Vitti, A.[Alfonso],
The Mumford-Shah variational model for image segmentation:
An overview of the theory, implementation and use,
PandRS(69), No. 1, April 2012, pp. 50-64.
Elsevier DOI
1202
Segmentation; Image processing; Variational model; Mathematics; GIS
BibRef
Guichard, F.[Frederic], and
Dal Maso, G.,
Morel, J.M.[Jean-Michel], and
Solimini, S.,
A variational method in image segmentation:
Existence and approximation results,
ActaMat(168), 1992, pp. 89-151.
BibRef
9200
March, R.[Riccardo],
Dozio, M.[Marziano],
A Variational Method for the Recovery of Smooth Boundaries,
IVC(15), No. 9, September 1997, pp. 705-712.
Elsevier DOI
9709
BibRef
Hewer, G.A.,
Kenney, C.S.,
Manjunath, B.S.,
Variational Image Segmentation Using Boundary Functions,
IP(7), No. 9, September 1998, pp. 1269-1282.
IEEE DOI
PDF File.
9809
BibRef
Earlier:
Image Segmentation via Functionals Based on Boundary Functions,
ICIP96(I: 813-816).
IEEE DOI
PDF File.
BibRef
Hintermüller, M.[Michael],
Ring, W.[Wolfgang],
An Inexact Newton-CG-Type Active Contour Approach for the Minimization
of the Mumford-Shah Functional,
JMIV(20), No. 1-2, January-March 2004, pp. 19-42.
DOI Link
0403
(
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems. )
BibRef
Hintermüller, M.,
Laurain, A.,
Multiphase Image Segmentation and Modulation Recovery Based on Shape
and Topological Sensitivity,
JMIV(35), No. 1, September 2009, pp. xx-yy.
Springer DOI
0907
See also Multi-Scale Vectorial L-tau-TV Framework for Color Image Restoration, A.
BibRef
Vanzella, W.,
Torre, V.,
A Versatile Segmentation Procedure,
SMC-B(36), No. 2, April 2006, pp. 366-378.
IEEE DOI
0604
Regularize with Mumford-Shah (
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems. )
BibRef
Tao, T.C.Y.[Trevor Chi-Yuen],
Crisp, D.J.[David James],
van der Hoek, J.[John],
Mathematical Analysis of An Extended Mumford-Shah Model for Image
Segmentation,
JMIV(24), No. 3, May 2006, pp. 327-340.
Springer DOI
0605
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems.
BibRef
Cremers, D.[Daniel],
Tischhäuser, F.[Florian],
Weickert, J.[Joachim],
Schnörr, C.[Christoph],
Diffusion Snakes: Introducing Statistical Shape Knowledge into the
Mumford-Shah Functional,
IJCV(50), No. 3, December 2002, pp. 295-313.
DOI Link
PDF File.
0211
BibRef
Cremers, D.[Daniel],
Kohlberger, T.[Timo],
Schnörr, C.[Christoph],
Shape Statistics in Kernel Space for Variational Image Segmentation,
PR(36), No. 9, September 2003, pp. 1929-1943.
Elsevier DOI
0307
BibRef
Earlier:
Nonlinear Shape Statistics in Mumford-Shah Based Segmentation,
ECCV02(II: 93 ff.).
Springer DOI
PS File.
0205
BibRef
And:
Nonlinear Shape Statistics via Kernel Spaces,
DAGM01(269-276).
BibRef
And:
Diffusion-Snakes: Combining Statistical Shape Knowledge and Image
Information in a Variational Framework,
LevelSet01(137-144).
PS File.
0106
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems.
See also Statistical Shape Knowledge in Variational Motion Segmentation.
BibRef
Cremers, D.[Daniel],
Sochen, N.A.[Nir A.],
Schnörr, C.[Christoph],
A Multiphase Dynamic Labeling Model for Variational Recognition-driven
Image Segmentation,
IJCV(66), No. 1, January 2006, pp. 67-81.
