural networks, Sensors, Pedestrians, MC dropout BibRef

Han, X.[Xiao], Zhang, X.F.[Xin-Feng], Wu, Y.L.[Yi-Ling], Zhang, Z.D.[Zhen-Duo], Zhang, T.Y.[Tian-Yu], Wang, Y.W.[Yao-Wei],
Knowledge-Based Multiple Relations Modeling for Traffic Forecasting,
ITS(25), No. 9, September 2024, pp. 11844-11857.
IEEE DOI Code:
WWW Link. 2409
Forecasting, Knowledge graphs, Correlation, Predictive models, Tail, Spatiotemporal phenomena, Knowledge based systems, self-attention BibRef

Kang, M.[Miao], Wang, S.Q.[Sheng-Qi], Zhou, S.P.[San-Ping], Ye, K.[Ke], Jiang, J.J.[Jing-Jing], Zheng, N.N.[Nan-Ning],
FFINet: Future Feedback Interaction Network for Motion Forecasting,
ITS(25), No. 9, September 2024, pp. 12285-12296.
IEEE DOI 2409
Trajectory, Forecasting, Vectors, Predictive models, Feedforward systems, Feature extraction, Vehicles, cross-temporal aggregation BibRef

Wu, Q.[Qi], Zhou, S.P.[San-Ping], Wang, L.[Le], Shi, L.[Liushuai], Dong, Y.H.[Yong-Hao], Hua, G.[Gang],
End-to-end pedestrian trajectory prediction via Efficient Multi-modal Predictors,
CVIU(248), 2024, pp. 104107.
Elsevier DOI 2409
Pedestrian trajectory prediction, Multimodal prediction, Parallel predictors BibRef

Gawande, U.[Ujwalla], Hajari, K.[Kamal], Golhar, Y.[Yogesh],
Deep learning approach to pedestrian detection and path prediction,
IJCVR(14), No. 6, 2024, pp. 693-714.
DOI Link 2410
BibRef

Uhlemann, N.[Nico], Fent, F.[Felix], Lienkamp, M.[Markus],
Evaluating Pedestrian Trajectory Prediction Methods With Respect to Autonomous Driving,
ITS(25), No. 10, October 2024, pp. 13937-13946.
IEEE DOI 2410
Trajectory, Pedestrians, History, Predictive models, Neural networks, Measurement, Benchmark testing, Autonomous vehicles, runtime BibRef

Feng, A.[Ang], Han, C.[Cheng], Gong, J.[Jun], Yi, Y.[Yang], Qiu, R.Q.[Rui-Qi], Cheng, Y.[Yang],
Multi-Scale Learnable Gabor Transform for Pedestrian Trajectory Prediction From Different Perspectives,
ITS(25), No. 10, October 2024, pp. 13253-13263.
IEEE DOI 2410
Trajectory, Pedestrians, Transforms, Predictive models, Time-frequency analysis, Task analysis, Computer architecture, multi-scale feature dimension enhancement module BibRef

Ling, Y.C.[Yan-Cheng], Ma, Z.[Zhenliang], Zhang, Q.[Qi], Xie, B.Q.[Bang-Quan], Weng, X.X.[Xiao-Xiong],
PedAST-GCN: Fast Pedestrian Crossing Intention Prediction Using Spatial-Temporal Attention Graph Convolution Networks,
ITS(25), No. 10, October 2024, pp. 13277-13290.
IEEE DOI 2410
Pedestrians, Predictive models, Data models, Feature extraction, Computational modeling, Skeleton, Data mining, video image data BibRef

Liu, H.[Hui], Liu, C.S.[Chun-Sheng], Chang, F.[Faliang], Lu, Y.[Yansha], Liu, M.[Minhang],
Egocentric Vulnerable Road Users Trajectory Prediction With Incomplete Observation,
ITS(25), No. 10, October 2024, pp. 13694-13705.
IEEE DOI 2410
Trajectory, Feature extraction, Training, Roads, Pedestrians, Long short term memory, Encoding, Incomplete observation, feature fusion BibRef

