Open Deep Learning Toolkit for Robotics (OpenDR),
2021.
WWW Link.
WWW Link.
WWW Link.
Code, Deep Learning.
WWW Link.
2201
Updated to version 3.0, with more features.
The toolkit provides more than 20 methods, for human pose estimation,
face detection, recognition, facial expression recognition, semantic
and panoptic segmentation, video and skeleton-based action
recognition, image, multimodal and point cloud-based object detection,
2D and 3D object tracking, speech command recognition, heart anomaly
detection, navigation for wheeled robots, and grasping.
Schwartz, S.R.,
Wah, B.W.[Benjamin W.],
Machine Learning of Computer Vision Algorithms,
HPRIP-CV94(319-359).
BibRef
9400
Fu, K.S., ed.,
Pattern Recognition and Machine Learning,
PlenumPress, New York, 1971.
BibRef
7100
Bhanu, B.,
Poggio, T.,
Introduction to the Special Section on Learning in Computer Vision,
PAMI(16), No. 9, September 1994, pp. 865-867.
IEEE Top Reference.
BibRef
9409
Bhanu, B.,
Peng, J.,
Huang, T.,
Draper, B.,
Introduction to the Special Issue on Learning in Computer Vision and
Pattern Recognition,
SMC-B(35), No. 3, June 2005, pp. 391-396.
IEEE DOI
0508
BibRef
Vapnik, V.,
The Nature of Statistical Learning Theory,
Springer-Verlag1996.
BibRef
9600
Vapnik, V.,
Statistical Learning Theory,
John
Wiley& Sons, 1998.
BibRef
9800
Vapnik, V.[Vladimir],
An overview of statistical learning theory,
TNN(10), No. 5, 1999, pp. 988-999.
0906
BibRef
Dietterich, T.G.,
Machine Learning Research: Four Current Directions,
AI Magazine(18), No. 4, 1997, pp. 97-136.
BibRef
9700
Poggio, T.[Tomaso],
Shelton, C.R.[Christian R.],
Machine Learning, Machine Vision, and the Brain,
AIMag(20), No. 3, Fall 1999, pp. 37-55.
Regularization.
Support Vector Machines.
Survey, Learning. Survey of learning focused on a vision domain.
Regularization, Support Vector Machines. Applied to face and
pedestrian recognition.
BibRef
9900
Petrou, M.[Maria],
Learning in Pattern Recognition: Some Thoughts,
PRL(22), No. 1, January 2001, pp. 3-13.
Elsevier DOI
0105
BibRef
Petrou, M.[Maria],
Learning in Computer Vision: Some Thoughts,
CIARP07(1-12).
Springer DOI
0711
BibRef
Xu, M.[Mai],
Petrou, M.[Maria],
3D Scene interpretation by combining probability theory and logic:
The tower of knowledge,
CVIU(115), No. 11, November 2011, pp. 1581-1596.
Elsevier DOI
1110
BibRef
Earlier:
Learning Logic Rules for Scene Interpretation Based on Markov Logic
Networks,
ACCV09(III: 341-350).
Springer DOI
0909
BibRef
Earlier:
Recursive Tower of Knowledge for Learning to Interpret Scenes,
BMVC08(xx-yy).
PDF File.
0809
Scene labelling systems; Logic and probabilities; Machine learning;
System architecture
BibRef
Xu, M.[Mai],
Wang, Z.[Zulin],
Petrou, M.[Maria],
Tower of Knowledge for scene interpretation: A survey,
PRL(48), No. 1, 2014, pp. 42-48.
Elsevier DOI
1410
Tower of Knowledge.
Cue of human language, for scene interpretation
BibRef
Freeman, W.T.[William T.],
Perona, P.[Pietro],
Schölkopf, B.[Bernhard],
Guest Editorial Machine Learning for Vision,
IJCV(77), No. 1-3, May 2008, pp. 1.
Springer DOI
0803
BibRef
Raducanu, B.[Bogdan],
Vitria, J.[Jordi],
Learning to learn: From smart machines to intelligent machines,
PRL(29), No. 8, 1 June 2008, pp. 1024-1032.
Elsevier DOI
0804
BibRef
Earlier:
Online Learning for Human-Robot Interaction,
Learning07(1-7).
