Schlegel, C.[Christian],
Illmann, J.[Jörg],
Jaberg, H.[Heiko],
Schuster, M.[Matthias],
Wörz, R.[Robert],
Integrating Vision-Based Behaviors with an Autonomous Robot,
Videre(1), No. 4, Winter 2000, pp. xx-yy.
0005
BibRef
Earlier:
CVS99(1 ff.).
Springer DOI
0209
BibRef
Earlier:
Vision Based Person Tracking with a Mobile Robot,
BMVC98(xx-yy).
BibRef
Ling, H.[Huang],
Wu, J.P.[Jian-Ping],
A study on cyclist behavior at signalized intersections,
ITS(5), No. 4, December 2004, pp. 293-299.
IEEE Abstract.
0501
BibRef
Jung, H.G.,
Kwak, B.M.,
Shim, J.S.,
Yoon, P J.,
Kim, J.,
Precrash Dipping Nose (PCDN) Needs Pedestrian Recognition,
ITS(9), No. 4, December 2008, pp. 678-687.
IEEE DOI
0812
BibRef
Sidla, O.[Oliver],
Improved pedestrian tracking for urban planning,
SPIE(Newsroom), December 17, 2009.
DOI Link
0912
Enhanced image-analysis methods enable new applications for
public-transport scheduling, traffic control, and safety monitoring.
BibRef
Treuillet, S.[Sylvie],
Royer, E.[Eric],
Outdoor/indoor Vision-based Localization For Blind Pedestrian
Navigation Assistance,
IJIG(10), No. 4, October 2010, pp. 481-496.
DOI Link
1101
BibRef
Greene, D.,
Liu, J.,
Reich, J.,
Hirokawa, Y.,
Shinagawa, A.,
Ito, H.,
Mikami, T.,
An Efficient Computational Architecture for a Collision Early-Warning
System for Vehicles, Pedestrians, and Bicyclists,
ITS(12), No. 4, December 2011, pp. 942-953.
IEEE DOI
1112
BibRef
Keller, C.G.,
Dang, T.,
Fritz, H.,
Joos, A.,
Rabe, C.,
Gavrila, D.M.,
Active Pedestrian Safety by Automatic Braking and Evasive Steering,
ITS(12), No. 4, December 2011, pp. 1292-1304.
IEEE DOI
1112
BibRef
Pedestrians tracked for scheduling, traffic control, and safety,
VisSys(16), No. 2, February 2011.
HTML Version. News item refrencing SLR Engineering work.
See also SLR Engineering.
BibRef
1102
Zhang, Y.,
Yao, D.,
Qiu, T.Z.,
Peng, L.,
Zhang, Y.,
Pedestrian Safety Analysis in Mixed Traffic Conditions Using Video Data,
ITS(13), No. 4, December 2012, pp. 1832-1844.
IEEE DOI
1212
BibRef
Xu, Y.,
Xu, D.,
Lin, S.,
Han, T.X.,
Cao, X.,
Li, X.,
Detection of Sudden Pedestrian Crossings for Driving Assistance Systems,
SMC-B(42), No. 3, June 2012, pp. 729-739.
IEEE DOI
1202
BibRef
Kataoka, H.[Hirokatsu],
Tamura, K.[Kimimasa],
Iwata, K.[Kenji],
Satoh, Y.[Yutaka],
Matsui, Y.[Yasuhiro],
Aoki, Y.[Yoshimitsu],
Extended Feature Descriptor and Vehicle Motion Model with
Tracking-by-Detection for Pedestrian Active Safety,
IEICE(E97-D), No. 2, February 2013, pp. 296-304.
WWW Link.
1402
BibRef
Kataoka, H.[Hirokatsu],
Hashimoto, K.[Kiyoshi],
Iwata, K.[Kenji],
Satoh, Y.[Yutaka],
Navab, N.[Nassir],
Ilic, S.[Slobodan],
Aoki, Y.[Yoshimitsu],
Extended Co-occurrence HOG with Dense Trajectories for Fine-Grained
Activity Recognition,
ACCV14(V: 336-349).
Springer DOI
1504
BibRef
Borges, P.V.K.,
Zlot, R.,
Tews, A.,
Integrating Off-Board Cameras and Vehicle On-Board Localization
for Pedestrian Safety,
ITS(14), No. 2, 2013, pp. 720-730.
IEEE DOI
1307
Navigation; Safety; Tracking; Autonomous vehicles; pedestrian detection
BibRef
Prioletti, A.,
Mogelmose, A.,
Grisleri, P.,
Trivedi, M.M.,
Broggi, A.,
Moeslund, T.B.,
Part-Based Pedestrian Detection and Feature-Based Tracking for Driver
Assistance: Real-Time, Robust Algorithms, and Evaluation,
ITS(14), No. 3, 2013, pp. 1346-1359.
IEEE DOI
1309
Advanced driver assistance system (ADAS)
BibRef
Zhang, Y.,
Yao, D.,
Qiu, T.Z.,
Peng, L.,
Scene-based pedestrian safety performance model in mixed traffic
situation,
IET-ITS(8), No. 3, May 2014, pp. 209-218.
DOI Link
1407
BibRef
Vazquez, D.[David],
Lopez, A.M.[Antonio M.],
Marin, J.,
Ponsa, D.[Daniel],
Geronimo, D.,
Virtual and Real World Adaptationfor Pedestrian Detection,
PAMI(36), No. 4, April 2014, pp. 797-809.
IEEE DOI
1404
BibRef
Earlier: A1, A2, A4, Only:
Unsupervised domain adaptation of virtual and real worlds for
pedestrian detection,
ICPR12(3492-3495).
WWW Link.
1302
Accuracy
BibRef
Geronimo, D.[David],
Lopez, A.M.[Antonio M.],
Vision-based Pedestrian Protection Systems for Intelligent Vehicles,
Harris, M.,
A cheaper way for robocars to avoid pedestrians,
Spectrum(52), No. 7, July 2015, pp. 16-16.
IEEE DOI
1507
BibRef
Pham, T.Q.,
Nakagawa, C.,
Shintani, A.,
Ito, T.,
Evaluation of the Effects of a Personal Mobility Vehicle on Multiple
Pedestrians Using Personal Space,
ITS(16), No. 4, August 2015, pp. 2028-2037.
IEEE DOI
1508
Indexes
BibRef
Said, Y.,
Atri, M.,
Efficient and high-performance pedestrian detector implementation for
intelligent vehicles,
IET-ITS(10), No. 6, 2016, pp. 438-444.