Wang, K.[Kehao], Zou, H.[Han],
Social-ATPGNN: Prediction of multi-modal pedestrian trajectory of non-homogeneous social interaction,
IET-CV(18), No. 7, 2024, pp. 907-921.
DOI Link 2411
convolutional neural nets BibRef

Khel, M.H.K.[Muhammad Haris Kaka], Greaney, P.[Paul], McAfee, M.[Marion], Moffett, S.[Sandra], Meehan, K.[Kevin],
GSTGM: Graph, spatial-temporal attention and generative based model for pedestrian multi-path prediction,
IVC(151), 2024, pp. 105245.
Elsevier DOI 2411
Pedestrians trajectory, Multipaths, Graph convolutional network, Attentions, Computer vision BibRef

Wang, H.M.[Hong-Mei], Xing, S.[Sheng], Wang, Z.W.[Zhi-Wei], Min, M.H.[Ming-Hui], Li, S.Y.[Shi-Yin],
Multi-System Fusion Positioning Method Based on Factor Graph,
SPLetters(31), 2024, pp. 3025-3029.
IEEE DOI 2411
Location awareness, Jacobian matrices, Sensors, Trajectory, Accuracy, Pedestrians, Mathematical models, Sensor systems, multi-system fusion BibRef

Dong, Y.H.[Yong-Hao], Wang, L.[Le], Zhou, S.P.[San-Ping], Hua, G.[Gang], Sun, C.Y.[Chang-Yin],
Sparse Pedestrian Character Learning for Trajectory Prediction,
MultMed(26), 2024, pp. 11070-11082.
IEEE DOI 2412
Trajectory, Pedestrians, Predictive models, Cameras, Degradation, Accuracy, Long short term memory, sparse pedestrian character learning BibRef

Li, L.H.[Lin-Hui], Lin, X.T.[Xiao-Tong], Huang, Y.[Yejia], Zhang, Z.Z.[Zi-Zhen], Hu, J.F.[Jian-Fang],
Beyond Minimum-of-N: Rethinking the Evaluation and Methods of Pedestrian Trajectory Prediction,
CirSysVideo(34), No. 12, December 2024, pp. 12880-12893.
IEEE DOI 2501
Trajectory, Measurement, Predictive models, Pedestrians, Computational modeling, Accuracy, MoN-ADE BibRef

Mei, L.[Ling], Fu, M.Y.[Ming-Yu], Wang, B.J.[Bing-Jie], Jia, L.X.[Lv-Xiang], Yu, M.Y.[Ming-Yu], Zhang, Y.[Yu], Zhang, L.J.[Li-Jun],
LSN-GTDA: Learning Symmetrical Network via Global Thermal Diffusion Analysis for Pedestrian Trajectory Prediction in Unmanned Aerial Vehicle Scenarios,
RS(17), No. 1, 2025, pp. 154.
DOI Link 2501
BibRef


Yin, W.Q.[Wan-Qi], Cai, Z.A.[Zhong-Ang], Wang, R.[Ruisi], Wang, F.Z.[Fan-Zhou], Wei, C.[Chen], Mei, H.[Haiyi], Xiao, W.[Weiye], Yang, Z.T.[Zhi-Tao], Sun, Q.P.[Qing-Ping], Yamashita, A.[Atsushi], Liu, Z.W.[Zi-Wei], Yang, L.[Lei],
WHAC: World-Grounded Humans and Cameras,
ECCV24(XXXIV: 20-37).
Springer DOI 2412
Code:
WWW Link. Trajectory in real-world coordinates. BibRef

Lin, X.T.[Xiao-Tong], Liang, T.M.[Tian-Ming], Lai, J.H.[Jian-Huang], Hu, J.F.[Jian-Fang],
Progressive Pretext Task Learning for Human Trajectory Prediction,
ECCV24(XXX: 197-214).
Springer DOI 2412
BibRef

Lee, S.J.[Seong-Ju], Lee, J.[Junseok], Yu, Y.[Yeonguk], Kim, T.[Taeri], Lee, K.[Kyoobin],
Mart: Multiscale Relational Transformer Networks for Multi-agent Trajectory Prediction,
ECCV24(LXVI: 89-107).
Springer DOI 2412
BibRef