Springer DOI
0601
BibRef
Earlier:
Towards Recognition-Based Variational Segmentation Using Shape Priors
and Dynamic Labeling,
ScaleSpace03(388-400).
Springer DOI
0310
BibRef
Cremers, D.[Daniel],
Schmidt, F.R.[Frank R.],
Barthel, F.[Frank],
Shape priors in variational image segmentation:
Convexity, Lipschitz continuity and globally optimal solutions,
CVPR08(1-6).
IEEE DOI
0806
BibRef
Schoenemann, T.[Thomas],
Cremers, D.[Daniel],
A Combinatorial Solution for Model-Based Image Segmentation and
Real-Time Tracking,
PAMI(32), No. 7, July 2010, pp. 1153-1164.
IEEE DOI
1006
BibRef
Earlier:
Matching non-rigidly deformable shapes across images:
A globally optimal solution,
CVPR08(1-6).
IEEE DOI
0806
BibRef
And:
Globally optimal shape-based tracking in real-time,
CVPR08(1-6).
IEEE DOI
0806
BibRef
Earlier:
Globally Optimal Image Segmentation with an Elastic Shape Prior,
ICCV07(1-6).
IEEE DOI
0710
BibRef
And:
Introducing Curvature into Globally Optimal Image Segmentation:
Minimum Ratio Cycles on Product Graphs,
ICCV07(1-6).
IEEE DOI
0710
Combinatorial solution for optimal elastic match to image. Minimum cost cyclic
path in 3D space.
BibRef
Schoenemann, T.[Thomas],
Schmidt, F.R.,
Cremers, D.[Daniel],
Image Segmentation with Elastic Shape Priors via Global Geodesics in
Product Spaces,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Schoenemann, T.[Thomas],
Masnou, S.,
Cremers, D.[Daniel],
The Elastic Ratio: Introducing Curvature Into Ratio-Based Image
Segmentation,
IP(20), No. 9, September 2011, pp. 2565-2581.
IEEE DOI
1109
BibRef
Schmidt, F.R.[Frank R.],
Cremers, D.[Daniel],
A Closed-Form Solution for Image Sequence Segmentation with Dynamical
Shape Priors,
DAGM09(31-40).
Springer DOI
0909
BibRef
Lellmann, J.[Jan],
Schnörr, C.[Christoph],
Continuous Multiclass Labeling Approaches and Algorithms,
SIIMS(4), No. 4 2011, pp. 1049.
DOI Link
1112
BibRef
Lellmann, J.[Jan],
Lenzen, F.[Frank],
Schnörr, C.[Christoph],
Optimality Bounds for a Variational Relaxation of the Image
Partitioning Problem,
JMIV(47), No. 3, November 2013, pp. 239-257.
WWW Link.
1309
BibRef
Earlier:
EMMCVPR11(132-146).
Springer DOI
1107
BibRef
Lellmann, J.[Jan],
Breitenreicher, D.[Dirk],
Schnörr, C.[Christoph],
Fast and Exact Primal-Dual Iterations for Variational Problems in
Computer Vision,
ECCV10(II: 494-505).
Springer DOI
1009
BibRef
Zern, A.[Artjom],
Rohr, K.[Karl],
Schnörr, C.[Christoph],
Geometric Image Labeling with Global Convex Labeling Constraints,
EMMCVPR17(533-547).
Springer DOI
1805
BibRef
Lellmann, J.[Jan],
Becker, F.[Florian],
Schnörr, C.[Christoph],
Convex optimization for multi-class image labeling with a novel family
of total variation based regularizers,
ICCV09(646-653).
IEEE DOI
0909
BibRef
Lellmann, J.[Jan],
Kappes, J.H.[Jörg H.],
Yuan, J.[Jing],
Becker, F.[Florian],
Schnörr, C.[Christoph],
Convex Multi-class Image Labeling by Simplex-Constrained Total
Variation,
SSVM09(150-162).