DOI Link
1608
computer vision
BibRef
Li, F.L.[Fu-Liang],
Zhang, R.H.[Rong-Hui],
You, F.[Feng],
Fast pedestrian detection and dynamic tracking for intelligent vehicles
within V2V cooperative environment,
IET-IPR(11), No. 10, October 2017, pp. 833-840.
DOI Link
1710
BibRef
Jeong, M.,
Ko, B.C.,
Nam, J.Y.,
Early Detection of Sudden Pedestrian Crossing for Safe Driving During
Summer Nights,
CirSysVideo(27), No. 6, June 2017, pp. 1368-1380.
IEEE DOI
1706
Cameras, Feature extraction, Finite impulse response filters,
Image color analysis, Roads, Support vector machines, Vehicles,
Cascade random forest (CaRF),
Keimyung University (KMU) pedestrian data set,
far-infrared (FIR) image, sudden pedestrian crossing (SPC),
virtual reference line
BibRef
Rosado, A.L.[A. López],
Chien, S.,
Li, L.,
Yi, Q.,
Chen, Y.,
Sherony, R.,
Certainty and Critical Speed for Decision Making in Tests of
Pedestrian Automatic Emergency Braking Systems,
ITS(18), No. 6, June 2017, pp. 1358-1370.
IEEE DOI
1706
Analytical models, Automobiles, Computer crashes, Decision making,
Safety, Vehicle crash testing, Pedestrian protection,
active safety margin, critical speed for decision making,
prediction, model
BibRef
Doric, I.,
Reitberger, A.,
Wittmann, S.,
Harrison, R.,
Brandmeier, T.,
A Novel Approach for the Test of Active Pedestrian Safety Systems,
ITS(18), No. 5, May 2017, pp. 1299-1312.
IEEE DOI
1705
Accidents, Knee, Legged locomotion, Microscopy, Roads, Safety,
Sensor systems, ADAS, pedestrian detection,
BibRef
Tang, S.[Suhua],
Obana, S.[Sadao],
Improving performance of pedestrian positioning
by using vehicular communication signals,
IET-ITS(12), No. 5, June 2018, pp. 366-374.
DOI Link
1805
BibRef
Bhat, A.,
Aoki, S.,
Rajkumar, R.,
Tools and Methodologies for Autonomous Driving Systems,
PIEEE(106), No. 9, September 2018, pp. 1700-1716.
IEEE DOI
1810
automobiles, embedded systems, mobile robots, pedestrians,
road safety, safety-critical software, verification,
software tools
BibRef
Strawderman, L.J.,
Campbell, B.S.,
May, D.C.,
Bethel, C.L.,
Usher, J.M.,
Carruth, D.W.,
Understanding Human Response to the Presence and Actions of Unmanned
Ground Vehicle Systems in Field Environment,
HMS(48), No. 4, August 2018, pp. 325-336.
IEEE DOI
1808
human-robot interaction, mobile robots, pedestrians,
remotely operated vehicles, sport, video signal processing,
remotely operated vehicles
BibRef
Deb, S.,
Rahman, M.M.,
Strawderman, L.J.,
Garrison, T.M.,
Pedestrians' Receptivity Toward Fully Automated Vehicles:
Research Review and Roadmap for Future Research,
HMS(48), No. 3, June 2018, pp. 279-290.
IEEE DOI
1805
More the reaction to no driver.
Automation, Automobiles, Legged locomotion, Roads,
Vehicle crash testing, Autonomous vehicles,
virtual reality (VR)
BibRef
Flores, C.,
Merdrignac, P.,
de Charette, R.,
Navas, F.,
Milanés, V.,
Nashashibi, F.,
A Cooperative Car-Following/Emergency Braking System With
Prediction-Based Pedestrian Avoidance Capabilities,
ITS(20), No. 5, May 2019, pp. 1837-1846.
IEEE DOI
1905
Laser radar, Global Positioning System, Kalman filters,
Image segmentation, Urban areas, Safety, Cooperative systems,
collision avoidance system
BibRef
Coscia, P.[Pasquale],
Castaldo, F.[Francesco],
Palmieri, F.A.N.[Francesco A.N.],
Alahi, A.[Alexandre],
Savarese, S.[Silvio],
Ballan, L.[Lamberto],
Long-term path prediction in urban scenarios using circular
distributions,
IVC(69), 2018, pp. 81-91.
Elsevier DOI
1802
Predict near-future for pedestrians, etc.
Long-term path prediction, Circular distribution,
Human-scene interaction, Stochastic model
BibRef
Deb, S.,
Carruth, D.W.,
Hudson, C.R.,
How Communicating Features can Help Pedestrian Safety in the Presence
of Self-Driving Vehicles: Virtual Reality Experiment,
HMS(50), No. 2, April 2020, pp. 176-186.
IEEE DOI
2004
Autonomous vehicles (AVs), communicating features,
human-automation interaction, pedestrian safety, virtual reality (VR)
BibRef
Goldhammer, M.,
Köhler, S.,
Zernetsch, S.,
Doll, K.,
Sick, B.,
Dietmayer, K.,
Intentions of Vulnerable Road Users: Detection and Forecasting by
Means of Machine Learning,
ITS(21), No. 7, July 2020, pp. 3035-3045.
IEEE DOI
2007
Trajectory, Predictive models, Hidden Markov models, Roads, Cameras,
Machine learning, Time series analysis, Road safety,
artificial neural networks
BibRef
Yu, B.,
Zhu, K.,
Wu, K.,
Zhang, M.,
Improved OpenCL-Based Implementation of Social Field Pedestrian Model,
ITS(21), No. 7, July 2020, pp. 2828-2839.
IEEE DOI
2007
Computational modeling, Graphics processing units, Force,
Numerical models, Legged locomotion,
pedestrian flow
BibRef
Liberto, C.[Carlo],
Nigro, M.[Marialisa],
Carrese, S.[Stefano],
Mannini, L.[Livia],
Valenti, G.[Gaetano],
Zarelli, C.[Cristiano],
Simulation framework for pedestrian dynamics: modelling and calibration,
IET-ITS(14), No. 9, September 2020, pp. 1048-1057.
DOI Link
2008
BibRef
Zhou, Z.P.[Zhu-Ping],
Peng, Y.L.[Yun-Long],
Cai, Y.F.[Yi-Fei],
Vision-based approach for predicting the probability of
vehicle-pedestrian collisions at intersections,
IET-ITS(14), No. 11, November 2020, pp. 1447-1455.
DOI Link
2010
BibRef
Elhenawy, M.[Mohammed],
Ashqar, H.I.[Huthaifa I.],
Masoud, M.[Mahmoud],
Almannaa, M.H.[Mohammed H.],
Rakotonirainy, A.[Andry],
Rakha, H.A.[Hesham A.],
Deep Transfer Learning for Vulnerable Road Users Detection using
Smartphone Sensors Data,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Hou, L.,
Xin, L.,
Li, S.E.,
Cheng, B.,
Wang, W.,
Interactive Trajectory Prediction of Surrounding Road Users for
Autonomous Driving Using Structural-LSTM Network,
ITS(21), No. 11, November 2020, pp. 4615-4625.
