Vogel, C.R.,
Oman, M.E.,
Iterative methods for total variation denoising,
SIAM_JSC(17), No. 1, 1986, pp. 227-238.
BibRef
8600
Li, Y.Y.,
Santosa, F.,
A Computational Algorithm for Minimizing Total Variation in
Image Restoration,
IP(5), No. 6, June 1996, pp. 987-995.
IEEE DOI
9607
BibRef
Chan, T.F.,
Wong, C.K.,
Total Variation Blind Deconvolution,
IP(7), No. 3, March 1998, pp. 370-375.
IEEE DOI
9803
BibRef
Hampson, F.J.,
Pesquet, J.C.,
M-band Nonlinear Subband Decompositions with Perfect Reconstruction,
IP(7), No. 11, November 1998, pp. 1547-1560.
IEEE DOI
BibRef
9811
Combettes, P.L.,
Pesquet, J.C.,
Image Restoration Subject to a Total Variation Constraint,
IP(13), No. 9, September 2004, pp. 1213-1222.
IEEE DOI
0409
BibRef
Earlier:
Incorporating total variation information in image recovery,
ICIP03(III: 373-376).
IEEE DOI
0312
BibRef
Combettes, P.L.,
Pesquet, J.C.,
Estimating first-order finite-difference information in image
restoration problems,
ICIP04(I: 321-324).
IEEE DOI
0505
BibRef
Bolte, J.,
Combettes, P.L.,
Pesquet, J.C.,
Alternating proximal algorithm for blind image recovery,
ICIP10(1673-1676).
IEEE DOI
1009
BibRef
Combettes, P.L.,
Condat, L.,
Pesquet, J.C.,
Vu, B.C.,
A forward-backward view of some primal-dual optimization methods in
image recovery,
ICIP14(4141-4145)
IEEE DOI
1502
Decision support systems
BibRef
Chan, T.F.[Tony F.],
Kang, S.H.[Sung Ha],
Shen, J.H.[Jian-Hong],
Total Variation Denoising and Enhancement of Color Images Based on the
CB and HSV Color Models,
JVCIR(12), No. 4, December 2001, pp. 422-435.
DOI Link
0204
See also Total Variation Wavelet Inpainting.
See also Image Denoising Using Mean Curvature of Image Surface.
BibRef
Malgouyres, F.,
Minimizing the total variation under a general convex constraint for
image restoration,
IP(11), No. 12, December 2002, pp. 1450-1456.
IEEE DOI
0301
BibRef
Earlier:
Total variation based oversampling of noisy images,
ScaleSpace01(xx-yy).
0106
BibRef
Earlier:
Combining Total Variation and Wavelet Packet Approaches
for Image Deblurring,
LevelSet01(xx-yy).
0106
BibRef
Malgouyres, F.,
Image Compression Through a Projection onto a Polyhedral Set,
JMIV(27), No. 2, February 2007, pp. 193-200.
Springer DOI
0704
BibRef
Chambolle, A.[Antonin],
An Algorithm for Total Variation Minimization and Applications,
JMIV(20), No. 1-2, January-March 2004, pp. 89-97.
DOI Link
0403
BibRef
And:
Total Variation Minimization and a Class of Binary MRF Models,
EMMCVPR05(136-152).
Springer DOI
0601
BibRef
Earlier:
Partial differential equations and image processing,
ICIP94(I: 16-20).
IEEE DOI
9411
Applications to image denoising, zooming, and the computation of the
mean curvature motion of interfaces.
See also TV-L1 Optical Flow Estimation. Second implementation:
See also Chambolle's Projection Algorithm for Total Variation Denoising.
BibRef
Chambolle, A.[Antonin],
Pock, T.[Thomas],
Learning Consistent Discretizations of the Total Variation,
SIIMS(14), No. 2, 2021, pp. 778-813.
DOI Link
2107
BibRef
Jalalzai, K.[Khalid],
Chambolle, A.[Antonin],
Enhancement of Blurred and Noisy Images Based on an Original Variant of
the Total Variation,
SSVM09(368-376).
Springer DOI
0906
BibRef
Jalalzai, K.[Khalid],
Some Remarks on the Staircasing Phenomenon in Total Variation-Based
Image Denoising,
JMIV(54), No. 2, February 2016, pp. 256-268.
WWW Link.
1602
BibRef
Aujol, J.F.[Jean-Francois],
Kang, S.H.[Sung Ha],
Color image decomposition and restoration,
JVCIR(17), No. 4, August 2006, pp. 916-928.
Elsevier DOI
0711
Total variation; Structure; Texture; Color; Image decomposition;
Image restoration
BibRef
Aujol, J.F.[Jean-François],
Gilboa, G.[Guy],
Constrained and SNR-Based Solutions for TV-Hilbert Space Image
Denoising,
JMIV(26), No. 1-2, November 2006, pp. 217-237.
Springer DOI
0701
BibRef
Aujol, J.F.[Jean-François],
Some First-Order Algorithms for Total Variation Based Image Restoration,
JMIV(34), No. 3, July 2009, pp. xx-yy.
Springer DOI
0906
BibRef
Duval, V.[Vincent],
Aujol, J.F.[Jean-François],
Gousseau, Y.[Yann],
A Bias-Variance Approach for the Nonlocal Means,
SIIMS(4), No. 2, 2011, pp. 760-788.
WWW Link.
1110
BibRef
Shi, H.[Hui],
Traonmilin, Y.[Yann],
Aujol, J.F.[Jean-François],
Sketched Learning for Image Denoising,
SSVM21(281-293).
Springer DOI
2106
BibRef
Lysaker, M.[Marius],
Tai, X.C.[Xue-Cheng],
Iterative Image Restoration Combining Total Variation Minimization and
a Second-Order Functional,
IJCV(66), No. 1, January 2006, pp. 5-18.
Springer DOI
0601
BibRef
Marquina, A.[Antonio],
Nonlinear Inverse Scale Space Methods For Total Variation Blind
Deconvolution,
SIIMS(2), No. 1, 2009, pp. 64-83.
total variation restoration; blind deconvolution; Gaussian blur;
denoising; inverse scale space methods
DOI Link
BibRef
0900
Malgouyres, F.,
Zeng, T.,
A Predual Proximal Point Algorithm Solving a Non Negative Basis Pursuit
Denoising Model,
IJCV(83), No. 3, July 2009, pp. xx-yy.
Springer DOI
0904
BibRef
Landi, G.,
A Truncated Lagrange Method for Total Variation-Based Image Restoration,
JMIV(27), No. 2, June 2007, pp. 113-123.
Springer DOI
0710
BibRef
Landi, G.,
A Modified Newton Projection Method for TeX -Regularized Least Squares
Image Deblurring,
JMIV(51), No. 1, January 2015, pp. 195-208.
WWW Link.
1503
BibRef
Landi, G.,
Piccolomini, E.L.[E. Loli],
An Algorithm for Image Denoising with Automatic Noise Estimate,
JMIV(34), No. 1, May 2009, pp. xx-yy.
Springer DOI
0905
BibRef
Chartrand, R.,
Staneva, V.,
Total variation regularisation of images corrupted by non-Gaussian
noise using a quasi-Newton method,
IET-IPR(2), No. 6, December 2008, pp. 295-303.
DOI Link
0905
BibRef
Li, F.[Fang],
Shen, C.M.[Chao-Min],
Fan, J.S.[Jing-Song],
Shen, C.L.[Chun-Li],
Image restoration combining a total variational filter and a
fourth-order filter,
JVCIR(18), No. 4, August 2007, pp. 322-330.
Elsevier DOI
0711
Image restoration; Total variation; Fourth-order filter; BV space; BV2 space
BibRef
Li, F.[Fang],
Shen, C.M.[Chao-Min],
Shen, C.L.[Chun-Li],
Zhang, G.X.[Gui-Xu],
Variational denoising of partly textured images,
JVCIR(20), No. 4, May 2009, pp. 293-300.
Elsevier DOI
0905
Variational denoising; Total variation; Texture detecting function;
Local feature
BibRef
Ng, M.K.[Michael K.],
Qi, L.Q.[Li-Qun],
Yang, Y.F.[Yu-Fei],
Huang, Y.M.[Yu-Mei],
On Semismooth Newton's Methods for Total Variation Minimization,
JMIV(27), No. 3, April 2007, pp. 265-276.