IEEE DOI
0706
Incremental subspace learning based on
Nonparametric Discriminant Analysis.
Number of classes and samples not known and changes over time.
Intelligent systems; Cognitive development; Context; Social robotics;
Face recognition
BibRef
Raducanu, B.[Bogdan],
Vitria, J.[Jordi],
Leonardis, A.[Ales],
Online pattern recognition and machine learning techniques for
computer-vision: Theory and applications,
IVC(28), No. 7, July 2010, pp. 1063-1064.
Elsevier DOI
1006
Introduction to special issue.
BibRef
Ioannidou, A.[Anastasia],
Chatzilari, E.[Elisavet],
Nikolopoulos, S.[Spiros],
Kompatsiaris, I.[Ioannis],
Deep Learning Advances in Computer Vision with 3D Data: A Survey,
Surveys(50), No. 2, June 2017, pp. Article No 20.
DOI Link
1708
Survey, Deep Learning. This article surveys methods applying deep learning on 3D data and
provides a classification based on how they exploit them. From the
results of the examined works, we conclude that systems employing 2D
views of 3D data typically surpass voxel-based (3D) deep models, which
however, can perform better with more layers and severe data
augmentation. Therefore, larger-scale datasets and increased
resolutions are required.
BibRef
McCann, M.T.,
Jin, K.H.,
Unser, M.,
Convolutional Neural Networks for Inverse Problems in Imaging:
A Review,
SPMag(34), No. 6, November 2017, pp. 85-95.
IEEE DOI
1712
Survey, Convolutional Neural Networks. Computed tomography, Image reconstruction, Image resolution,
Image segmentation, Inverse problems, Linear programming,
Noise reduction
BibRef
Jin, K.H.,
McCann, M.T.,
Froustey, E.,
Unser, M.,
Deep Convolutional Neural Network for Inverse Problems in Imaging,
IP(26), No. 9, September 2017, pp. 4509-4522.
IEEE DOI
1708
computerised tomography, feedforward neural nets,
image resolution, iterative methods,
learning (artificial intelligence), medical image processing,
BibRef
Arulkumaran, K.,
Deisenroth, M.P.,
Brundage, M.,
Bharath, A.A.,
Deep Reinforcement Learning: A Brief Survey,
SPMag(34), No. 6, November 2017, pp. 26-38.
IEEE DOI
1712
Survey, Deep Learning. Artificial intelligence, Learning (artificial intelligence),
Machine learning, Neural networks, Signal processing algorithms, Visualization
BibRef
Fawzi, A.[Alhussein],
Moosavi-Dezfooli, S.M.[Seyed-Mohsen],
Frossard, P.[Pascal],
The Robustness of Deep Networks: A Geometrical Perspective,
SPMag(34), No. 6, November 2017, pp. 50-62.
IEEE DOI
1712
Classification, Machine learning, Neural networks, Robustness, Visualization
BibRef
Darrell, T.J.,
Lampert, C.H.,
Sebe, N.,
Wu, Y.,
Yan, Y.,
Guest Editors' Introduction to the Special Section on Learning with
Shared Information for Computer Vision and Multimedia Analysis,
PAMI(40), No. 5, May 2018, pp. 1029-1031.
IEEE DOI
1804
Collaboration, Information sharing,
Learning systems, Machine learning, Multimedia communication,
Training data
BibRef
Nagy, G.[George],
Document analysis systems that improve with use,
IJDAR(23), No. 1, January 2020, pp. 13-29.
WWW Link.
2003
BibRef
Earlier:
Estimation, Learning, and Adaptation: Systems That Improve with Use,
SSSPR12(1-10).
Springer DOI
1211
BibRef
Earlier:
Persistent Issues in Learning and Estimation,
ICPR98(Vol I: 561-564).
IEEE DOI
9808
BibRef
Qin, H.T.[Hao-Tong],
Gong, R.H.[Rui-Hao],
Liu, X.L.[Xiang-Long],
Bai, X.[Xiao],
Song, J.K.[Jing-Kuan],
Sebe, N.[Nicu],
Binary neural networks: A survey,
PR(105), 2020, pp. 107281.