IEEE DOI
2011
Trajectory, Roads, Predictive models, Prototypes,
Computational modeling, Decoding, Autonomous vehicles,
LSTM
BibRef
Rasouli, A.,
Tsotsos, J.K.,
Autonomous Vehicles That Interact With Pedestrians:
A Survey of Theory and Practice,
ITS(21), No. 3, March 2020, pp. 900-918.
IEEE DOI
2003
Survey, Pedestrian Detection. Autonomous vehicles, Roads, Cameras, Automobiles, Observers,
pedestrian behavior, traffic interaction, survey
BibRef
Gilroy, S.[Shane],
Jones, E.[Edward],
Glavin, M.[Martin],
Overcoming Occlusion in the Automotive Environment: A Review,
ITS(22), No. 1, January 2021, pp. 23-35.
IEEE DOI
2012
Automotive engineering, Object recognition, Object detection,
Roads, Cognition, Task analysis, Automation, Occlusion handling,
autonomous vehicles
BibRef
Pugh, N.[Nigel],
Park, H.[Hyoshin],
Derjany, P.[Pierrot],
Liu, D.[Dahai],
Namilae, S.[Sirish],
Deep adaptive learning for safe and efficient navigation of
pedestrian dynamics,
IET-ITS(15), No. 4, 2021, pp. 538-548.
DOI Link
2106
BibRef
Yu, K.P.[Ke-Ping],
Lin, L.[Long],
Alazab, M.[Mamoun],
Tan, L.[Liang],
Gu, B.[Bo],
Deep Learning-Based Traffic Safety Solution for a Mixture of
Autonomous and Manual Vehicles in a 5G-Enabled Intelligent
Transportation System,
ITS(22), No. 7, July 2021, pp. 4337-4347.
IEEE DOI
2107
Vehicles, Hidden Markov models, Safety, Manuals,
5G mobile communication, Real-time systems, Autonomous vehicles,
intention recognition
BibRef
Xu, Q.[Qing],
Wu, H.R.[Hao-Ran],
Wang, J.Q.[Jian-Qiang],
Xiong, H.[Hui],
Liu, J.X.[Jin-Xin],
Li, K.Q.[Ke-Qiang],
Roadside pedestrian motion prediction using Bayesian methods and
particle filter,
IET-ITS(15), No. 9, 2021, pp. 1167-1182.
DOI Link
2108
BibRef
Camara, F.[Fanta],
Bellotto, N.[Nicola],
Cosar, S.[Serhan],
Nathanael, D.[Dimitris],
Althoff, M.[Matthias],
Wu, J.Y.[Jing-Yuan],
Ruenz, J.[Johannes],
Dietrich, A.[André],
Fox, C.W.[Charles W.],
Pedestrian Models for Autonomous Driving Part I:
Low-Level Models, From Sensing to Tracking,
ITS(22), No. 10, October 2021, pp. 6131-6151.
IEEE DOI
2110
BibRef
And:
Erratum:
ITS(22), No. 11, November 2021, pp. 7317-7317.
IEEE DOI
2112
Sensors, Cameras, Psychology, Autonomous vehicles, Predictive models,
Computational modeling, Review, survey, pedestrians,
datasets
BibRef
Camara, F.[Fanta],
Bellotto, N.[Nicola],
Cosar, S.[Serhan],
Weber, F.[Florian],
Nathanael, D.[Dimitris],
Althoff, M.[Matthias],
Wu, J.Y.[Jing-Yuan],
Ruenz, J.[Johannes],
Dietrich, A.[André],
Markkula, G.[Gustav],
Schieben, A.[Anna],
Tango, F.[Fabio],
Merat, N.[Natasha],
Fox, C.[Charles],
Pedestrian Models for Autonomous Driving Part II: High-Level Models
of Human Behavior,
ITS(22), No. 9, September 2021, pp. 5453-5472.
IEEE DOI
2109
BibRef
And:
Erratum:
ITS(22), No. 11, November 2021, pp. 7317-7317.
IEEE DOI
2112
Predictive models, Trajectory, Hidden Markov models,
Autonomous vehicles, Psychology, Legged locomotion,
datasets
BibRef
Ibrahim, M.R.[Mohamed R.],
Haworth, J.[James],
Christie, N.[Nicola],
Cheng, T.[Tao],
CyclingNet: Detecting cycling near misses from video streams in
complex urban scenes with deep learning,
IET-ITS(15), No. 10, 2021, pp. 1331-1344.
DOI Link
2109
action recognition, cycling near misses, deep learning, video streams
BibRef
Tran, T.T.M.[Tram Thi Minh],
Parker, C.[Callum],
Tomitsch, M.[Martin],
A Review of Virtual Reality Studies on Autonomous Vehicle-Pedestrian
Interaction,
HMS(51), No. 6, December 2021, pp. 641-652.
IEEE DOI
2112
Safety, Autonomous vehicles, Virtual reality, Autonomous vehicles,
external human-machine interfaces, pedestrians, virtual reality
BibRef
Galinskaite, L.[Lina],
Ulevicius, A.[Alius],
Valskys, V.[Vaidotas],
Samas, A.[Arunas],
Busher, P.E.[Peter E.],
Ignatavicius, G.[Gytautas],
The Influence of Landscape Structure on Wildlife-Vehicle
Collisions: Geostatistical Analysis on Hot Spot and Habitat Proximity
Relations,
IJGI(11), No. 1, 2022, pp. xx-yy.
DOI Link
2201
Animals, not people.
BibRef
Zhao, S.Z.[Sheng-Zhe],
Li, H.P.[Hao-Peng],
Ke, Q.H.[Qiu-Hong],
Liu, L.C.[Liang-Chen],
Zhang, R.[Rui],
Action-ViT: Pedestrian Intent Prediction in Traffic Scenes,
SPLetters(29), 2022, pp. 324-328.
IEEE DOI
2202
Transformers, Predictive models, Feature extraction, Roads,
Task analysis, Trajectory, Legged locomotion, Intention prediction,
temporal model
BibRef
Zhang, S.L.[Shi-Le],
Abdel-Aty, M.[Mohamed],
Wu, Y.[Yina],
Zheng, O.[Ou],
Pedestrian Crossing Intention Prediction at Red-Light Using Pose
Estimation,
ITS(23), No. 3, March 2022, pp. 2331-2339.