Springer DOI
0704
BibRef
Yu, G.H.[Gao-Hang],
Qi, L.Q.[Li-Qun],
Dai, Y.H.[Yu-Hong],
On Nonmonotone Chambolle Gradient Projection Algorithms for Total
Variation Image Restoration,
JMIV(35), No. 2, October 2009, pp. xx-yy.
Springer DOI
0907
BibRef
Beck, A.,
Teboulle, M.,
Fast Gradient-Based Algorithms for Constrained Total Variation Image
Denoising and Deblurring Problems,
IP(18), No. 11, November 2009, pp. 2419-2434.
IEEE DOI
0911
BibRef
Wang, Y.L.[Yi-Lun],
Yang, J.F.[Jun-Feng],
Yin, W.T.[Wo-Tao],
Zhang, Y.[Yin],
A New Alternating Minimization Algorithm For Total Variation
Image Reconstruction,
SIIMS(1), No. 3, 2008, pp. 248-272.
DOI Link half-quadratic; image deblurring; isotropic total variation; fast
Fourier transform
BibRef
0800
Yang, J.F.[Jun-Feng],
Yin, W.T.[Wo-Tao],
Zhang, Y.[Yin],
Wang, Y.L.[Yi-Lun],
A Fast Algorithm For Edge-Preserving Variational Multichannel Image
Restoration,
SIIMS(2), No. 2, 2009, pp. 569-592.
DOI Link half-quadratic; cross-channel; image deblurring; total variation; fast
Fourier transform
BibRef
0900
El Hamidi, A.,
Menard, M.,
Lugiez, M.,
Ghannam, C.,
Weighted and extended total variation for image restoration and
decomposition,
PR(43), No. 4, April 2010, pp. 1564-1576.
Elsevier DOI
1002
Convex and non-convex regularization; Texture decomposition;
Chambolle's projection; Weighted total variation; Extended total
variation
BibRef
El Hamidi, A.,
Ghannam, C.,
Bailly-Maitre, G.,
Menard, M.,
Nonstandard diffusion in image restoration and decomposition,
ICIP09(3945-3948).
IEEE DOI
0911
BibRef
Dong, Y.Q.[Yi-Qiu],
Hintermuller, M.[Michael],
Neri, M.[Marrick],
An Efficient Primal-Dual Method For L_1 TV Image Restoration,
SIIMS(2), No. 4, 2009, pp. 1168-1189.
DOI Link
1002
deblurring; duality; L1-data fitting; random-valued impulse
noise; salt-and-pepper noise; semismooth Newton; total variation
regularization
BibRef
Dong, Y.Q.[Yi-Qiu],
Hintermüller, M.[Michael],
Rincon-Camacho, M.M.[M. Monserrat],
Automated Regularization Parameter Selection in Multi-Scale Total
Variation Models for Image Restoration,
JMIV(40), No. 1, May 2011, pp. 82-104.
WWW Link.
1103
BibRef
Earlier: A1, A2, Only:
Multi-scale Total Variation with Automated Regularization Parameter
Selection for Color Image Restoration,
SSVM09(271-281).
Springer DOI
0906
BibRef
Dong, Y.Q.[Yi-Qiu],
Hintermüller, M.[Michael],
Rincon-Camacho, M.M.[M. Monserrat],
A Multi-Scale Vectorial L-tau-TV Framework for Color Image Restoration,
IJCV(92), No. 3, May 2011, pp. 296-307.
WWW Link.
1103
See also Multiphase Image Segmentation and Modulation Recovery Based on Shape and Topological Sensitivity.
See also Inexact Newton-CG-Type Active Contour Approach for the Minimization of the Mumford-Shah Functional, An.
BibRef
Chen, Q.A.[Qi-Ang],
Montesinos, P.[Philippe],
Sun, Q.S.[Quan Sen],
Heng, P.A.[Peng Ann],
Xia, D.S.[De Shen],
Adaptive total variation denoising based on difference curvature,
IVC(28), No. 3, March 2010, pp. 298-306.
Elsevier DOI
1001
Image denoise; Total variation; Difference curvature; Staircase
effect; Loss of details
See also double-threshold image binarization method based on edge detector, A.
See also Parametric active contours for object tracking based on matching degree image of object contour points.
BibRef
Chen, D.Q.[Dai-Qiang],
Cheng, L.Z.[Li-Zhi],
Alternative minimisation algorithm for non-local total variational
image deblurring,
IET-IPR(4), No. 5, October 2010, pp. 353-364.
DOI Link
1011
BibRef
Pang, Z.F.[Zhi-Feng],
Yang, Y.F.[Yu-Fei],
A projected gradient algorithm based on the augmented Lagrangian
strategy for image restoration and texture extraction,
IVC(29), No. 2-3, February 2011, pp. 117-126.
Elsevier DOI
1101
Augmented Lagrangian strategy; Image restoration; Texture extraction;
Projected gradient method; Total variation; High-order PDEs
Mixed model which combines the Rudin-Osher-Fatemi (ROF) model
See also Nonlinear total variation based noise removal algorithms. with the
Lysaker-Lundevold-Tai (LLT) model to reduce the staircase effect and
blur.
BibRef
Wu, J.[Jian],
Tang, C.[Chen],
An efficient decision-based and edge-preserving method for
salt-and-pepper noise removal,
PRL(32), No. 15, 1 November 2011, pp. 1974-1981.
Elsevier DOI
1112
Image denoising; Impulse noise; Edge-preservation; Total variation
inpainting; The two-stage scheme
BibRef
Wu, J.[Jian],
Tang, C.[Chen],
Random-valued impulse noise removal using fuzzy weighted non-local
means,
SIViP(8), No. 2, February 2014, pp. 349-355.
WWW Link.
1402
BibRef
Shaked, E.,
Michailovich, O.V.[Oleg V.],
Iterative Shrinkage Approach to Restoration of Optical Imagery,
IP(20), No. 2, February 2011, pp. 405-416.
IEEE DOI
1102
Poisson noise.
BibRef
Michailovich, O.V.[Oleg V.],
An Iterative Shrinkage Approach to Total-Variation Image Restoration,
IP(20), No. 5, May 2011, pp. 1281-1299.
IEEE DOI
1104
BibRef
Hao, B.B.[Bin-Bin],
Zhu, J.G.[Jian-Guang],
Combining Total Variation and Nonlocal Means Regularization for Edge
Preserving Image Deconvolution,
ELCVIA(10), No. 1, 2011, pp. -.
DOI Link
1112
BibRef
Bras, N.B.,
Bioucas-Dias, J.M.,
Martins, R.C.,
Serra, A.C.,
An Alternating Direction Algorithm for Total Variation Reconstruction
of Distributed Parameters,
IP(21), No. 6, June 2012, pp. 3004-3016.
IEEE DOI
1202
BibRef
Jin, Y.[Yan],
Jost, J.[Jürgen],
Wang, G.F.[Guo-Fang],
A Nonlocal Version of the Osher-Solé-Vese Model,
JMIV(44), No. 2, October 2012, pp. 99-113.
WWW Link.
1206
Total Variation (TV) model, Nonlocal means, Denoising, OSV model,
Nonlocal OSV model, Nonlocal TV model
BibRef
Jin, Y.[Yan],
Jost, J.[Jürgen],
Wang, G.F.[Guo-Fang],
A New Nonlocal H 1 Model for Image Denoising,
JMIV(48), No. 1, January 2014, pp. 93-105.
WWW Link.
1402
BibRef
Bonettini, S.[Silvia],
Ruggiero, V.[Valeria],
On the Convergence of Primal-Dual Hybrid Gradient Algorithms for Total
Variation Image Restoration,
JMIV(44), No. 3, November 2012, pp. 236-253.
WWW Link.
1209
BibRef
Fei, X.[Xuan],
Wei, Z.H.[Zhi-Hui],
Xiao, L.[Liang],
Iterative Directional Total Variation Refinement for Compressive
Sensing Image Reconstruction,
SPLetters(20), No. 11, 2013, pp. 1070-1073.
IEEE DOI
1310
compressed sensing
BibRef
Zhang, Z.[Zhen],
Shi, Y.H.[Yun-Hui],
Ding, W.P.[Wen-Peng],
Yin, B.C.[Bao-Cai],
MR images reconstruction based on TVWL2-L1 model,
JVCIR(24), No. 2, February 2013, pp. 187-195.