Wang, Y.[Yufu], Wang, Z.Y.[Zi-Yun], Liu, L.J.[Ling-Jie], Daniilidis, K.[Kostas],
Tram: Global Trajectory and Motion of 3d Humans from in-the-wild Videos,
ECCV24(XI: 467-487).
Springer DOI 2412
BibRef

Thakkar, N.[Neerja], Mangalam, K.[Karttikeya], Bajcsy, A.[Andrea], Malik, J.[Jitendra],
Adaptive Human Trajectory Prediction via Latent Corridors,
ECCV24(XXXVIII: 297-314).
Springer DOI 2412
BibRef

Zhang, L.[Liang], Xu, N.[Nathaniel], Yang, P.F.[Peng-Fei], Jin, G.[Gaojie], Huang, C.C.[Cheng-Chao], Zhang, L.J.[Li-Jun],
TrajPAC: Towards Robustness Verification of Pedestrian Trajectory Prediction Models,
ICCV23(8293-8305)
IEEE DOI 2401
BibRef

Wang, J.B.[Jing-Bo], Luo, Z.Y.[Zheng-Yi], Yuan, Y.[Ye], Li, Y.X.[Yi-Xuan], Dai, B.[Bo],
PACER+: On-Demand Pedestrian Animation Controller in Driving Scenarios,
CVPR24(718-728)
IEEE DOI 2410
Pedestrians, Tracking, Diversity reception, Controllability, Animation, Trajectory BibRef

Bae, I.[Inhwan], Lee, J.[Junoh], Jeon, H.G.[Hae-Gon],
Can Language Beat Numerical Regression? Language-Based Multimodal Trajectory Prediction,
CVPR24(753-766)
IEEE DOI Code:
WWW Link. 2410
Pedestrians, Computational modeling, Stochastic processes, Predictive models, Multitasking, Data models, Cognition, multi agent BibRef

Lin, H.Z.[Hao-Zhe], Wei, C.Y.[Chun-Yu], He, L.[Li], Guo, Y.C.[Yu-Chen], Zhao, Y.Q.[Yun-Qi], Li, S.[Shanglong], Fang, L.[Lu],
GigaTraj: Predicting Long-term Trajectories of Hundreds of Pedestrians in Gigapixel Complex Scenes,
CVPR24(19331-19340)
IEEE DOI 2410
Bridges, Pedestrians, Annotations, Computational modeling, Semantics, Predictive models BibRef

Li, H.[He], Ye, M.[Mang], Zhang, M.[Ming], Du, B.[Bo],
All in One Framework for Multimodal Re-Identification in the Wild,
CVPR24(17459-17469)
IEEE DOI Code:
WWW Link. 2410
Codes, Feature extraction, Trajectory, Data mining, Person ReID, Multimodal Learning BibRef

Wang, K.L.[Kuan-Lin], Tsao, L.W.[Li-Wu], Wu, J.C.[Jhih-Ciang], Shuai, H.H.[Hong-Han], Cheng, W.H.[Wen-Huang],
TrajFine: Predicted Trajectory Refinement for Pedestrian Trajectory Forecasting,
WAD24(4483-4492)
IEEE DOI 2410
Training, Pedestrians, Force, Predictive models, Benchmark testing, Trajectory Prediction, Diffusion Model BibRef

Kim, S.[Sungjune], Chi, H.G.[Hyung-Gun], Lim, H.[Hyerin], Ramani, K.[Karthik], Kim, J.[Jinkyu], Kim, S.[Sangpil],
Higher-order Relational Reasoning for Pedestrian Trajectory Prediction,
CVPR24(15251-15260)
IEEE DOI 2410
Pedestrians, Accuracy, Aggregates, Predictive models, Cognition, Social factors, Trajectory, Trajectory Prediction, Graph Convolutional Network BibRef

Shi, L.S.[Liu-Shuai], Wang, L.[Le], Zhou, S.P.[San-Ping], Hua, G.[Gang],
Trajectory Unified Transformer for Pedestrian Trajectory Prediction,
ICCV23(9641-9650)
IEEE DOI 2401
BibRef