Springer DOI
0906
BibRef
Bergtholdt, M.[Martin],
Schnörr, C.[Christoph],
Shape Priors and Online Appearance Learning for Variational
Segmentation and Object Recognition in Static Scenes,
DAGM05(342).
Springer DOI
0509
BibRef
Jackson, J.D.[Jeremy D.],
Yezzi, A.J.[Anthony J.],
Soatto, S.[Stefano],
Dynamic Shape and Appearance Modeling via Moving and Deforming Layers,
IJCV(79), No. 1, August 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Earlier:
EMMCVPR05(427-438).
Springer DOI
0601
BibRef
And:
Joint Priors for Variational Shape and Appearance Modeling,
MultiView07(1-7).
IEEE DOI
0706
See also Integral Invariants for Shape Matching.
BibRef
Bresson, X.[Xavier],
Vandergheynst, P.[Pierre],
Thiran, J.P.[Jean-Philippe],
A Variational Model for Object Segmentation Using Boundary Information
and Shape Prior Driven by the Mumford-Shah Functional,
IJCV(68), No. 2, June 2006, pp. 145-162.
Springer DOI
0606
BibRef
Earlier:
A priori information in image segmentation: energy functional based on
shape statistical model and image information,
ICIP03(III: 425-428).
IEEE DOI
0312
See also Geodesic Active Fields: A Geometric Framework for Image Registration.
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems.
BibRef
Ye, J.[Jian],
Wittman, T.[Todd],
Bresson, X.[Xavier],
Osher, S.J.[Stanley J.],
Segmentation for Hyperspectral Images with Priors,
ISVC10(II: 97-106).
Springer DOI
1011
BibRef
Bresson, X.[Xavier],
Vandergheynst, P.[Pierre],
Thiran, J.P.[Jean-Philippe],
Multiscale Active Contours,
IJCV(70), No. 3, December 2006, pp. 197-211.
Springer DOI
0608
BibRef
Earlier:
ScaleSpace05(167-178).
Springer DOI
0505
BibRef
Bogdanova, I.,
Bresson, X.[Xavier],
Thiran, J.P.[Jean-Philippe],
Vandergheynst, P.[Pierre],
Scale Space Analysis and Active Contours for Omnidirectional Images,
IP(16), No. 7, July 2007, pp. 1888-1901.
IEEE DOI
0707
BibRef
Bresson, X.[Xavier],
Esedoglu, S.[Selim],
Vandergheynst, P.[Pierre],
Thiran, J.P.[Jean-Philippe],
Osher, S.J.[Stanley J.],
Fast Global Minimization of the Active Contour/Snake Model,
JMIV(28), No. 2, June 2007, pp. 151-167.
Springer DOI
0710
BibRef
Sawatzky, A.[Alex],
Tenbrinck, D.[Daniel],
Jiang, X.Y.[Xiao-Yi],
Burger, M.[Martin],
A Variational Framework for Region-Based Segmentation Incorporating
Physical Noise Models,
JMIV(47), No. 3, November 2013, pp. 179-209.
Springer DOI
1309
BibRef
Kabri, S.[Samira],
Roith, T.[Tim],
Tenbrinck, D.[Daniel],
Burger, M.[Martin],
Resolution-invariant Image Classification Based on Fourier Neural
Operators,
SSVM23(236-249).
Springer DOI
2307
BibRef
Tenbrinck, D.[Daniel],
Jiang, X.Y.[Xiao-Yi],
Image segmentation with arbitrary noise models by solving minimal
surface problems,
PR(48), No. 11, 2015, pp. 3293-3309.
Elsevier DOI
1506
BibRef
Earlier:
Discriminant Analysis Based Level Set Segmentation for Ultrasound
Imaging,
CAIP13(II:144-151).
Springer DOI
1311
BibRef
And: A2, A1:
Region Based Contour Detection by Dynamic Programming,
CAIP13(II:152-159).
Springer DOI
1311
Segmentation
BibRef
Zhang, X.Q.[Xiao-Qun],
Burger, M.[Martin],
Bresson, X.[Xavier],
Osher, S.J.[Stanley J.],
Bregmanized Nonlocal Regularization for
Deconvolution and Sparse Reconstruction,
SIIMS(3), No. 3, 2010, pp. 253-276.