Elsevier DOI
1302
Compressive sensing; MR image reconstruction; Convex optimization;
Wavelet transform; Total variation
BibRef
Zhang, Z.[Zhen],
Shi, Y.H.[Yun-Hui],
Yin, B.C.[Bao-Cai],
Compressive sensing image recovery based on equalization quantization
noise model,
VCIP11(1-4).
IEEE DOI
1201
BibRef
Fei, X.[Xuan],
Li, L.[Lei],
Cao, H.L.[He-Ling],
Miao, J.Y.[Jian-Yu],
Yu, R.P.[Ren-Ping],
View's dependency and low-rank background-guided compressed sensing for
multi-view image joint reconstruction,
IET-IPR(13), No. 12, October 2019, pp. 2294-2303.
DOI Link
1911
BibRef
Lou, J.T.[Jing-Tao],
Li, Y.L.[Yong-Le],
Liu, Y.[Yu],
Tan, S.[Shuren],
Zhang, M.J.[Mao-Jun],
Omni-gradient-based total variation minimisation for sparse
reconstruction of omni-directional image,
IET-IPR(8), No. 7, July 2014, pp. 397-405.
DOI Link
1408
compressed sensing
BibRef
Liu, Y.P.[Yi-Peng],
Wu, S.[Shan],
Huang, X.L.[Xiao-Lin],
Chen, B.[Bing],
Zhu, C.[Ce],
Hybrid CS-DMRI: Periodic Time-Variant Subsampling and Omnidirectional
Total Variation Based Reconstruction,
MedImg(36), No. 10, October 2017, pp. 2148-2159.
IEEE DOI
1710
Correlation, Current measurement, Image reconstruction,
Image restoration, Matrix converters, Optimization, TV,
Compressive sensing, image acquisition, image reconstruction,
magnetic, resonance, imaging
BibRef
Liu, Y.P.[Yi-Peng],
Long, Z.[Zhen],
Zhu, C.[Ce],
Image Completion Using Low Tensor Tree Rank and Total Variation
Minimization,
MultMed(21), No. 2, February 2019, pp. 338-350.
IEEE DOI
1902
Tensile stress, TV, Minimization, Optimization, Matrix decomposition,
Data structures, Color, Tensor tree decomposition,
low rank tensor approximation
BibRef
Oh, S.M.[Seung-Mi],
Woo, H.[Hyenkyun],
Yun, S.W.[Sang-Woon],
Kang, M.J.[Myung-Joo],
Non-convex hybrid total variation for image denoising,
JVCIR(24), No. 3, April 2013, pp. 332-344.
Elsevier DOI
1303
Non-convex TV; Non-convex HOTV; Non-convex hybrid TV; Iterative
reweighted algorithm; Image denoising; Total Variation (TV); The
alternating direction method of multiplier (ADMM); Staircase artifacts
BibRef
Chan, R.H.[Raymond H.],
Tao, M.[Min],
Yuan, X.M.[Xiao-Ming],
Constrained Total Variation Deblurring Models and Fast Algorithms Based
on Alternating Direction Method of Multipliers,
SIIMS(6), No. 1, 2013, pp. 680-697.
DOI Link
1304
BibRef
Needell, D.[Deanna],
Ward, R.[Rachel],
Stable Image Reconstruction Using Total Variation Minimization,
SIIMS(6), No. 2, 2013, pp. 1035-1058.
DOI Link
1307
BibRef
Needell, D.[Deanna],
Ward, R.[Rachel],
Near-Optimal Compressed Sensing Guarantees for Total Variation
Minimization,
IP(22), No. 10, 2013, pp. 3941-3949.
IEEE DOI
1309
L1-minimization
BibRef
Condat, L.,
A Direct Algorithm for 1-D Total Variation Denoising,
SPLetters(20), No. 11, 2013, pp. 1054-1057.
IEEE DOI
1310
least squares approximations
BibRef
Condat, L.[Laurent],
A Generic Proximal Algorithm for Convex Optimization:
Application to Total Variation Minimization,
SPLetters(21), No. 8, August 2014, pp. 985-989.
IEEE DOI
1406
Convergence
BibRef
Condat, L.[Laurent],
Discrete Total Variation: New Definition and Minimization,
SIIMS(10), No. 3, 2017, pp. 1258-1290.
DOI Link
1710
BibRef
Couprie, C.,
Grady, L.,
Najman, L.,
Pesquet, J.,
Talbot, H.,
Dual Constrained TV-based Regularization on Graphs,
SIIMS(6), No. 3, 2013, pp. 1246-1273.
DOI Link
1310
BibRef
Hintermüller, M.[Michael],
Wu, T.[Tao],
Nonconvex TVq-Models in Image Restoration: Analysis and a
Trust-Region Regularization-Based Superlinearly Convergent Solver,
SIIMS(6), No. 3, 2013, pp. 1385-1415.
DOI Link
1310
BibRef
Earlier:
A Smoothing Descent Method for Nonconvex TV q -Models,
Optimization11(119-133).
Springer DOI
1405
BibRef
Swoboda, P.,
Schnörr, C.,
Convex Variational Image Restoration with Histogram Priors,
SIIMS(6), No. 3, 2013, pp. 1719-1735.
DOI Link
1310
BibRef
Aghasi, A.[Alireza],
Romberg, J.[Justin],
Sparse Shape Reconstruction,
SIIMS(6), No. 4, 2013, pp. 2075-2108.
DOI Link
1402
BibRef
Aghasi, A.[Alireza],
Romberg, J.[Justin],
Convex Cardinal Shape Composition,
SIIMS(8), No. 4, 2015, pp. 2887-2950.
DOI Link
1601
BibRef
Aghasi, A.[Alireza],
Romberg, J.[Justin],
Extracting the Principal Shape Components via Convex Programming,
IP(27), No. 7, July 2018, pp. 3513-3528.
IEEE DOI
1805
Character recognition, Dictionaries, Image reconstruction,
Image segmentation, Optical character recognition software,
nonlinear sparse recovery
BibRef
Lee, Y.J.[Yeon Ju],
Lee, S.[Sukho],
Yoon, J.[Jungho],
A Framework for Moving Least Squares Method with Total Variation
Minimizing Regularization,
JMIV(48), No. 3, March 2014, pp. 566-582.
WWW Link.
1403
BibRef
Duran, J.[Joan],
Coll, B.[Bartomeu],
Sbert, C.[Catalina],
Chambolle's Projection Algorithm for Total Variation Denoising,
IPOL(2013), No. 2013, pp. 311-331.
DOI Link
1403
Code, Total Variation.
Code, Denoising.
See also Algorithm for Total Variation Minimization and Applications, An.
See also Nonlocal Image and Movie Denoising.
BibRef
Coll, B.,
Duran, J.,
Sbert, C.,
An algorithm for nonconvex functional minimization and applications
to image restoration,
ICIP14(4547-4551)
IEEE DOI
1502
Image edge detection
BibRef
Batard, T.[Thomas],
Sochen, N.A.[Nir A.],
A Class of Generalized Laplacians on Vector Bundles Devoted to
Multi-Channel Image Processing,
JMIV(48), No. 3, March 2014, pp. 517-543.
Springer DOI
1403
fibre bundles theory.
BibRef
Sawatzky, A.[Alex],
Performance of First-Order Algorithms for TV Penalized Weighted
Least-Squares Denoising Problem,
ICISP14(340-349).
Springer DOI
1406
BibRef
Hosseini, M.S.[Mahdi S.],
Plataniotis, K.N.[Konstantinos N.],
High-Accuracy Total Variation With Application to Compressed Video
Sensing,
IP(23), No. 9, September 2014, pp. 3869-3884.
IEEE DOI
1410
FIR filters
BibRef
Hosseini, M.S.[Mahdi S.],
Plataniotis, K.N.[Konstantinos N.],
Derivative Kernels: Numerics and Applications,
IP(26), No. 10, October 2017, pp. 4596-4611.
IEEE DOI
1708
FIR filters, approximation theory, differentiation, edge detection,
interpolation, 2D MaxFlat kernels, Canny edge detection,
FIR filter, discrete approximation,
finite impulse response filter, generalized framework,
higher-order tensors, image directional differentiation,
image interpolation problem, numerical differentiation,
Cutoff frequency, Finite impulse response filters,
BibRef
Hosseini, M.S.[Mahdi S.],
Plataniotis, K.N.[Konstantinos N.],
Finite Differences in Forward and Inverse Imaging Problems:
MaxPol Design,
SIIMS(10), No. 4, 2017, pp. 1963-1996.