IEEE DOI
2203
Pose estimation, Videos, Trajectory, Legged locomotion, Vehicles,
Support vector machines, Safety, Pedestrian crossing intention,
artificial intelligence (AI)
BibRef
Iwata, T.[Tomoharu],
Shimizu, H.[Hitoshi],
Marumo, N.[Naoki],
Probabilistic Pedestrian Models for Estimating Unobserved Road
Populations,
ITS(23), No. 4, April 2022, pp. 3037-3047.
IEEE DOI
2204
Roads, Sociology, Statistics, Probabilistic logic, Tomography,
Gaussian distribution, Task analysis, Pedestrian modeling,
traffic simulator
BibRef
Feng, J.[Jian],
Wang, C.Y.[Chun-Yan],
Xu, C.[Can],
Kuang, D.[Dengming],
Zhao, W.[Wanzhong],
Active Collision Avoidance Strategy Considering Motion Uncertainty of
the pedestrian,
ITS(23), No. 4, April 2022, pp. 3543-3555.
IEEE DOI
2204
Collision avoidance, Planning, Safety, Trajectory, Uncertainty,
Acceleration, Injuries, Active collision avoidance,
multi-objective evaluation
BibRef
Domeyer, J.E.[Joshua E.],
Lee, J.D.[John D.],
Toyoda, H.[Heishiro],
Mehler, B.[Bruce],
Reimer, B.[Bryan],
Interdependence in Vehicle-Pedestrian Encounters and its Implications
for Vehicle Automation,
ITS(23), No. 5, May 2022, pp. 4122-4134.
IEEE DOI
2205
Roads, Automation, Safety, Vehicles, Measurement, Accidents, Instruments,
Human factors, automation, autonomous vehicles,
pedestrian
BibRef
Zhou, S.Y.[Si-Yuan],
Sun, X.[Xu],
Liu, B.J.[Bing-Jian],
Burnett, G.[Gary],
Factors Affecting Pedestrians' Trust in Automated Vehicles:
Literature Review and Theoretical Model,
HMS(52), No. 3, June 2022, pp. 490-500.
IEEE DOI
2205
Artificial intelligence, Roads, Automation, Uncertainty, Libraries,
Environmental factors, Bibliographies, trust
BibRef
Yang, B.[Biao],
Zhan, W.Q.[Wei-Qin],
Wang, P.[Pin],
Chan, C.Y.[Ching-Yao],
Cai, Y.F.[Ying-Feng],
Wang, N.[Nan],
Crossing or Not? Context-Based Recognition of Pedestrian Crossing
Intention in the Urban Environment,
ITS(23), No. 6, June 2022, pp. 5338-5349.
IEEE DOI
2206
Trajectory, Feature extraction, Skeleton, Autonomous automobiles,
Automobiles, Spatiotemporal phenomena, Crossing intention, self-driving car
BibRef
Held, P.[Patrick],
Steinhauser, D.[Dagmar],
Koch, A.[Andreas],
Brandmeier, T.[Thomas],
Schwarz, U.T.[Ulrich T.],
A Novel Approach for Model-Based Pedestrian Tracking Using Automotive
Radar,
ITS(23), No. 7, July 2022, pp. 7082-7095.
IEEE DOI
2207
Legged locomotion, Radar, Radar tracking, Kinematics,
Feature extraction, Radar cross-sections, Foot, data association
BibRef
Yin, N.[Nan],
Singh, A.K.[Amit Kumar],
Lv, H.B.[Hai-Bin],
Personalized Situation Adaptive Human-Vehicles-Interaction (HVI)
Prediction in COVID-19 Context,
ITS(23), No. 7, July 2022, pp. 9809-9818.
IEEE DOI
2207
Transportation, Context-aware services, Adaptation models,
COVID-19, Real-time systems, Mathematical models,
DC-LSTM
BibRef
Papini, G.P.R.[Gastone Pietro Rosati],
Plebe, A.[Alice],
da Lio, M.[Mauro],
Donŕ, R.[Riccardo],
A Reinforcement Learning Approach for Enacting Cautious Behaviours in
Autonomous Driving System: Safe Speed Choice in the Interaction With
Distracted Pedestrians,
ITS(23), No. 7, July 2022, pp. 8805-8822.
IEEE DOI
2207
Vehicles, Roads, Reinforcement learning, Trajectory, Neural networks,
Autonomous vehicles, Training, Vulnerable road users,
intelligent speed adaptation
BibRef
Shen, X.[Xun],
Raksincharoensak, P.[Pongsathorn],
Pedestrian-Aware Statistical Risk Assessment,
ITS(23), No. 7, July 2022, pp. 7910-7918.
IEEE DOI
2207
Modeling, Measurement, Predictive models, Risk management, Logistics,
Analytical models, Earthquakes, Near-accident event,
logistic regression
BibRef
Li, Y.H.[You-Huizi],
Yin, Y.[Yuyu],
Chen, X.[Xu],
Wan, J.[Jian],
Jia, G.Y.[Gang-Yong],
Sha, K.W.[Ke-Wei],
A Secure Dynamic Mix Zone Pseudonym Changing Scheme Based on Traffic
Context Prediction,
ITS(23), No. 7, July 2022, pp. 9492-9505.
IEEE DOI
2207
Safety, Trajectory, Roads, Vehicle dynamics, Real-time systems,
Accidents, Urban areas, Trajectory privacy, security,
traffic prediction
BibRef
Liu, Y.[Yishu],
Zhang, Q.[Qi],
Lv, Z.H.[Zhi-Han],
Real-Time Intelligent Automatic Transportation Safety Based on Big
Data Management,
ITS(23), No. 7, July 2022, pp. 9702-9711.
IEEE DOI
2207
Transportation, Big Data, Safety, Real-time systems,
Prediction algorithms, Sparks, Roads, Big data analytics,
DBN
BibRef
Manikandan, N.S.,
Kaliyaperumal, G.[Ganesan],
Collision avoidance approaches for autonomous mobile robots to tackle
the problem of pedestrians roaming on campus road,
PRL(160), 2022, pp. 112-121.
Elsevier DOI
2208
BibRef
Malik, F.A.[Faheem Ahmed],
Dala, L.[Laurent],
Busawon, K.[Krishna],
Intelligent Nanoscopic Cyclist Crash Modelling for Variable
Environmental Conditions,
ITS(23), No. 8, August 2022, pp. 11178-11189.
IEEE DOI
2208
Accidents, Safety, Computer crashes, Road safety, Predictive models,
Lighting, Mathematical model, Intelligent transportation system,
environmental conditions
BibRef
Hara, K.[Kensho],
Kataoka, H.[Hirokatsu],
Inaba, M.[Masaki],
Narioka, K.[Kenichi],
Hotta, R.[Ryusuke],
Satoh, Y.[Yutaka],
Predicting Appearance of Vehicles From Blind Spots Based on
Pedestrian Behaviors at Crossroads,
ITS(23), No. 8, August 2022, pp. 11917-11929.