DOI Link nonlocal regularization; Bregman iteration; primal dual method
BibRef
1000
Houhou, N.[Nawal],
Thiran, J.P.[Jean-Philippe],
Bresson, X.[Xavier],
Fast texture segmentation model based on the shape operator and active
contour,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Houhou, N.[Nawal],
Lemkaddem, A.[Alia],
Duay, V.[Valerie],
Allal, A.[Abdelkarim],
Thiran, J.P.[Jean-Philippe],
Shape prior based on statistical map for active contour segmentation,
ICIP08(2284-2287).
IEEE DOI
0810
BibRef
Duay, V.,
Houhou, N.,
Thiran, J.P.,
Atlas-Based Segmentation of Medical Images Locally Constrained by Level
Sets,
ICIP05(II: 1286-1289).
IEEE DOI
0512
BibRef
Bresson, X.[Xavier],
Chan, T.F.[Tony F.],
Active Contours Based on Chambolle's Mean Curvature Motion,
ICIP07(I: 33-36).
IEEE DOI
0709
BibRef
Pan, Y.S.[Yong-Sheng],
Birdwell, J.D.[J. Douglas],
Djouadi, S.M.[Seddik M.],
Preferential Image Segmentation Using Trees of Shapes,
IP(18), No. 4, April 2009, pp. 854-866.
IEEE DOI
0903
BibRef
Earlier:
Bottom-Up Hierarchical Image Segmentation Using Region Competition and
the Mumford-Shah Functional,
ICPR06(II: 117-121).
IEEE DOI
0609
BibRef
Grady, L.[Leo],
Alvino, C.[Christopher],
The Piecewise Smooth Mumford-Shah Functional on an Arbitrary Graph,
IP(18), No. 11, November 2009, pp. 2547-2561.
IEEE DOI
0911
BibRef
Earlier:
Reformulating and Optimizing the Mumford-Shah Functional on a Graph:
A Faster, Lower Energy Solution,
ECCV08(I: 248-261).
Springer DOI
0810
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems.
BibRef
Grady, L.[Leo],
Singh, V.[Vivek],
Kohlberger, T.[Timo],
Alvino, C.[Christopher],
Bahlmann, C.[Claus],
Automatic Segmentation of Unknown Objects, with Application to Baggage
Security,
ECCV12(II: 430-444).
Springer DOI
1210
BibRef
Garamendi, J.F.,
Gaspar, F.J.,
Malpica, N.,
Schiavi, E.,
Box Relaxation Schemes in Staggered Discretizations for the Dual
Formulation of Total Variation Minimization,
IP(22), No. 5, May 2013, pp. 2030-2043.
IEEE DOI
1304
See also Automatic Segmentation of the Liver in CT Using Level Sets Without Edges.
BibRef
Garamendi, J.F.,
Malpica, N.,
Schiavi, E.,
A Fast Anisotropic Mumford-Shah Functional Based Segmentation,
IbPRIA09(322-329).
Springer DOI
0906
See also Automatic Segmentation of the Liver in CT Using Level Sets Without Edges.
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems.
BibRef
Feng, J.,
Cao, Z.,
Pi, Y.,
Multiphase SAR Image Segmentation With G^0-Statistical-Model-Based
Active Contours,
GeoRS(51), No. 7, 2013, pp. 4190-4199.
IEEE DOI
1307
Active contours; Image edge detection; total variation (TV) regularization
BibRef
Zhu, H.Y.[Hong-Yuan],
Zheng, J.M.[Jian-Min],
Cai, J.F.[Jian-Fei],
Magnenat-Thalmann, N.[Nadia],
Object-Level Image Segmentation Using Low Level Cues,
IP(22), No. 10, 2013, pp. 4019-4027.
IEEE DOI
1309
Image segmentation into the small number of real objects.