Elsevier DOI
2006
Binary neural network, Deep learning, Model compression,
Network quantization, Model acceleration
BibRef
Serban, A.[Alex],
Poll, E.[Erik],
Visser, J.[Joost],
Adversarial Examples on Object Recognition: A Comprehensive Survey,
Surveys(53), No. 3, June 2020, pp. xx-yy.
DOI Link
2007
Survey, Adversairal Networks. security, robustness, machine learning, Adversarial examples
BibRef
Goodfellow, I.[Ian],
Pouget-Abadie, J.[Jean],
Mirza, M.[Mehdi],
Xu, B.[Bing],
Warde-Farley, D.[David],
Ozair, S.[Sherjil],
Courville, A.[Aaron],
Bengio, Y.[Yoshua],
Generative Adversarial Networks,
CACM(63), No. 11, November 2020, pp. 139-144.
DOI Link
2010
Survey, GAN.
BibRef
Wang, Z.W.[Zheng-Wei],
She, Q.[Qi],
Ward, T.E.[Tomas E.],
Generative Adversarial Networks in Computer Vision:
A Survey and Taxonomy,
Surveys(54), No. 2, February 2021, pp. xx-yy.
DOI Link
2104
Survey, GAN. Generative adversarial networks, loss-variants,
stabilizing training, architecture-variants
BibRef
Das, R.[Rangan],
Sen, S.[Sagnik],
Maulik, U.[Ujjwal],
A Survey on Fuzzy Deep Neural Networks,
Surveys(53), No. 3, May 2020, pp. xx-yy.
DOI Link
2007
Survey, Deep Networks. parallel models, integrated models, sequential models,
ensemble models, fuzzy systems, Deep architecture
BibRef
Wang, H.[Hao],
Yeung, D.Y.[Dit-Yan],
A Survey on Bayesian Deep Learning,
Surveys(53), No. 5, September 2020, pp. xx-yy.
DOI Link
2010
generative models, Deep learning, Bayesian networks,
probabilistic graphical models
BibRef
Samek, W.,
Montavon, G.,
Lapuschkin, S.,
Anders, C.J.,
Müller, K.R.,
Explaining Deep Neural Networks and Beyond:
A Review of Methods and Applications,
PIEEE(109), No. 3, March 2021, pp. 247-278.
IEEE DOI
2103
Survey, Deep Learning. Deep learning, Systematics, Neural networks,
Artificial intelligence, Machine learning, Unsupervised learning,
neural networks
BibRef
Saxena, D.[Divya],
Cao, J.N.[Jian-Nong],
Generative Adversarial Networks (GANs):
Challenges, Solutions, and Future Directions,
Surveys(54), No. 3, May 2021, pp. xx-yy.
DOI Link
2106
Survey, GAN. GANs variants, GANs Survey, Image generation,
GANs challenges, GANs, mode collapse, deep Generative models
BibRef
Jabbar, A.[Abdul],
Li, X.[Xi],
Omar, B.[Bourahla],
A Survey on Generative Adversarial Networks:
Variants, Applications, and Training,
Surveys(54), No. 8, October 2021, pp. xx-yy.
DOI Link
2110
Survey, GAN. architectural-variants, stabilize training,
Generative Adversarial Networks (GANs), applications
BibRef
Chen, L.Y.[Lei-Yu],
Li, S.B.[Shao-Bo],
Bai, Q.[Qiang],
Yang, J.[Jing],
Jiang, S.L.[San-Long],
Miao, Y.M.[Yan-Ming],
Review of Image Classification Algorithms Based on Convolutional
Neural Networks,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
Survey, CNN.
BibRef
Borji, A.[Ali],
Pros and cons of GAN evaluation measures: New developments,
CVIU(215), 2022, pp. 103329.
Elsevier DOI
2201
GAN evaluation, Generative modeling, Deepfakes
BibRef
Soviany, P.[Petru],
Ionescu, R.T.[Radu Tudor],
Rota, P.[Paolo],
Sebe, N.[Nicu],
Curriculum Learning: A Survey,
IJCV(130), No. 6, June 2022, pp. 1526-1565.
Springer DOI
2207
Survey, Curriculum Learning.
BibRef
Sánchez-Cauce, R.[Raquel],
París, I.[Iago],
Díez, F.J.[Francisco Javier],
Sum-Product Networks: A Survey,
PAMI(44), No. 7, July 2022, pp. 3821-3839.