IEEE DOI
2208
Videos, Spatiotemporal phenomena, Semantics, Cameras, Accidents,
Vehicles, Deep learning, future prediction, action recognition,
spatiotemporal 3D convolution
BibRef
Yang, B.[Bo],
Ning, J.[Jieqing],
Kaizuka, T.[Tsutomu],
Nishihira, M.[Munetaka],
Nakano, K.[Kimihiko],
Effects of Exterior Lighting System of Parked Vehicles on the
Behaviors of Cyclists,
ITS(23), No. 8, August 2022, pp. 12451-12463.
IEEE DOI
2208
Roads, Lighting, Accidents, Animation, Vehicles, Licenses, Safety, Cyclist,
exterior lighting system, parked vehicle
BibRef
Herman, M.[Michael],
Wagner, J.[Jörg],
Prabhakaran, V.[Vishnu],
Möser, N.[Nicolas],
Ziesche, H.[Hanna],
Ahmed, W.[Waleed],
Bürkle, L.[Lutz],
Kloppenburg, E.[Ernst],
Gläser, C.[Claudius],
Pedestrian Behavior Prediction for Automated Driving:
Requirements, Metrics, and Relevant Features,
ITS(23), No. 9, September 2022, pp. 14922-14937.
IEEE DOI
2209
Measurement, Trajectory, Predictive models, Task analysis,
Probabilistic logic, Vehicles, Mathematical models, machine learning
BibRef
Liu, Y.C.[Yen-Chen],
Jafari, A.[Alireza],
Shim, J.K.[Jae Kun],
Paley, D.A.[Derek A.],
Dynamic Modeling and Simulation of Electric Scooter Interactions With
a Pedestrian Crowd Using a Social Force Model,
ITS(23), No. 9, September 2022, pp. 16448-16461.
IEEE DOI
2209
Force, Motorcycles, Numerical models, Vehicle dynamics, Dynamics,
Automobiles, Mathematical models, Electric scooter,
Monte Carlo simulations
BibRef
Zang, G.Q.[Guo-Qin],
Azouigui, S.[Shéhérazade],
Saudrais, S.[Sébastien],
Hébert, M.[Mathieu],
Gonçalves, W.[Whilk],
Evaluating the Understandability of Light Patterns and Pictograms for
Autonomous Vehicle-to-Pedestrian Communication Functions,
ITS(23), No. 10, October 2022, pp. 18668-18680.
IEEE DOI
2210
Roads, Color, Symbols, Autonomous vehicles, Monitoring, Automation,
Autonomous vehicle, signal design
BibRef
Zhang, X.C.[Xing-Chen],
Angeloudis, P.[Panagiotis],
Demiris, Y.F.[Yi-Fannis],
ST CrossingPose: A Spatial-Temporal Graph Convolutional Network for
Skeleton-Based Pedestrian Crossing Intention Prediction,
ITS(23), No. 11, November 2022, pp. 20773-20782.
IEEE DOI
2212
Skeleton, Feature extraction, Safety, Convolution,
Performance evaluation, Data mining, Benchmark testing,
intelligent vehicle
BibRef
Zhou, W.X.[Wei-Xuan],
Wang, X.S.[Xue-Song],
Calibrating and Comparing Autonomous Braking Systems in
Motorized-to-Non-Motorized-Vehicle Conflict Scenarios,
ITS(23), No. 11, November 2022, pp. 20636-20651.
IEEE DOI
2212
Accidents, Safety, Brakes, Vehicles, Bicycles, Automobiles, Data mining,
Automatic preventive braking, autonomous emergency braking,
safety-critical event
BibRef
Wu, W.S.[Wan-Shu],
Guo, J.H.[Jin-Han],
Ma, Z.Y.[Zi-Ying],
Zhao, K.[Kai],
Data-Driven Approach to Assess Street Safety: Large-Scale Analysis of
the Microscopic Design,
IJGI(11), No. 11, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, Y.K.[Yuan-Kai],
Qiu, W.S.[Wai-Shan],
Jiang, Q.R.[Qing-Rui],
Li, W.J.[Wen-Jing],
Ji, T.[Tong],
Dong, L.[Lin],
Drivers or Pedestrians, Whose Dynamic Perceptions Are More Effective
to Explain Street Vitality? A Case Study in Guangzhou,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Ye, Q.M.[Qi-Ming],
Feng, Y.X.[Yu-Xiang],
Macias, J.J.E.[Jose Javier Escribano],
Stettler, M.[Marc],
Angeloudis, P.[Panagiotis],
Adaptive Road Configurations for Improved Autonomous
Vehicle-Pedestrian Interactions Using Reinforcement Learning,
ITS(24), No. 2, February 2023, pp. 2024-2034.
IEEE DOI
2302
Roads, Aerospace electronics, Optimization, Costs, Space exploration,
Microscopy, Heuristic algorithms, Autonomous vehicles, pedestrians,
infrastructure management
BibRef
Chen, K.[Kai],
Zhu, H.H.[Hai-Hua],
Tang, D.[Dunbing],
Zheng, K.[Kun],
Future pedestrian location prediction in first-person videos for
autonomous vehicles and social robots,
IVC(134), 2023, pp. 104671.
Elsevier DOI
2305
Social intention, Human-vehicle interactions,
First-person videos, Image depth, Social spatial dependencies, Transformer
BibRef
Liu, W.[Wen],
Shao, Y.X.[Yi-Xiao],
Zhai, S.H.[Shi-Hong],
Yang, Z.[Zhao],
Chen, P.S.[Pei-Shuai],
Computer Vision-Based Tracking of Workers in Construction Sites Based
on MDNet,
IEICE(E106-D), No. 5, May 2023, pp. 653-661.
WWW Link.
2305
BibRef
Huang, R.[Rong],
Zhao, X.[Xuan],
Yuan, Y.F.[Yu-Fei],
Yu, Q.[Qiang],
Liu, C.Q.[Cheng-Qing],
Daamen, W.[Winnie],
Modeling Pedestrian Tactical and Operational Decisions Under Risk and
Uncertainty: A Two-Layer Model Framework,
ITS(24), No. 5, May 2023, pp. 5259-5281.
IEEE DOI
2305
Decision making, Uncertainty, Computational modeling,
Mathematical models, Numerical models, Sensitivity analysis,
cellular automaton
BibRef
Zhang, X.C.[Xing-Chen],
Angeloudis, P.[Panagiotis],
Demiris, Y.F.[Yi-Fannis],
Dual-branch spatio-temporal graph neural networks for pedestrian
trajectory prediction,
PR(142), 2023, pp. 109633.