DOI Link
1801
BibRef
Selesnick, I.W.,
Parekh, A.,
Bayram, I.,
Convex 1-D Total Variation Denoising with Non-convex Regularization,
SPLetters(22), No. 2, February 2015, pp. 141-144.
IEEE DOI
1410
concave programming
BibRef
Parekh, A.,
Selesnick, I.W.,
Convex Denoising using Non-Convex Tight Frame Regularization,
SPLetters(22), No. 10, October 2015, pp. 1786-1790.
IEEE DOI
1506
Computer vision
BibRef
Parekh, A.,
Selesnick, I.W.,
Enhanced Low-Rank Matrix Approximation,
SPLetters(23), No. 4, April 2016, pp. 493-497.
IEEE DOI
1604
AWGN
BibRef
Ding, Y.[Yin],
Selesnick, I.W.,
Artifact-Free Wavelet Denoising:
Non-convex Sparse Regularization, Convex Optimization,
SPLetters(22), No. 9, September 2015, pp. 1364-1368.
IEEE DOI
1503
optimisation
BibRef
Holt, K.M.,
Total Nuclear Variation and Jacobian Extensions of Total Variation
for Vector Fields,
IP(23), No. 9, September 2014, pp. 3975-3989.
IEEE DOI
1410
Jacobian matrices
BibRef
Fraysse, A.[Aurelia],
Rodet, T.[Thomas],
A Measure-Theoretic Variational Bayesian Algorithm for Large
Dimensional Problems,
SIIMS(7), No. 4, 2014, pp. 2591-2622.
DOI Link
1402
BibRef
Zheng, Y.L.[Yu-Ling],
Fraysse, A.[Aurelia],
Rodet, T.[Thomas],
Efficient Variational Bayesian Approximation Method Based on Subspace
Optimization,
IP(24), No. 2, February 2015, pp. 681-693.
IEEE DOI
1502
BibRef
Earlier: A1, A3, A2:
Fast variational Bayesian approaches applied to large dimensional
problems,
ICIP13(479-483)
IEEE DOI
1402
Hilbert spaces.
Approximation methods
BibRef
Gilboa, G.[Guy],
A Total Variation Spectral Framework for Scale and Texture Analysis,
SIIMS(7), No. 4, 2014, pp. 1937-1961.
DOI Link
1402
BibRef
Earlier:
A Spectral Approach to Total Variation,
SSVM13(36-47).
Springer DOI
1305
BibRef
Horesh, D.[Dikla],
Gilboa, G.[Guy],
Separation Surfaces in the Spectral TV Domain for Texture
Decomposition,
IP(25), No. 9, September 2016, pp. 4260-4270.
IEEE DOI
1609
BibRef
Earlier:
Multiscale Texture Orientation Analysis Using Spectral Total-Variation
Decomposition,
SSVM15(486-497).
Springer DOI
1506
image texture
BibRef
Moeller, M.,
Brinkmann, E.,
Burger, M.,
Seybold, T.,
Color Bregman TV,
SIIMS(7), No. 4, 2014, pp. 2771-2806.
DOI Link
1412
BibRef
Seybold, T.,
Kuhn, F.,
Habigt, J.,
Hartenstein, M.,
Stechele, W.,
Automatic denoising parameter estimation using gradient histograms,
VCIP14(358-361)
IEEE DOI
1504
image denoising
BibRef
Bergmann, R.[Ronny],
Laus, F.,
Steidl, G.,
Weinmann, A.[Andreas],
Second Order Differences of Cyclic Data and Applications in
Variational Denoising,
SIIMS(7), No. 4, 2014, pp. 2916-2953.
DOI Link
1412
See also Second-Order TV-Type Approach for Inpainting and Denoising Higher Dimensional Combined Cyclic and Vector Space Data, A.
BibRef
Bergmann, R.[Ronny],
Fitschen, J.H.[Jan Henrik],
Persch, J.[Johannes],
Steidl, G.[Gabriele],
Priors with Coupled First and Second Order Differences for
Manifold-Valued Image Processing,
JMIV(60), No. 9, November 2018, pp. 1459-1481.
Springer DOI
1810
BibRef
Earlier:
Infimal Convolution Coupling of First and Second Order Differences on
Manifold-Valued Images,
SSVM17(447-459).
Springer DOI
1706
BibRef
Weinmann, A.[Andreas],
Demaret, L.[Laurent],
Storath, M.[Martin],
Total Variation Regularization for Manifold-Valued Data,
SIIMS(7), No. 4, 2014, pp. 2226-2257.
DOI Link
1412
BibRef
Bredies, K.,
Holler, M.,
Storath, M.,
Weinmann, A.,
Total Generalized Variation for Manifold-Valued Data,
SIIMS(11), No. 3, 2018, pp. 1785-1848.
DOI Link
1810
BibRef
Gao, Y.,
Bredies, K.[Kristian],
Infimal Convolution of Oscillation Total Generalized Variation for
the Recovery of Images with Structured Texture,
SIIMS(11), No. 3, 2018, pp. 2021-2063.
DOI Link
1810
BibRef
Weinmann, A.[Andreas],
Demaret, L.[Laurent],
Storath, M.[Martin],
Mumford-Shah and Potts Regularization for Manifold-Valued Data,
JMIV(55), No. 3, July 2016, pp. 428-445.
Springer DOI
1604
BibRef
He, C.[Chuan],
Hu, C.H.[Chang-Hua],
Zhang, W.[Wei],
Shi, B.[Biao],
A Fast Adaptive Parameter Estimation for Total Variation Image
Restoration,
IP(23), No. 12, December 2014, pp. 4954-4967.
IEEE DOI
1412
estimation theory
BibRef
Holler, M.,
Kunisch, K.,
On Infimal Convolution of TV-Type Functionals and Applications to
Video and Image Reconstruction,
SIIMS(7), No. 4, 2014, pp. 2258-2300.
DOI Link
1412
BibRef
Chierchia, G.,
Pustelnik, N.,
Pesquet-Popescu, B.,
Pesquet, J.C.,
A Nonlocal Structure Tensor-Based Approach for Multicomponent Image
Recovery Problems,
IP(23), No. 12, December 2014, pp. 5531-5544.
IEEE DOI
1412
convex programming. Extended Nonlocal total variation.
BibRef
Eason, D.T.[Duncan T.],
Andrews, M.[Mark],
Total Variation Regularization via Continuation to Recover Compressed
Hyperspectral Images,
IP(24), No. 1, January 2015, pp. 284-293.
IEEE DOI
1502
BibRef
Earlier:
Compressed hyperspectral image recovery via total variation
regularization assuming linear mixing,
ICIP14(620-624)
IEEE DOI
1502
convergence of numerical methods.
Compressed sensing
BibRef
Jung, Y.M.[Yoon Mo],
Yun, S.W.[Sang-Woon],
Impedance Imaging With First-Order TV Regularization,
MedImg(34), No. 1, January 2015, pp. 193-202.
IEEE DOI
1502
electric impedance imaging
BibRef
Jiang, W.F.[Wen-Fei],
Cui, H.B.[Heng-Bin],
Zhang, F.[Fan],
Rong, Y.C.[Yao-Cheng],
Chen, Z.B.[Zhi-Bo],
Oriented total variation /1/2 regularization,
JVCIR(29), No. 1, 2015, pp. 125-137.
Elsevier DOI
1504
Total variation
TV/1 and TV/2.
BibRef
Poon, C.[Clarice],
On the Role of Total Variation in Compressed Sensing,
SIIMS(8), No. 1, 2015, pp. 682-720.
DOI Link
1504
BibRef
Bredies, K.[Kristian],
Sun, H.P.[Hong Peng],
Preconditioned Douglas-Rachford Algorithms for TV- and TGV-Regularized
Variational Imaging Problems,
JMIV(52), No. 3, July 2015, pp. 317-344.
WWW Link.
1506
BibRef
Lefkimmiatis, S.[Stamatios],
Roussos, A.[Anastasios],
Maragos, P.[Petros],
Unser, M.[Michael],
Structure Tensor Total Variation,
SIIMS(8), No. 2, 2015, pp. 1090-1122.