Damirchi, H.[Haleh], Greenspan, M.[Michael], Etemad, A.[Ali],
Context-Aware Pedestrian Trajectory Prediction with Multimodal Transformer,
ICIP23(2535-2539)
IEEE DOI 2312
BibRef

Jeon, Y.[Yuntae], Tran, D.Q.[Dai Quoc], Park, M.S.[Min-Soo], Park, S.[Seunghee],
Leveraging Future Trajectory Prediction for Multi-Camera People Tracking,
AICity23(5399-5408)
IEEE DOI 2309
BibRef

Gu, J.[Junru], Hu, C.X.[Chen-Xu], Zhang, T.Y.[Tian-Yuan], Chen, X.[Xuanyao], Wang, Y.L.[Yi-Lun], Wang, Y.[Yue], Zhao, H.[Hang],
ViP3D: End-to-End Visual Trajectory Prediction via 3D Agent Queries,
CVPR23(5496-5506)
IEEE DOI 2309
BibRef

Xu, Y.[Yi], Bazarjani, A.[Armin], Chi, H.G.[Hyung-Gun], Choi, C.[Chiho], Fu, Y.[Yun],
Uncovering the Missing Pattern: Unified Framework Towards Trajectory Imputation and Prediction,
CVPR23(9632-9643)
IEEE DOI 2309
BibRef

Bae, I.[Inhwan], Park, J.H.[Jin-Hwi], Jeon, H.G.[Hae-Gon],
Learning Pedestrian Group Representations for Multi-modal Trajectory Prediction,
ECCV22(XXII:270-289).
Springer DOI 2211
BibRef

Huynh, M.[Manh], Alaghband, G.[Gita],
Online Adaptive Temporal Memory with Certainty Estimation for Human Trajectory Prediction,
WACV23(940-949)
IEEE DOI 2302
Adaptation models, Navigation, Computational modeling, Dynamics, Estimation, Predictive models, Robotics BibRef

Chen, J.Y.[Jiu-Yu], Wang, Z.L.[Zhong-Li], Wang, J.[Jian],
OA-STGCN: An Output Anchoring-based Graph Convolutional Network for Human Trajectory Prediction,
ICRVC22(320-324)
IEEE DOI 2301
Measurement, Convolution, Decision making, Psychology, Prediction methods, Prediction algorithms, Trajectory, trajectory prediction BibRef

Li, L.[Lihuan], Pagnucco, M.[Maurice], Song, Y.[Yang],
Graph-based Spatial Transformer with Memory Replay for Multi-future Pedestrian Trajectory Prediction,
CVPR22(2221-2231)
IEEE DOI 2210
Robot motion, Analytical models, Smoothing methods, Computational modeling, Predictive models, Transformers, Video analysis and understanding BibRef

Song, Y.[Yue], Bisagno, N.[Niccoló], Hassan, S.Z.[Syed Zohaib], Conci, N.[Nicola],
AG-GAN: An Attentive Group-Aware GAN for pedestrian trajectory prediction,
ICPR21(8703-8710)
IEEE DOI 2105
Predictive models, Benchmark testing, Generative adversarial networks, Trajectory, History BibRef

Shi, L.S.[Liu-Shuai], Wang, L.[Le], Long, C.J.[Cheng-Jiang], Zhou, S.P.[San-Ping], Zhou, M.[Mo], Niu, Z.X.[Zhen-Xing], Hua, G.[Gang],
SGCN: Sparse Graph Convolution Network for Pedestrian Trajectory Prediction,
CVPR21(8990-8999)
IEEE DOI 2111
Legged locomotion, Adaptation models, Visualization, Convolution, Predictive models, Trajectory BibRef

Dendorfer, P.[Patrick], Elflein, S.[Sven], Leal-Taixé, L.[Laura],
MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction,
ICCV21(13138-13147)
IEEE DOI 2203
Measurement, Predictive models, Generative adversarial networks, Routing, Generators, BibRef