Elsevier DOI
2307
Pedestrian trajectory prediction, Social interactions,
Graph convolutional networks, Graph attention networks, Spatio-temporal graph
BibRef
Zhai, X.L.[Xiao-Lin],
Hu, Z.X.[Zheng-Xi],
Yang, D.Y.[Ding-Ye],
Zhou, L.[Lei],
Liu, J.[Jingtai],
Social Aware Multi-modal Pedestrian Crossing Behavior Prediction,
ACCV22(IV:275-290).
Springer DOI
2307
BibRef
Wang, Y.N.[Yu-Ning],
Huang, H.[Heye],
Zhang, B.[Bo],
Wang, J.Q.[Jian-Qiang],
A differentiated decision-making algorithm for automated vehicles
based on pedestrian feature estimation,
IET-ITS(17), No. 7, 2023, pp. 1454-1466.
DOI Link
2307
automated vehicles, feature estimation, decision-making,
pedestrian, interaction
BibRef
Lin, M.C.[Ming-Chih],
Lin, Y.C.[Yu-Chen],
Hung, M.K.[Ming-Ku],
Pedestrian potentially dangerous behaviour prediction based on
attention-long-short-term memory with egocentric vision,
IET-ITS(17), No. 7, 2023, pp. 1331-1343.
DOI Link
2307
advanced driver assistance systems, artificial intelligence,
image recognition, perception
BibRef
Zhang, C.[Chi],
Berger, C.[Christian],
Pedestrian Behavior Prediction Using Deep Learning Methods for Urban
Scenarios: A Review,
ITS(24), No. 10, October 2023, pp. 10279-10301.
IEEE DOI
2310
BibRef
Melotti, G.[Gledson],
Lu, W.H.[Wei-Hao],
Conde, P.[Pedro],
Zhao, D.[Dezong],
Asvadi, A.[Alireza],
Gonçalves, N.[Nuno],
Premebida, C.[Cristiano],
Probabilistic Approach for Road-Users Detection,
ITS(24), No. 9, September 2023, pp. 9253-9267.
IEEE DOI
2310
BibRef
Manikandan, N.S.,
Ganesan, K.,
Energy-aware vehicle/pedestrian detection and close movement alert at
nighttime in dense slow traffic on Indian urban roads using a depth
camera,
IJCVR(13), No. 6, 2023, pp. 658-676.
DOI Link
2310
BibRef
Li, P.[Pei],
Guo, H.[Huizhong],
Bao, S.[Shan],
Kusari, A.[Arpan],
A Probabilistic Framework for Estimating the Risk of
Pedestrian-Vehicle Conflicts at Intersections,
ITS(24), No. 12, December 2023, pp. 14111-14120.
IEEE DOI
2312
BibRef
Veluchamy, S.,
Mahesh, K.M.[K. Michael],
Muthukrishnan, R.,
Karthi, S.,
HY-LSTM: A new time series deep learning architecture for estimation
of pedestrian time to cross in advanced driver assistance system,
JVCIR(97), 2023, pp. 103982.
Elsevier DOI
2312
Advanced driver assistance system, Pedestrian time, LSTM, OCNN,
Deep joint segmentation
BibRef
Zhou, W.[Wei],
Liu, Y.Q.[Yu-Qing],
Zhao, L.[Lei],
Xu, S.[Sixuan],
Wang, C.[Chen],
Pedestrian Crossing Intention Prediction From Surveillance Videos for
Over-the-Horizon Safety Warning,
ITS(25), No. 2, February 2024, pp. 1394-1407.
IEEE DOI
2402
Pedestrians, Surveillance, Trajectory, Cameras, Feature extraction,
Safety, Predictive models, Traffic safety,
environment graph
BibRef
Wang, M.X.[Ming-Xi],
Li, L.L.[Lei-Lei],
Liu, J.B.[Jing-Bin],
Chen, R.Z.[Rui-Zhi],
Neural Network Aided Factor Graph Optimization for Collaborative
Pedestrian Navigation,
ITS(25), No. 1, January 2024, pp. 303-314.
IEEE DOI
2402
Pedestrians, Navigation, Collaboration, Sensors,
Global navigation satellite system, Artificial neural networks,
factor graph optimization
BibRef
Tian, K.[Kai],
Markkula, G.[Gustav],
Wei, C.[Chongfeng],
Lee, Y.M.[Yee Mun],
Madigan, R.[Ruth],
Hirose, T.[Toshiya],
Merat, N.[Natasha],
Romano, R.[Richard],
Deconstructing Pedestrian Crossing Decisions in Interactions With
Continuous Traffic: An Anthropomorphic Model,
ITS(25), No. 3, March 2024, pp. 2466-2478.
IEEE DOI
2405
Pedestrians, Roads, Computational modeling, Visualization,
Decision making, Visual perception, Psychology, traffic flow
BibRef
Zhang, Z.Y.[Zhen-Yuan],
Lai, H.Z.[Hui-Zhen],
Huang, D.[Darong],
Fang, X.[Xin],
Zhou, M.[Mu],
Zhang, Y.[Ying],
RETA: 4D Radar-Based End-to-End Joint Tracking and Activity
Estimation for Low-Observable Pedestrian Safety in Cluttered Traffic
Scenarios,
ITS(25), No. 5, May 2024, pp. 4413-4426.
IEEE DOI
2405
Radar tracking, Pedestrians, Radar, Radar cross-sections,
Feature extraction, Target tracking, Activity recognition, FMCW radar
BibRef
Wu, J.Y.[Jing-Yuan],
Ruenz, J.[Johannes],
Berkemeyer, H.[Hendrik],
Dixon, L.[Liza],
Althoff, M.[Matthias],
Goal-Oriented Pedestrian Motion Prediction,
ITS(25), No. 6, June 2024, pp. 5282-5298.
IEEE DOI
2406
Pedestrians, Trajectory, Vehicle dynamics, Planning,
Behavioral sciences, Markov processes, Mathematical models,
pedestrian motion prediction
BibRef
Li, S.W.[Shi-Wei],
Li, Q.Q.[Qian-Qian],
Xu, J.[Jiao],
Zhang, Y.Z.[Yu-Zhao],
Simulation of cross-pedestrian flow in intersection based on
direction fuzzy visual field,
IET-ITS(18), No. 6, 2024, pp. 1045-1067.