DOI Link
1507
BibRef
Lefkimmiatis, S.[Stamatios],
Roussos, A.[Anastasios],
Unser, M.[Michael],
Maragos, P.[Petros],
Convex Generalizations of Total Variation Based on the Structure Tensor
with Applications to Inverse Problems,
SSVM13(48-60).
Springer DOI
1305
BibRef
Nguyen, D.D.[Duc Dung],
Jeon, J.W.[Jae Wook],
Multiple-constraint variational framework and image restoration
problems,
IET-IPR(9), No. 6, 2015, pp. 435-449.
DOI Link
1507
computer vision
BibRef
Bögelein, V.[Verena],
Duzaar, F.[Frank],
Marcellini, P.[Paolo],
A Time Dependent Variational Approach to Image Restoration,
SIIMS(8), No. 2, 2015, pp. 968-1006.
DOI Link
1507
BibRef
Selesnick, I.W.,
Generalized Total Variation: Tying the Knots,
SPLetters(22), No. 11, November 2015, pp. 2009-2013.
IEEE DOI
1509
convex programming
BibRef
Selesnick, I.W.,
Total Variation Denoising Via the Moreau Envelope,
SPLetters(24), No. 2, February 2017, pp. 216-220.
IEEE DOI
1702
AWGN
BibRef
Lou, Y.F.[Yi-Fei],
Zeng, T.Y.[Tie-Yong],
Osher, S.[Stanley],
Xin, J.[Jack],
A Weighted Difference of Anisotropic and Isotropic Total Variation
Model for Image Processing,
SIIMS(8), No. 3, 2015, pp. 1798-1823.
DOI Link
1511
BibRef
Bui, K.[Kevin],
Park, F.[Fredrick],
Lou, Y.F.[Yi-Fei],
Xin, J.[Jack],
A Weighted Difference of Anisotropic and Isotropic Total Variation
for Relaxed Mumford-Shah Color and Multiphase Image Segmentation,
SIIMS(14), No. 3, 2021, pp. 1078-1113.
DOI Link
2108
BibRef
Park, F.,
Lou, Y.,
Xin, J.,
A weighted difference of anisotropic and isotropic total variation
for relaxed Mumford-Shah image segmentation,
ICIP16(4314-4318)
IEEE DOI
1610
Heuristic algorithms
BibRef
Prasath, V.B.S.[V.B. Surya],
Vorotnikov, D.,
Pelapur, R.,
Jose, S.,
Seetharaman, G.,
Palaniappan, K.,
Multiscale Tikhonov-Total Variation Image Restoration Using Spatially
Varying Edge Coherence Exponent,
IP(24), No. 12, December 2015, pp. 5220-5235.
IEEE DOI
1512
edge detection
BibRef
Prasath, V.B.S.,
Pelapur, R.,
Seetharaman, G.,
Palaniappan, K.,
Multiscale Structure Tensor for Improved Feature Extraction and Image
Regularization,
IP(28), No. 12, December 2019, pp. 6198-6210.
IEEE DOI
1909
Image edge detection, Eigenvalues and eigenfunctions,
Noise measurement, Feature extraction, Detectors,
anisotropic diffusion
BibRef
Liu, X.,
Weighted total generalised variation scheme for image restoration,
IET-IPR(10), No. 1, 2016, pp. 80-88.
DOI Link
1601
convergence of numerical methods
BibRef
Zhang, J.P.[Jian-Ping],
Chen, K.[Ke],
A Total Fractional-Order Variation Model for Image Restoration with
Nonhomogeneous Boundary Conditions and Its Numerical Solution,
SIIMS(8), No. 4, 2015, pp. 2487-2518.
DOI Link
1601
BibRef
Hintermüller, M.[Michael],
Valkonen, T.[Tuomo],
Wu, T.[Tao],
Limiting Aspects of Nonconvex TV-phi Models,
SIIMS(8), No. 4, 2015, pp. 2581-2621.
DOI Link
1601
BibRef
Papafitsoros, K.[Konstantinos],
Valkonen, T.[Tuomo],
Asymptotic Behaviour of Total Generalised Variation,
SSVM15(702-714).
Springer DOI
1506
BibRef
Bappy, D.M.,
Jeon, I.,
Combination of hybrid median filter and total variation minimisation
for medical X-ray image restoration,
IET-IPR(10), No. 4, 2016, pp. 261-271.
DOI Link
1604
diagnostic radiography
BibRef
Duran, J.[Joan],
Moeller, M.[Michael],
Sbert, C.[Catalina],
Cremers, D.[Daniel],
Collaborative Total Variation: A General Framework for Vectorial TV
Models,
SIIMS(9), No. 1, 2016, pp. 116-151.
DOI Link
1604
BibRef
Earlier:
A Novel Framework for Nonlocal Vectorial Total Variation Based on L
p,q,r-norms,
EMMCVPR15(141-154).
Springer DOI
1504
BibRef
Möllenhoff, T.[Thomas],
Strekalovskiy, E.[Evgeny],
Moeller, M.[Michael],
Cremers, D.[Daniel],
Low Rank Priors for Color Image Regularization,
EMMCVPR15(126-140).
Springer DOI
1504
BibRef
Lellmann, J.[Jan],
Strekalovskiy, E.[Evgeny],
Koetter, S.[Sabrina],
Cremers, D.[Daniel],
Total Variation Regularization for Functions with Values in a
Manifold,
ICCV13(2944-2951)
IEEE DOI
1403
angular data
BibRef
Burger, M.[Martin],
Papafitsoros, K.[Konstantinos],
Papoutsellis, E.[Evangelos],
Schönlieb, C.B.[Carola-Bibiane],
Infimal Convolution Regularisation Functionals of BV and L_p Spaces,
JMIV(55), No. 3, July 2016, pp. 343-369.
Springer DOI
1604
BibRef
Ke, R.[Rihuan],
Schönlieb, C.B.[Carola-Bibiane],
Unsupervised Image Restoration Using Partially Linear Denoisers,
PAMI(44), No. 9, September 2022, pp. 5796-5812.
IEEE DOI
2208
Noise measurement, Noise reduction, TV, Image denoising, Training,
Image restoration, Neural networks, Image denoising, deep learning,
partially linear denoiser
BibRef
Ke, R.[Rihuan],
Deep Variation Prior: Joint Image Denoising and Noise Variance
Estimation Without Clean Data,
IP(33), 2024, pp. 2908-2923.
IEEE DOI
2405
Noise, Noise reduction, Noise measurement, Estimation, Training,
Noise level, Image denoising, Image denoising,
deep learning without ground truth
BibRef
Calatroni, L.[Luca],
de los Reyes, J.C.[Juan Carlos],
Schönlieb, C.B.[Carola-Bibiane],
Infimal Convolution of Data Discrepancies for Mixed Noise Removal,
SIIMS(10), No. 3, 2017, pp. 1196-1233.
DOI Link
1710
BibRef
Zhang, B.[Benxin],
Zhu, Z.B.[Zhi-Bin],
Wang, S.[Shuo],
A simple primal-dual method for total variation image restoration,
JVCIR(38), No. 1, 2016, pp. 814-823.
Elsevier DOI
1605
Primal-dual method
BibRef
Tao, S.Y.[Shu-Yin],
Dong, W.[Wende],
Xu, Z.H.[Zhi-Hai],
Tang, Z.M.[Zhen-Min],
Fast total variation deconvolution for blurred image contaminated by
Poisson noise,
JVCIR(38), No. 1, 2016, pp. 582-594.
Elsevier DOI
1605
Image restoration
BibRef
Dong, W.[Wende],
Tao, S.Y.[Shu-Yin],
Xu, G.L.[Gui-Li],
Chen, Y.T.[Yue-Ting],
Blind Deconvolution for Poissonian Blurred Image With Total Variation
and L0-Norm Gradient Regularizations,
IP(30), 2021, pp. 1030-1043.
IEEE DOI
2012
Deconvolution, TV, Image restoration, Minimization,
Mathematical model, Iterative methods, Estimation,
total variation regularization
BibRef
Chen, G.[Gao],
Zhang, J.S.[Jia-Shu],
Li, D.F.[De-Fang],
Fractional-order total variation combined with sparsifying transforms
for compressive sensing sparse image reconstruction,
JVCIR(38), No. 1, 2016, pp. 407-422.