IEEE DOI
2206
Probabilistic logic, Artificial neural networks,
Probability distribution, Neural networks, Bayes methods,
deep neural networks
BibRef
Mandal, M.[Murari],
Vipparthi, S.K.[Santosh Kumar],
An Empirical Review of Deep Learning Frameworks for Change Detection:
Model Design, Experimental Frameworks, Challenges and Research Needs,
ITS(23), No. 7, July 2022, pp. 6101-6122.
IEEE DOI
2207
Deep learning, Training, Task analysis, Data models,
Computational modeling, Cameras, Benchmark testing, scene independence
BibRef
Wang, X.[Xin],
Chen, Y.D.[Yu-Dong],
Zhu, W.W.[Wen-Wu],
A Survey on Curriculum Learning,
PAMI(44), No. 9, September 2022, pp. 4555-4576.
IEEE DOI
2208
Training, Task analysis, Machine learning, Data models, Convergence,
Machine learning algorithms, Computational modeling,
self-paced learning
BibRef
Hospedales, T.M.[Timothy M.],
Antoniou, A.[Antreas],
Micaelli, P.[Paul],
Storkey, A.[Amos],
Meta-Learning in Neural Networks: A Survey,
PAMI(44), No. 9, September 2022, pp. 5149-5169.
IEEE DOI
2208
Task analysis, Optimization, Training, Machine learning algorithms,
Predictive models, Neural networks, Deep learning, Meta-learning,
neural architecture search
BibRef
Bond-Taylor, S.[Sam],
Leach, A.[Adam],
Long, Y.[Yang],
Willcocks, C.G.[Chris G.],
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
Normalizing Flows, Energy-Based and Autoregressive Models,
PAMI(44), No. 11, November 2022, pp. 7327-7347.
IEEE DOI
2210
Survey, Generative Modeling. Data models, Training, Computational modeling, Analytical models,
Generative adversarial networks, Predictive models, Neurons,
normalizing flows
BibRef
Liu, R.S.[Ri-Sheng],
Gao, J.X.[Jia-Xin],
Zhang, J.[Jin],
Meng, D.Y.[De-Yu],
Lin, Z.C.[Zhou-Chen],
Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond,
PAMI(44), No. 12, December 2022, pp. 10045-10067.
IEEE DOI
2212
Optimization, Task analysis, Convergence, Complexity theory,
Reinforcement learning, Multitasking, Bi-level optimization,
Explicit and implicit gradients
BibRef
Li, Z.Q.[Zi-Qiang],
Usman, M.[Muhammad],
Tao, R.[Rentuo],
Xia, P.F.[Peng-Fei],
Wang, C.[Chaoyue],
Chen, H.[Huanhuan],
Li, B.[Bin],
A Systematic Survey of Regularization and Normalization in GANs,
Surveys(55), No. 11, February 2023, pp. xx-yy.
DOI Link
2303
Training Dynamics, Generative Adversarial Networks, Lipschitz Neural networks
BibRef
Qayyum, A.[Adnan],
Ilahi, I.[Inaam],
Shamshad, F.[Fahad],
Boussaid, F.[Farid],
Bennamoun, M.[Mohammed],
Qadir, J.[Junaid],
Untrained Neural Network Priors for Inverse Imaging Problems:
A Survey,
PAMI(45), No. 5, May 2023, pp. 6511-6536.
IEEE DOI
2304
Inverse problems, Neural networks, Imaging, Task analysis,
Image reconstruction, Noise measurement, Deep learning,
deep learning
BibRef
Peng, S.Y.[Si-Yuan],
Lu, J.[Jing],
Cao, J.Z.[Jiang-Zhong],
Peng, Q.M.[Qiao-Mei],
Yang, Z.J.[Zhi-Jing],
Adaptive graph regularization method based on least square regression
for clustering,
SP:IC(114), 2023, pp. 116938.
Elsevier DOI
2305
Adaptive graph regularization, Least squares regression,
Low-rank representation, Frobenius norm, Clustering
BibRef
Stankovic, L.[Ljubiša],
Mandic, D.[Danilo],
Convolutional Neural Networks Demystified:
A Matched Filtering Perspective-Based Tutorial,
SMCS(53), No. 6, June 2023, pp. 3614-3628.