Bi, H.K.[Hui-Kun], Zhang, R.[Ruisi], Mao, T.L.[Tian-Lu], Deng, Z.G.[Zhi-Gang], Wang, Z.Q.[Zhao-Qi],
How Can I See My Future? FvTraj: Using First-person View for Pedestrian Trajectory Prediction,
ECCV20(VII:576-593).
Springer DOI 2011
BibRef

Yu, C.J.[Cun-Jun], Ma, X.[Xiao], Ren, J.W.[Jia-Wei], Zhao, H.[Haiyu], Yi, S.[Shuai],
Spatio-temporal Graph Transformer Networks for Pedestrian Trajectory Prediction,
ECCV20(XII: 507-523).
Springer DOI 2010
BibRef

Styles, O., Guha, T., Sanchez, V., Kot, A.C.,
Multi-Camera Trajectory Forecasting: Pedestrian Trajectory Prediction in a Network of Cameras,
Precognition20(4379-4382)
IEEE DOI 2008
Cameras, Trajectory, Task analysis, Forecasting, Databases, Computational modeling, Object detection BibRef

Habibi, G., Jaipuria, N., How, J.P.,
SILA: An Incremental Learning Approach for Pedestrian Trajectory Prediction,
Precognition20(4411-4421)
IEEE DOI 2008
Trajectory, Hidden Markov models, Training, Prediction algorithms, Data models, Predictive models, Encoding BibRef

Xue, H.[Hao], Huynh, D.[Du], Reynolds, M.[Mark],
Location-Velocity Attention for Pedestrian Trajectory Prediction,
WACV19(2038-2047)
IEEE DOI 1904
BibRef
Earlier:
SS-LSTM: A Hierarchical LSTM Model for Pedestrian Trajectory Prediction,
WACV18(1186-1194)
IEEE DOI 1806
BibRef
And:
Bi-Prediction: Pedestrian Trajectory Prediction Based on Bidirectional LSTM Classification,
DICTA17(1-8)
IEEE DOI 1804
learning (artificial intelligence), pedestrians, recurrent neural nets, pedestrian trajectory prediction, Task analysis. feature extraction, image recognition, learning (artificial intelligence), neural nets, Trajectory. image classification, object detection. BibRef

Hasan, I., Setti, F., Tsesmelis, T., del Bue, A., Cristani, M., Galasso, F.,
'Seeing is Believing': Pedestrian Trajectory Forecasting Using Visual Frustum of Attention,
WACV18(1178-1185)
IEEE DOI 1806
image motion analysis, minimisation, pedestrians, pose estimation, collision avoidance, destination point, expected destination, Visualization BibRef

Maki, A.[Atsuto], Seki, A.[Akihito], Watanabe, T.[Tomoki], Cipolla, R.[Roberto],
Co-occurrence flow for pedestrian detection,
ICIP11(1889-1892).
IEEE DOI 1201
BibRef

Galasso, F.[Fabio], Iwasaki, M.[Masahiro], Nobori, K.[Kunio], Cipolla, R.[Roberto],
Spatio-temporal clustering of probabilistic region trajectories,
ICCV11(1738-1745).
IEEE DOI 1201
for pedestrian trajectories BibRef

Ricci, E.[Elisa], Tobia, F.[Francesco], Zen, G.[Gloria],
Learning Pedestrian Trajectories with Kernels,
ICPR10(149-152).
IEEE DOI 1008
BibRef

Nishio, S.[Shuichi], Okamoto, H.[Hiromi], Babaguchi, N.[Noboru],
Hierarchical Anomality Detection Based on Situation,
ICPR10(1108-1111).
IEEE DOI 1008
Pedestrian trajectories. BibRef

Ellis, D.[David], Sommerlade, E.[Eric], Reid, I.D.[Ian D.],
Modelling pedestrian trajectory patterns with Gaussian processes,
VS09(1229-1234).
IEEE DOI 0910

See also Action recognition using shared motion parts. BibRef

Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Crowds, Tracking Multiple People, Multiple Pedestrian Tracking .


Last update:Jan 15, 2025 at 14:36:47