Elsevier DOI
1605
Two-dimensional compressive sensing
BibRef
Chen, G.[Gao],
Li, G.[Gang],
Zhang, J.S.[Jia-Shu],
Tensor compressed video sensing reconstruction by combination of
fractional-order total variation and sparsifying transform,
SP:IC(55), No. 1, 2017, pp. 146-156.
Elsevier DOI
1705
Compressed, video, sensing
BibRef
Nelson, J.D.B.,
Nafornita, C.,
Isar, A.,
Semi-Local Scaling Exponent Estimation With Box-Penalty Constraints
and Total-Variation Regularization,
IP(25), No. 7, July 2016, pp. 3167-3181.
IEEE DOI
1606
image processing
BibRef
Kolmogorov, V.[Vladimir],
Pock, T.[Thomas],
Rolinek, M.[Michal],
Total Variation on a Tree,
SIIMS(9), No. 2, 2016, pp. 605-636.
DOI Link
1608
BibRef
Tang, L.M.[Li-Ming],
Fang, Z.[Zhuang],
Xiang, C.C.[Chang-Cheng],
Chen, S.Q.[Shi-Qiang],
Image selective restoration using multi-scale variational
decomposition,
JVCIR(40, Part B), No. 1, 2016, pp. 638-655.
Elsevier DOI
1610
Total variation
BibRef
Thanh, D.N.H.[Dang Ngoc Hoang],
A variational approach to denoising problem,
ELCVIA(15), No. 2, 2016, pp. 19-21.
DOI Link
1611
BibRef
Langer, A.[Andreas],
Automated Parameter Selection for Total Variation Minimization in Image
Restoration,
JMIV(57), No. 2, February 2017, pp. 239-268.
WWW Link.
1702
BibRef
Wijewardhana, U.L.,
Codreanu, M.,
Latva-aho, M.,
An Interior-Point Method for Modified Total Variation Exploiting
Transform-Domain Sparsity,
SPLetters(24), No. 1, January 2017, pp. 56-60.
IEEE DOI
1702
Newton method
BibRef
Deledalle, C.A.[Charles-Alban],
Papadakis, N.[Nicolas],
Salmon, J.[Joseph],
Vaiter, S.[Samuel],
CLEAR: Covariant LEAst-Square Refitting with Applications to Image
Restoration,
SIIMS(10), No. 1, 2017, pp. 243-284.
DOI Link
1704
BibRef
Earlier: A1, A2, A3, Only:
On Debiasing Restoration Algorithms:
Applications to Total-Variation and Nonlocal-Means,
SSVM15(129-141).
Springer DOI
1506
BibRef
Berger, J.[Johannes],
Lenzen, F.[Frank],
Becker, F.[Florian],
Neufeld, A.[Andreas],
Schnörr, C.[Christoph],
Second-Order Recursive Filtering on the Rigid-Motion Lie Group SE3
Based on Nonlinear Observations,
JMIV(58), No. 1, May 2017, pp. 102-129.
Springer DOI
1704
BibRef
Earlier: A1, A4, A3, A2, A5:
Second Order Minimum Energy Filtering on SE3 with Nonlinear Measurement
Equations,
SSVM15(397-409).
Springer DOI
1506
BibRef
Lenzen, F.[Frank],
Becker, F.[Florian],
Lellmann, J.[Jan],
Adaptive Second-Order Total Variation:
An Approach Aware of Slope Discontinuities,
SSVM13(61-73).
Springer DOI
1305
BibRef
Shen, Y.,
Liu, Q.,
Lou, S.,
Hou, Y.L.,
Wavelet-Based Total Variation and Nonlocal Similarity Model for Image
Denoising,
SPLetters(24), No. 6, June 2017, pp. 877-881.
IEEE DOI
1705
Image edge detection, Image restoration, Noise reduction, TV,
Wavelet coefficients, Wavelet domain, Birothogonal wavelet,
heavy noise, nonlocal similarity, split Bregman, total, variation, (TV)
BibRef
Serra, J.G.,
Testa, M.,
Molina, R.,
Katsaggelos, A.K.,
Bayesian K-SVD Using Fast Variational Inference,
IP(26), No. 7, July 2017, pp. 3344-3359.
IEEE DOI
1706
Adaptation models, Approximation algorithms, Bayes methods,
Data models, Dictionaries, Transforms, Uncertainty,
Bayesian modeling, denoising, dictionary learning, inpainting, k-svd,
sparse representation, variational inference
BibRef
Wang, X.Y.[Xiao-Yang],
Peng, Z.M.[Zhen-Ming],
Kong, D.[Dehui],
Zhang, P.[Ping],
He, Y.M.[Yan-Min],
Infrared dim target detection based on total variation regularization
and principal component pursuit,
IVC(63), No. 1, 2017, pp. 1-9.
Elsevier DOI
1706
Infrared, images
BibRef
Yun, J.D.[Joo Dong],
Yang, S.J.[Seung-Joon],
ADMM in Krylov Subspace and Its Application to Total Variation
Restoration of Spatially Variant Blur,
SIIMS(10), No. 2, 2017, pp. 484-507.
DOI Link
1708
BibRef
Liu, J.[Jun],
Zheng, X.J.[Xiao-Jun],
A Block Nonlocal TV Method for Image Restoration,
SIIMS(10), No. 2, 2017, pp. 920-941.
DOI Link
1708
BibRef
Abergel, R.[Rémy],
Moisan, L.[Lionel],
The Shannon Total Variation,
JMIV(59), No. 2, October 2017, pp. 341-370.
WWW Link.
1709
BibRef
Abergel, R.[Rémy],
Louchet, C.[Cécile],
Moisan, L.[Lionel],
Zeng, T.Y.[Tie-Yong],
Total Variation Restoration of Images Corrupted by Poisson Noise with
Iterated Conditional Expectations,
SSVM15(178-190).
Springer DOI
1506
BibRef
Li, Z.[Zhi],
Malgouyres, F.[François],
Zeng, T.Y.[Tie-Yong],
Regularized Non-local Total Variation and Application in Image
Restoration,
JMIV(59), No. 2, October 2017, pp. 296-317.
WWW Link.
1709
BibRef
Hintermüller, M.[Michael],
Rautenberg, C.N.[Carlos N.],
Optimal Selection of the Regularization Function in a Weighted Total
Variation Model. Part I: Modelling and Theory,
JMIV(59), No. 3, November 2017, pp. 498-514.
Springer DOI
1710
BibRef
Hintermüller, M.[Michael],
Rautenberg, C.N.[Carlos N.],
Wu, T.[Tao],
Langer, A.[Andreas],
Optimal Selection of the Regularization Function in a Weighted Total
Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests,
JMIV(59), No. 3, November 2017, pp. 515-533.
Springer DOI
1710
BibRef
Lasica, M.[Michal],
Moll, S.[Salvador],
Mucha, P.B.[Piotr B.],
Total Variation Denoising in L^1 Anisotropy,
SIIMS(10), No. 4, 2017, pp. 1691-1723.
DOI Link
1801
BibRef
Landrieu, L.[Loic],
Obozinski, G.[Guillaume],
Cut Pursuit: Fast Algorithms to Learn Piecewise Constant Functions on
General Weighted Graphs,
SIIMS(10), No. 4, 2017, pp. 1724-1766.
DOI Link
1801
BibRef
Zhao, W.,
Lu, H.,
Wang, D.,
Multisensor Image Fusion and Enhancement in Spectral Total Variation
Domain,
MultMed(20), No. 4, April 2018, pp. 866-879.
IEEE DOI
1804
Feature extraction, Fuses, Image edge detection, Image fusion,
Robot sensing systems, TV, Transforms, Adaptive gain function,
spectral total variation (TV)
BibRef
Xu, Y.,
Wu, Z.,
Chanussot, J.,
Dalla Mura, M.,
Bertozzi, A.L.,
Wei, Z.,
Low-Rank Decomposition and Total Variation Regularization of
Hyperspectral Video Sequences,
GeoRS(56), No. 3, March 2018, pp. 1680-1694.