DOI Link
2406
cellular automata, fuzzy systems, pedestrians, simulation
BibRef
Kitchat, K.[Kotcharat],
Chiu, Y.L.[Yi-Lun],
Lin, Y.C.[Yu-Chiu],
Sun, M.T.[Min-Te],
Wada, T.[Tomotaka],
Sakai, K.[Kazuya],
Ku, W.S.[Wei-Shinn],
Wu, S.C.[Shiaw-Chian],
Jeng, A.A.K.[Andy An-Kai],
Liu, C.H.[Ching-Hao],
PedCross: Pedestrian Crossing Prediction for Auto-Driving Bus,
ITS(25), No. 8, August 2024, pp. 8730-8740.
IEEE DOI
2408
Pedestrians, Skeleton, Predictive models, Long short term memory,
Hidden Markov models, YOLO, Trajectory, pose detection
BibRef
Song, W.F.[Wen-Feng],
Jin, X.[Xingliang],
Ding, Y.[Yang],
Gao, Y.[Yang],
Hou, X.[Xia],
Dual Temporal Transformers for Fine-Grained Dangerous Action
Recognition,
ICIP23(415-419)
IEEE DOI Code:
WWW Link.
2312
BibRef
Ham, J.S.[Je-Seok],
Kim, D.H.[Dae Hoe],
Jung, N.K.[Nam-Kyo],
Moon, J.[Jinyoung],
CIPF: Crossing Intention Prediction Network based on Feature Fusion
Modules for Improving Pedestrian Safety,
Precognition23(3666-3675)
IEEE DOI
2309
BibRef
Ham, J.S.[Je-Seok],
Bae, K.[Kangmin],
Moon, J.[Jinyoung],
MCIP: Multi-stream Network for Pedestrian Crossing Intention Prediction,
AVVision22(663-679).
Springer DOI
2304
BibRef
Gesnouin, J.[Joseph],
Pechberti, S.[Steve],
Stanciulcscu, B.[Bogdan],
Moutarde, F.[Fabien],
TrouSPI-Net: Spatio-temporal attention on parallel atrous
convolutions and U-GRUs for skeletal pedestrian crossing prediction,
FG21(01-07)
IEEE DOI
2303
Face recognition, Neural networks, Predictive models,
Parallel processing, Feature extraction, Skeleton, Safety
BibRef
Vozniak, I.[Igor],
Müller, P.[Philipp],
Hell, L.[Lorena],
Lipp, N.[Nils],
Abouelazm, A.[Ahmed],
Müller, C.[Christian],
Context-empowered Visual Attention Prediction in Pedestrian Scenarios,
WACV23(950-960)
IEEE DOI
2302
Visualization, Uncertainty, Navigation, Training data,
Predictive models, Safety, Behavioral sciences,
Vision + language and/or other modalities
BibRef
Zhou, C.[Chen],
AlRegib, G.[Ghassan],
Parchami, A.[Armin],
Singh, K.[Kunjan],
Learning Trajectory-Conditioned Relations to Predict Pedestrian
Crossing Behavior,
ICIP22(4088-4092)
IEEE DOI
2211
Feature extraction, Trajectory, Behavioral sciences,
Smart transportation, Intelligent systems, Intent Prediction,
Pedestrian Crossing
BibRef
Osman, N.[Nada],
Cancelli, E.[Enrico],
Camporese, G.[Guglielmo],
Coscia, P.[Pasquale],
Ballan, L.[Lamberto],
Early Pedestrian Intent Prediction via Features Estimation,
ICIP22(3446-3450)
IEEE DOI
2211
Measurement, Visualization, Protocols, Estimation, Predictive models,
Safety, Pedestrian Intent Prediction, Action Anticipation, LSTM
BibRef
Mangalam, K.[Karttikeya],
An, Y.[Yang],
Girase, H.[Harshayu],
Malik, J.[Jitendra],
From Goals, Waypoints & Paths To Long Term Human Trajectory
Forecasting,
ICCV21(15213-15222)
IEEE DOI
2203
Heating systems, Uncertainty, Computational modeling,
Benchmark testing, Trajectory, Forecasting,
Vision applications and systems
BibRef
Rasouli, A.[Amir],
Rohani, M.[Mohsen],
Luo, J.[Jun],
Bifold and Semantic Reasoning for Pedestrian Behavior Prediction,
ICCV21(15580-15590)
IEEE DOI
2203
Semantics, Gesture recognition, Predictive models,
Benchmark testing, Cognition, Encoding,
Scene analysis and understanding
BibRef
Borgmann, B.,
Hebel, M.,
Arens, M.,
Stilla, U.,
Information Acquisition on Pedestrian Movements In Urban Traffic with A
Mobile Multi-sensor System,
ISPRS21(B2-2021: 131-138).
DOI Link
2201
BibRef
Chen, T.[Tina],
Tian, R.R.[Ren-Ran],
Ding, Z.M.[Zheng-Ming],
Visual Reasoning using Graph Convolutional Networks for Predicting
Pedestrian Crossing Intention,
AVVision21(3096-3102)
IEEE DOI
2112
Convolutional codes, Visualization, Roads, Pose estimation,
Predictive models, Feature extraction, Cognition
BibRef
Singh, A.[Ankur],
Suddamalla, U.[Upendra],
Multi-Input Fusion for Practical Pedestrian Intention Prediction,
SoMoF21(2304-2311)
IEEE DOI
2112
Visualization, Navigation, Convolution,
Roads, Video sequences
BibRef
Bhattacharyya, A.[Apratim],
Reino, D.O.[Daniel Olmeda],
Fritz, M.[Mario],
Schiele, B.[Bernt],
Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers,
CVPR21(6404-6413)
IEEE DOI
2111
Computational modeling, Urban areas,
Predictive models, Turning, Trajectory, Pattern recognition
BibRef
Feifel, P.[Patrick],
Bonarens, F.[Frank],
Köster, F.[Frank],
Reevaluating the Safety Impact of Inherent Interpretability on Deep
Neural Networks for Pedestrian Detection,
SAIAD21(29-37)
IEEE DOI
2109
Deep learning, Measurement, Pipelines, Prototypes,
Semisupervised learning, Cognition, Software
BibRef
Lyssenko, M.[Maria],
Gladisch, C.[Christoph],
Heinzemann, C.[Christian],
Woehrle, M.[Matthias],
Triebel, R.[Rudolph],
From Evaluation to Verification: Towards Task-oriented Relevance
Metrics for Pedestrian Detection in Safety-critical Domains,
SAIAD21(38-45)
IEEE DOI
2109
Measurement, Meters, System performance,
Pattern recognition, Proposals, Motion measurement
BibRef
Shimizu, T.[Takahiro],
Koide, K.[Kenji],
Oishi, S.J.[Shun-Ji],
Yokozuka, M.[Masashi],
Banno, A.[Atsuhiko],
Shino, M.[Motoki],
Sensor-independent Pedestrian Detection for Personal Mobility
Vehicles in Walking Space Using Dataset Generated by Simulation,
ICPR21(1788-1795)
IEEE DOI
2105
Legged locomotion, Space vehicles, Training, Solid modeling,
Laser radar, Wheelchairs
BibRef
John, V.[Vijay],
Boyali, A.[Ali],
Thompson, S.[Simon],
Lakshmanan, A.[Annamalai],
Mita, S.[Seiichi],
Visible and Thermal Camera-based Jaywalking Estimation Using a
Hierarchical Deep Learning Framework,
MMHUA20(123-135).