IEEE DOI
2305
Convolution, Noise measurement, Pattern matching,
Feature extraction, Standards, Signal resolution, Filtering,
matched filter
BibRef
Huang, Y.[Yangsibo],
Huang, C.Y.[Chun-Yin],
Li, X.X.[Xiao-Xiao],
Li, K.[Kai],
A Dataset Auditing Method for Collaboratively Trained Machine
Learning Models,
MedImg(42), No. 7, July 2023, pp. 2081-2090.
IEEE DOI
2307
Data models, Training, Regulation, Calibration, Analytical models,
Measurement, Robustness, Privacy, dataset auditing, medical image classification
BibRef
Obukhov, T.[Timur],
Brovelli, M.A.[Maria A.],
Identifying Conditioning Factors and Predictors of Conflict
Likelihood for Machine Learning Models: A Literature Review,
IJGI(12), No. 8, 2023, pp. 322.
DOI Link
2309
BibRef
Bakhtiarnia, A.[Arian],
Zhang, Q.[Qi],
Iosifidis, A.[Alexandros],
Efficient High-Resolution Deep Learning: A Survey,
Surveys(56), No. 7, April 2024, pp. xx-yy.
DOI Link
2405
Survey, Deep Learning. High-resolution deep learning, efficient deep learning, vision transformer
BibRef
Akar, C.A.[Chafic Abou],
Massih, R.A.[Rachelle Abdel],
Yaghi, A.[Anthony],
Khalil, J.[Joe],
Kamradt, M.[Marc],
Makhoul, A.[Abdallah],
Generative Adversarial Network Applications in Industry 4.0: A Review,
IJCV(132), No. 6, June 2024, pp. 2195-2254.
Springer DOI
2406
BibRef
Mettes, P.[Pascal],
Atigh, M.G.[Mina Ghadimi],
Keller-Ressel, M.[Martin],
Gu, J.[Jeffrey],
Yeung, S.[Serena],
Hyperbolic Deep Learning in Computer Vision: A Survey,
IJCV(132), No. 1, January 2024, pp. 3484-3508.
Springer DOI
2409
Deep Learning.
BibRef
Warner, E.[Elisa],
Lee, J.[Joonsang],
Hsu, W.[William],
Syeda-Mahmood, T.[Tanveer],
Kahn Jr., C.E.[Charles E.],
Gevaert, O.[Olivier],
Rao, A.[Arvind],
Multimodal Machine Learning in Image-Based and Clinical Biomedicine:
Survey and Prospects,
IJCV(132), No. 1, January 2024, pp. 3753-3769.
Springer DOI
2409
BibRef
Ganesh, P.[Prakhar],
An Empirical Investigation into Benchmarking Model Multiplicity for
Trustworthy Machine Learning: A Case Study on Image Classification,
WACV24(4476-4485)
IEEE DOI
2404
Measurement, Deep learning, Computational modeling,
Benchmark testing, Market research, Image classification,
Social good
BibRef
Pathak, A.[Abha],
Arya, K.V.[Karm Veer],
Tiwari, V.[Vivek],
Bhende, M.[Manisha],
Unveiling Image Classifiers:
An In-Depth Comparative Exploration of Machine Learning Algorithms,
ICCVMI23(1-5)
IEEE DOI
2403
Support vector machines, Machine learning algorithms, Navigation,
Heuristic algorithms, Classification algorithms,
Content Moderation
BibRef
Wang, Q.Y.[Qing-Yang],
Powell, M.A.[Michael A.],
Geisa, A.[Ali],
Bridgeford, E.[Eric],
Priebe, C.E.[Carey E.],
Vogelstein, J.T.[Joshua T.],
Why do networks have inhibitory/negative connections?,
ICCV23(22494-22502)
IEEE DOI
2401
BibRef
Hanspal, H.[Harleen],
Lomuscio, A.[Alessio],
Efficient Verification of Neural Networks Against LVM-Based
Specifications,
CVPR23(3894-3903)
IEEE DOI
2309
BibRef
Matzinger, H.[Heinrich],
Allgeier, A.[Allegra],
CNN Image Recognition is Mainly Based on Local Features,
ICRVC22(90-95)
IEEE DOI
2301
Image recognition, Shape, Robot sensing systems,
Pattern recognition, Convolutional neural networks,
artificial intelligence
BibRef
Alfarra, M.[Motasem],
Pérez, J.C.[Juan C.],
Frühstück, A.[Anna],
Torr, P.H.S.[Philip H. S.],
Wonka, P.[Peter],
Ghanem, B.[Bernard],
On the Robustness of Quality Measures for GANs,
ECCV22(XVII:18-33).