IEEE DOI
1804
Chemicals, Feature extraction, Hyperspectral imaging,
Sparse matrices, TV, Video sequences, Detection,
total variation (LRSTV)
BibRef
Esser, E.[Ernie],
Guasch, L.[Lluis],
van Leeuwen, T.[Tristan],
Aravkin, A.Y.[Aleksandr Y.],
Herrmann, F.J.[Felix J.],
Total Variation Regularization Strategies in Full-Waveform Inversion,
SIIMS(11), No. 1, 2018, pp. 376-406.
DOI Link
1804
BibRef
Liu, P.F.[Peng-Fei],
Xiao, L.[Liang],
Li, T.[Tao],
Normal curvature-induced variational model for image restoration,
IET-IPR(12), No. 5, May 2018, pp. 679-689.
DOI Link
1804
BibRef
Liu, Y.,
Pados, D.A.,
Kim, J.,
Zhang, C.,
Reconstruction of Compressed-Sensed Multiview Video With Disparity-
and Motion-Compensated Total Variation Minimization,
CirSysVideo(28), No. 6, June 2018, pp. 1288-1302.
IEEE DOI
1806
Cameras, Correlation, Decoding, Image reconstruction, Minimization,
Streaming media, TV, 360° video, compressed sensing (CS),
total variation (TV) minimization
BibRef
Herrmann, M.,
Herzog, R.,
Kröner, H.,
Schmidt, S.,
Vidal, J.,
Analysis and an Interior-Point Approach for TV Image Reconstruction
Problems on Smooth Surfaces,
SIIMS(11), No. 2, 2018, pp. 889-922.
DOI Link
1807
BibRef
Daei, S.,
Haddadi, F.,
Amini, A.,
Sample Complexity of Total Variation Minimization,
SPLetters(25), No. 8, August 2018, pp. 1151-1155.
IEEE DOI
1808
Gaussian processes, gradient methods, minimisation,
Gaussian linear measurements, sharp phase transition behavior,
total variation (TV) minimization
BibRef
Du, H.Q.[Hui-Qian],
Liu, Y.L.[Yi-Lin],
Minmax-concave total variation denoising,
SIViP(12), No. 6, September 2018, pp. 1027-1034.
WWW Link.
1808
BibRef
Yan, S.[Shi],
Yu, Z.[Zihao],
Liu, J.[Jun],
Non-parametric mixture model with TV spatial regularisation and its
dual expectation maximisation algorithm,
IET-IPR(12), No. 9, September 2018, pp. 1655-1662.
DOI Link
1809
BibRef
Song, M.Z.[Ming-Zhu],
Qu, H.S.[Hong-Song],
Zhang, G.X.[Gui-Xiang],
Tao, S.P.[Shu-Ping],
Jin, G.[Guang],
A Variational Model for Sea Image Enhancement,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Hait-Fraenkel, E.[Ester],
Gilboa, G.[Guy],
Spectral Total-Variation Local Scale Signatures for Image
Manipulation and Fusion,
IP(28), No. 2, February 2019, pp. 880-895.
IEEE DOI
1811
TV, Eigenvalues and eigenfunctions, Transforms,
Image edge detection, Sensitivity, Biomedical imaging,
medical imagery
BibRef
Hait-Fraenkel, E.[Ester],
Gilboa, G.[Guy],
Revealing stable and unstable modes of denoisers through nonlinear
eigenvalue analysis,
JVCIR(75), 2021, pp. 103041.
Elsevier DOI
2103
Eigenfunctions, Nonlinear operators, Denoising, Power iteration,
Total-variation, EPLL
BibRef
Zhang, G.Y.[Guo-Yun],
Wang, J.P.[Jin-Ping],
Zhang, X.F.[Xiao-Fei],
Fei, H.Y.[Hong-Yan],
Tu, B.[Bing],
Adaptive total variation-based spectral-spatial feature extraction of
hyperspectral image,
JVCIR(56), 2018, pp. 150-159.
Elsevier DOI
1811
Hyperspectral image classification, Principal component analysis,
Extreme learning machine
BibRef
Sun, L.[Le],
Zhan, T.M.[Tian-Ming],
Wu, Z.B.[Ze-Bin],
Xiao, L.[Liang],
Jeon, B.W.[Byeung-Woo],
Hyperspectral Mixed Denoising via Spectral Difference-Induced Total
Variation and Low-Rank Approximation,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Earlier: A1, A5, A3, A4, Only:
Hyperspectral Denoising Via Cross Total Variation-Regularized
Unidirectional Nonlocal Low-Rank Tensor Approximation,
ICIP18(2900-2904)
IEEE DOI
1809
Tensile stress, Noise reduction, Databases, Hyperspectral imaging,
Correlation, Optimization, Sparse matrices,
non-local self-similarity
BibRef
Liu, H.Y.[Hong-Yi],
Li, H.Y.[Han-Yang],
Wu, Z.B.[Ze-Bin],
Wei, Z.H.[Zhi-Hui],
Hyperspectral Image Recovery Using Non-Convex Low-Rank Tensor
Approximation,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Ben Said, A.[Ahmed],
Hadjidj, R.[Rachid],
Foufou, S.[Sebti],
Total Variation for Image Denoising Based on a Novel Smart Edge
Detector: An Application to Medical Images,
JMIV(61), No. 1, January 2019, pp. 106-121.
Springer DOI
1901
BibRef
Bini, A.A.,
Image restoration via DOST and total variation regularisation,
IET-IPR(13), No. 3, February 2019, pp. 458-468.
DOI Link
1903
BibRef
He, C.[Chuan],
Hu, C.H.[Chang-Hua],
Qi, N.X.[Nai-Xin],
Zhu, X.F.[Xiao-Fei],
Liu, L.X.[Lian-Xiong],
Fast proximal splitting algorithm for constrained TGV-regularised image
restoration and reconstruction,
IET-IPR(13), No. 4, March 2019, pp. 576-582.
DOI Link
1903
BibRef
Pang, Z.F.[Zhi-Feng],
Zhou, Y.M.[Ya-Mei],
Wu, T.T.[Ting-Ting],
Li, D.J.[Ding-Jie],
Image denoising via a new anisotropic total-variation-based model,
SP:IC(74), 2019, pp. 140-152.
Elsevier DOI
1904
Image denoising, Anisotropic total variation,
Alternating direction method of multipliers(ADMM), Weighted matrix
BibRef
Herrmann, M.[Marc],
Herzog, R.[Roland],
Schmidt, S.[Stephan],
Vidal-Núñez, J.[José],
Wachsmuth, G.[Gerd],
Discrete Total Variation with Finite Elements and Applications to
Imaging,
JMIV(61), No. 4, May 2019, pp. 411-431.
Springer DOI
1904
BibRef
Kumar, A.,
Ahmad, M.O.[M. Omair],
Swamy, M.N.S.,
Tchebichef and Adaptive Steerable-Based Total Variation Model for
Image Denoising,
IP(28), No. 6, June 2019, pp. 2921-2935.
IEEE DOI
1905
edge detection, image denoising, image restoration,
iterative methods, minimisation, wavelet transforms,
image denoising
BibRef
Xue, F.[Feng],
Liu, J.[Jiaqi],
Ai, X.[Xia],
Recursive SURE for image recovery via total variation minimization,
SIViP(13), No. 4, June 2019, pp. 795-803.
Springer DOI
1906
BibRef
Jung, A.,
Tran, N.,
Localized Linear Regression in Networked Data,
SPLetters(26), No. 7, July 2019, pp. 1090-1094.
IEEE DOI
1906
Linear regression, Data models, Training, Convex functions,
Estimation error, TV, Image processing, Compressed sensing,
statistical learning
BibRef
Merveille, O.,
Naegel, B.,
Talbot, H.,
Passat, N.,
nD Variational Restoration of Curvilinear Structures With Prior-Based
Directional Regularization,
IP(28), No. 8, August 2019, pp. 3848-3859.
IEEE DOI
1907
gradient methods, image denoising, image resolution,
image restoration, image segmentation,
segmentation
BibRef
Jia, Z.,
Ng, M.K.[Michael K.],
Wang, W.[Wei],
Color Image Restoration by Saturation-Value Total Variation,
SIIMS(12), No. 2, 2019, pp. 972-1000.
DOI Link
1907
BibRef
Wang, W.[Wei],
Yang, Y.M.[Yu-Ming],
Ng, M.K.[Michael K.],
A Spatial Color Compensation Model Using Saturation-Value Total
Variation,
SIIMS(15), No. 3, 2022, pp. 1400-1430.