Springer DOI
2103
BibRef
Ujjwal, U.,
Dziri, A.,
Leroy, B.,
Bremond, F.,
A One-and-Half Stage Pedestrian Detector,
WACV20(765-774)
IEEE DOI
2006
Detectors, Proposals, Feature extraction, Semantics, Training,
Complexity theory, Autonomous vehicles
BibRef
Kress, V.[Viktor],
Zernetsch, S.[Stefan],
Doll, K.[Konrad],
Sick, B.[Bernhard],
Pose Based Trajectory Forecast of Vulnerable Road Users Using Recurrent
Neural Networks,
3DHU20(57-71).
Springer DOI
2103
BibRef
Yuan, J.,
Wu, X.,
Yuan, S.,
A Rapid Recognition Method for Pedestrian Abnormal Behavior,
CVIDL20(241-245)
IEEE DOI
2102
convolutional neural nets, feature extraction,
image fusion, image recognition, image sequences,
multi-scale information
BibRef
Sanjeewani, P.,
Verma, B.,
An optimisation Technique for the Detection of Safety Attributes
Using Roadside Video Data,
IVCNZ20(1-6)
IEEE DOI
2012
Industries, Evolutionary computation, Road safety, Safety,
Classification algorithms, Convolutional neural networks,
road safety
BibRef
Fernando, T.,
Denman, S.,
Sridharan, S.,
Fookes, C.,
Neighbourhood Context Embeddings in Deep Inverse Reinforcement
Learning for Predicting Pedestrian Motion Over Long Time Horizons,
HBU19(1179-1187)
IEEE DOI
2004
behavioural sciences computing, entropy,
feature extraction, image motion analysis, pedestrians,
LSTM
BibRef
Chaabane, M.,
Trabelsi, A.,
Blanchard, N.,
Beveridge, R.,
Looking Ahead: Anticipating Pedestrians Crossing with Future Frames
Prediction,
WACV20(2286-2295)
IEEE DOI
2006
Predictive models, Hidden Markov models, Feature extraction,
Autonomous vehicles, Decoding
BibRef
Dhaka, D.,
Ishii, M.,
Sato, A.,
Latent Linear Dynamics for Modeling Pedestrian Behaviors,
ICPR18(1592-1597)
IEEE DOI
1812
Trajectory, Data models, Clustering algorithms,
Inference algorithms, Dynamics, Heuristic algorithms, Kalman filters
BibRef
Yatim, H.S.M.[Halimatul Saadiah M.],
Talib, A.Z.[Abdullah Zawawi],
Haron, F.[Fazilah],
An Automated Image-Based Approach for Tracking Pedestrian Movements
from Top-View Video,
IVIC17(279-289).
Springer DOI
1711
BibRef
Suzuki, T.,
Aoki, Y.,
Kataoka, H.,
Pedestrian near-miss analysis on vehicle-mounted driving recorders,
MVA17(416-419)
DOI Link
1708
Autonomous vehicles, Benchmark testing,
Pattern recognition, Safety, Urban areas, Visualization
BibRef
Ke, R.,
Lutin, J.,
Spears, J.,
Wang, Y.,
A Cost-Effective Framework for Automated Vehicle-Pedestrian Near-Miss
Detection Through Onboard Monocular Vision,
Traffic17(898-905)
IEEE DOI
1709
Cameras, Feature extraction, Safety, Sensors, Surveillance, Tracking, Videos
BibRef
Brazil, G.,
Yin, X.,
Liu, X.,
Illuminating Pedestrians via Simultaneous Detection and Segmentation,
ICCV17(4960-4969)
IEEE DOI
1802
feature extraction, image segmentation,
object detection, pedestrians, road safety,
BibRef
Cancela, B.,
Iglesias, A.,
Ortega, M.,
Penedo, M.G.,
Unsupervised Trajectory Modelling Using Temporal Information via
Minimal Paths,
CVPR14(2553-2560)
IEEE DOI
1409
geodesic active contours; pedestrian behavior; trajectory analysis
BibRef
Nakanishi, W.,
Fuse, T.,
Ishikawa, T.,
Adaptive Parameter Estimation of Person Recognition Model in a
Stochastic Human Tracking Process,
Seamless15(49-53).
DOI Link
1508
BibRef
Nakanishi, W.,
Fuse, T.,
Sensitive Analysis of Observation Model for Human Tracking Using a
Stochastic Process,
CloseRange14(445-450).
DOI Link
1411
BibRef
Earlier:
Multiple Human Tracking In Complex Situation By Data Assimilation With
Pedestrian Behavior Model,
ISPRS12(XXXIX-B3:409-414).
DOI Link
1209
BibRef
Leal-Taixe, L.[Laura],
Pons-Moll, G.[Gerard],
Rosenhahn, B.[Bodo],
Everybody needs somebody: Modeling social and grouping behavior on a
linear programming multiple people tracker,
MSVALC11(120-127).
IEEE DOI
1201
BibRef
Favoreel, W.[Wouter],
Pedestrian sensing for increased traffic safety and efficiency at
signalized intersections,
AVSBS11(539-542).
IEEE DOI
1111
AVSS 2011 demo session.
BibRef
Boltes, M.[Maik],
Zhang, J.[Jun],
Seyfried, A.[Armin],
Steffen, B.[Bernhard],
T-junction: Experiments, trajectory collection, and analysis,
MSVALC11(158-165).
IEEE DOI
1201
Pedestrian behavior at T-junctions.
BibRef
Cho, H.G.[Hyung-Gi],
Rybski, P.[Paul],
Zhang, W.[Wende],
Vision-based Bicyclist Detection and Tracking for Intelligent Vehicles,
CMU-RI-TR-10-11, January, 2010.
WWW Link.
1102
From the vehicle.
BibRef
Grubb, G.,
Zelinsky, A.,
Nilsson, L.,
Rilbe, M.,
3D vision sensing for improved pedestrian safety,
IVS04(19-24).
IEEE DOI
0411
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Human Detection, Tracking, Infrared, IR, Thermal Images .