Springer DOI
2211
BibRef
Gavrikov, P.[Paul],
Keuper, J.[Janis],
CNN Filter DB:
An Empirical Investigation of Trained Convolutional Filters,
CVPR22(19044-19054)
IEEE DOI
2210
WWW Link. Convolution, Computational modeling,
Information filters, Robustness, Entropy, Datasets and evaluation,
Transfer/low-shot/long-tail learning
BibRef
Gavrikov, P.[Paul],
Keuper, J.[Janis],
Adversarial Robustness through the Lens of Convolutional Filters,
ArtOfRobust22(138-146)
IEEE DOI
2210
Training, Convolution, Perturbation methods,
Predictive models, Robustness, Data models
BibRef
Inkawhich, M.[Matthew],
Inkawhich, N.[Nathan],
Davis, E.[Eric],
Li, H.[Hai],
Chen, Y.[Yiran],
The Untapped Potential of Off-the-Shelf Convolutional Neural Networks,
WACV22(2907-2916)
IEEE DOI
2202
Training, Upper bound, Convolution,
Network architecture, Inference algorithms, Data models,
Vision Systems and Applications
BibRef
Minskiy, D.[Dmitry],
Bober, M.[Miroslaw],
Efficient Hybrid Network: Inducting Scattering Features,
ICPR22(2300-2306)
IEEE DOI
2212
BibRef
And:
Scattering-Based Hybrid Networks: An Evaluation and Design Guide,
ICIP21(2793-2797)
IEEE DOI
2201
Training, Force, Scattering, Training data, Performance gain,
Stability analysis.
Image resolution, System performance, Buildings, hybrid, network design
BibRef
Zhou, H.Y.[Hong-Yu],
Lu, C.X.[Chi-Xiang],
Yang, S.[Sibei],
Yu, Y.Z.[Yi-Zhou],
ConvNets vs. Transformers:
Whose Visual Representations are More Transferable?,
DeepMTL21(2230-2238)
IEEE DOI
2112
Performance evaluation, Visualization,
Face recognition, Transfer learning, Estimation
BibRef
Wang, X.H.[Xiao-Han],
Eliott, F.M.[Fernanda M.],
Ainooson, J.[James],
Palmer, J.H.[Joshua H.],
Kunda, M.[Maithilee],
An Object is Worth Six Thousand Pictures:
The Egocentric, Manual, Multi-image (EMMI) Dataset,
Egocentric17(2364-2372)
IEEE DOI
WWW Link.
1802
Dataset, Learning. Egocentric, Manual, Multi-Image (EMMI) Dataset.
Automobiles, Cameras, Manuals, Object recognition,
Toy manufacturing industry, Training, Visualization
BibRef
Bala, J.W.,
Michalski, R.S.,
Wnek, J.,
The Prax Approach to Learning a Large Number of
Texture Concepts,
AAAI-MLCV93(xx-yy).
George Mason University.
BibRef
9300
Bala, J.W.,
Michalski, R.S., and
Pachowicz, P.W.,
Progress on Vision through Learning at George Mason University,
ARPA94(I:191-207).
BibRef
9400
Michalski, R.S.,
Rosenfeld, A.,
Aloimonos, Y.,
Duric, Z.,
Maloof, M.A.,
Zhang, Q.,
Progress on Vision Through Learning,
ARPA96(177-188).
BibRef
9600
Bhanu, B.[Bir],
Bowyer, K.W.[Kevin W.],
Hall, L.O.[Lawrence O.], and
Langley, P.[Pat],
Report of the AAAI Fall Symposium on Machine Learning and
Computer Vision: What, Why and How?,
ARPA94(I:727-731).
BibRef
9400
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Privacy in Learning .