BibRef
Lui, D.,
Scharfenberger, C.,
Fergani, K.,
Wong, A.,
Clausi, D.A.,
Enhanced Decoupled Active Contour Using Structural and Textural
Variation Energy Functionals,
IP(23), No. 2, February 2014, pp. 855-869.
IEEE DOI
1402
edge detection
BibRef
Fergani, K.,
Lui, D.,
Scharfenberger, C.,
Wong, A.,
Clausi, D.A.,
Hybrid structural and texture distinctiveness vector field
convolution for region segmentation,
CVIU(125), No. 1, 2014, pp. 85-96.
Elsevier DOI
1406
Texture distinctiveness
BibRef
Xu, J.[Jianlou],
Feng, X.C.[Xiang-Chu],
Hao, Y.[Yan],
Han, Y.[Yu],
Image decomposition using adaptive second-order total generalized
variation,
SIViP(8), No. 1, January 2014, pp. 39-47.
Springer DOI
1402
Geometric objects and texture or noise.
BibRef
Baus, F.,
Nikolova, M.,
Steidl, G.,
Fully Smoothed L_1-TV Models:
Bounds for the Minimizers and Parameter Choice,
JMIV(48), No. 2, February 2014, pp. 295-307.
WWW Link.
1402
BibRef
Louchet, C.,
Moisan, L.,
Posterior Expectation of the Total Variation Model:
Properties and Experiments,
SIIMS(6), No. 4, 2013, pp. 2640-2684.
DOI Link
1402
BibRef
Hintermüller, M.,
Langer, A.,
Subspace Correction Methods for a Class of Nonsmooth and Nonadditive
Convex Variational Problems with Mixed L1/L2 Data-Fidelity in
Image Processing,
SIIMS(6), No. 4, 2013, pp. 2134-2173.
DOI Link
1402
BibRef
Zhang, K.,
Liu, Q.,
Song, H.,
Li, X.,
A Variational Approach to Simultaneous Image Segmentation and Bias
Correction,
Cyber(45), No. 8, August 2015, pp. 1426-1437.
IEEE DOI
1506
segmentation of images with intensity inhomogeneity.
Gaussian distribution
BibRef
Chen, K.[Ke],
Selective variational image segmentation combined with registration:
Models and algorithms,
IPTA12(5-8)
IEEE DOI
1503
constraint handling
BibRef
Last, C.[Carsten],
Winkelbach, S.[Simon],
Wahl, F.M.[Friedrich M.],
Global-to-local shape priors for variational image segmentation,
ICIP14(6056-6060)
IEEE DOI
1502
Active contours
BibRef
Gorelick, L.[Lena],
Veksler, O.[Olga],
Boykov, Y.Y.[Yuri Y.],
Nieuwenhuis, C.[Claudia],
Convexity Shape Prior for Binary Segmentation,
PAMI(39), No. 2, February 2017, pp. 258-271.
IEEE DOI
1702
BibRef
Earlier:
Convexity Shape Prior for Segmentation,
ECCV14(V: 675-690).
Springer DOI
1408
Computational modeling
BibRef
Isack, H.[Hossam],
Gorelick, L.[Lena],
Ng, K.[Karin],
Veksler, O.[Olga],
Boykov, Y.Y.[Yuri Y.],
K-convexity Shape Priors for Segmentation,
ECCV18(XI: 38-54).
Springer DOI
1810
BibRef
Veksler, O.[Olga],
Boykov, Y.Y.[Yuri Y.],
Sparse Non-local CRF,
CVPR22(4483-4493)
IEEE DOI
2210
Deep learning, Computational modeling, Object segmentation,
Segmentation, grouping and shape analysis, Low-level vision
BibRef
Pock, T.[Thomas],
Cremers, D.[Daniel],
Bischof, H.[Horst],
Chambolle, A.[Antonin],
An algorithm for minimizing the Mumford-Shah functional,
ICCV09(1133-1140).
IEEE DOI
0909
See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems.
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Active Contours and Snakes, Segmentations, Flow, Gradient Flow .