DOI Link
2208
BibRef
Huang, Y.M.[Yu-Mei],
Ng, M.K.[Michael K.],
Wen, Y.W.[You-Wei],
A New Total Variation Method For Multiplicative Noise Removal,
SIIMS(2), No. 1, 2009, pp. 20-40.
image denoising; multiplicative noise; total variation; convex function
DOI Link
BibRef
0900
Wen, Y.W.[You-Wei],
Ng, M.K.[Michael K.],
Huang, Y.M.[Yu-Mei],
Efficient Total Variation Minimization Methods for Color Image
Restoration,
IP(17), No. 11, November 2008, pp. 1-1.
IEEE DOI
0810
BibRef
Wang, W.[Wei],
Ng, M.K.[Michael K.],
Color Image Restoration by Saturation-Value Total Variation
Regularization on Vector Bundles,
SIIMS(14), No. 1, 2021, pp. 178-197.
DOI Link
2104
BibRef
Huang, C.Y.[Chao-Yan],
Li, Z.[Zhi],
Liu, Y.B.[Yu-Bing],
Wu, T.T.[Ting-Ting],
Zeng, T.Y.[Tie-Yong],
Quaternion-based weighted nuclear norm minimization for color image
restoration,
PR(128), 2022, pp. 108665.
Elsevier DOI
2205
Quaternion representation, Color image restoration,
Weighted nuclear norm, Variational method, Low-rank matrix analysis
BibRef
Guo, Y.[Yu],
Chen, G.Q.[Guo-Qing],
Zeng, T.Y.[Tie-Yong],
Jin, Q.Y.[Qi-Yu],
Ng, M.K.P.[Michael Kwok-Po],
Quaternion Nuclear Norm Minus Frobenius Norm Minimization for color
image reconstruction,
PR(158), 2025, pp. 110986.
Elsevier DOI
2411
Quaternion, Low rank, Color image, Low-level vision,
Nuclear norm, Frobenius norm
BibRef
Huang, C.Y.[Chao-Yan],
Ng, M.K.[Michael K.],
Wu, T.T.[Ting-Ting],
Zeng, T.Y.[Tie-Yong],
Quaternion-Based Dictionary Learning and Saturation-Value Total
Variation Regularization for Color Image Restoration,
MultMed(24), 2022, pp. 3769-3781.
IEEE DOI
2208
Visualization, Dictionaries, Image color analysis, Quaternions,
Imaging, Color, Machine learning, Dictionary learning, total variation
BibRef
Liao, H.Y.[Hai-Yong],
Li, F.[Fang],
Ng, M.K.[Michael K.],
Selection of regularization parameter in total variation image
restoration,
JOSA-A(26), No. 11, November 2009, pp. 2311-2320.
DOI Link
0911
BibRef
Wang, W.,
Li, F.,
Ng, M.K.,
Structural Similarity-Based Nonlocal Variational Models for Image
Restoration,
IP(28), No. 9, Sep. 2019, pp. 4260-4272.
IEEE DOI
1908
feature extraction, image restoration, image texture,
iterative methods, structural similarity,
structural similarity index
BibRef
Ouyang, Y.[Yi],
Total variation constraint GAN for dynamic scene deblurring,
IVC(88), 2019, pp. 113-119.
Elsevier DOI
1908
Total variation, Deblur, GAN, Convolution neural network
BibRef
Hosseini, A.[Alireza],
New discretization of total variation functional for image processing
tasks,
SP:IC(78), 2019, pp. 62-76.
Elsevier DOI
1909
Mathematical image processing, Total variation, Vector field,
Denoising, Resolution enhancement, Fenchel-dual theorem
BibRef
Fan, L.W.[Lin-Wei],
Li, X.M.[Xue-Mei],
Fan, H.[Hui],
Feng, Y.L.[Yan-Li],
Zhang, C.M.[Cai-Ming],
Adaptive Texture-Preserving Denoising Method Using Gradient Histogram
and Nonlocal Self-Similarity Priors,
CirSysVideo(29), No. 11, November 2019, pp. 3222-3235.
IEEE DOI
1911
Noise reduction, Histograms, Image denoising, Adaptation models,
Laplace equations, TV, Fans,
alternating minimization
BibRef
Zhang, S.,
Huang, H.,
Fu, Y.,
Fast Parallel Implementation of Dual-Camera Compressive Hyperspectral
Imaging System,
CirSysVideo(29), No. 11, November 2019, pp. 3404-3414.
IEEE DOI
1911
Image reconstruction, Hyperspectral imaging, Apertures,
Reconstruction algorithms, TV, Compressive sensing (CS),
GPU
BibRef
Overgaard, N.C.[Niels Chr],
On the Taut String Interpretation and Other Properties of the
Rudin-Osher-Fatemi Model in One Dimension,
JMIV(61), No. 9, November 2019, pp. 1276-1300.
Springer DOI
1911
See also Nonlinear total variation based noise removal algorithms.
BibRef
Kirisits, C.[Clemens],
Scherzer, O.[Otmar],
Setterqvist, E.[Eric],
Invariant phi-Minimal Sets and Total Variation Denoising on Graphs,
SIIMS(12), No. 4, 2019, pp. 1643-1668.
DOI Link
1912
BibRef
Lee, C.O.[Chang-Ock],
Park, J.H.[Jong-Ho],
Fast Nonoverlapping Block Jacobi Method for the Dual
Rudin-Osher-Fatemi Model,
SIIMS(12), No. 4, 2019, pp. 2009-2034.
DOI Link
1912
See also Nonlinear total variation based noise removal algorithms.
BibRef
Aghamiry, H.S.[Hossein S.],
Gholami, A.[Ali],
Operto, S.[Stéphane],
Compound Regularization of Full-Waveform Inversion for Imaging
Piecewise Media,
GeoRS(58), No. 2, February 2020, pp. 1192-1204.
IEEE DOI
2001
TV, Compounds, Imaging, Mathematical model, Integrated circuits,
Image reconstruction, Media, Compound regularization,
wavefield reconstruction inversion (WRI)
BibRef
Aghamiry, H.S.[Hossein S.],
Gholami, A.[Ali],
Operto, S.[Stéphane],
Complex-Valued Imaging with Total Variation Regularization: An
Application to Full-Waveform Inversion in Visco-acoustic Media,
SIIMS(14), No. 1, 2021, pp. 58-91.
DOI Link
2104
BibRef
Hu, Y.,
Li, X.,
Gu, Y.,
Jacob, M.,
Hyperspectral Image Recovery Using Nonconvex Sparsity and Low-Rank
Regularizations,
GeoRS(58), No. 1, January 2020, pp. 532-545.
IEEE DOI
2001
TV, Image restoration, Hyperspectral imaging, Correlation,
Noise reduction, Optimization, Hyperspectral image (HSI),
restoration
BibRef
Yang, Y.H.[Yan-Hong],
Chen, S.Y.[Sheng-Yong],
Zheng, J.W.[Jian-Wei],
Moreau-Enhanced Total Variation and Subspace Factorization for
Hyperspectral Denoising,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Yang, Y.H.[Yan-Hong],
Zheng, J.W.[Jian-Wei],
Chen, S.Y.[Sheng-Yong],
Local low-rank matrix recovery for hyperspectral image denoising with
L0 gradient constraint,
PRL(135), 2020, pp. 167-172.
Elsevier DOI
2006
Hyperspectral image (HSI), Low-rank matrix recovery,
L gradient, Nonconvex optimization, Denoising
BibRef
Ye, J.[Jun],
Zhang, X.[Xian],
Hyperspectral image restoration by subspace representation with
low-rank constraint and spatial-spectral total variation,
IET-IPR(14), No. 2, February 2020, pp. 220-230.
DOI Link
2001
BibRef
Schultze, B.,
Censor, Y.,
Karbasi, P.,
Schubert, K.E.,
Schulte, R.W.,
An Improved Method of Total Variation Superiorization Applied to
Reconstruction in Proton Computed Tomography,
MedImg(39), No. 2, February 2020, pp. 294-307.
IEEE DOI
2002
TV, Perturbation methods, Image reconstruction, Protons,
Computed tomography, Image quality, Standards,
total variation superiorization (TVS)
BibRef
Effland, A.[Alexander],
Kobler, E.[Erich],
Kunisch, K.[Karl],
Pock, T.[Thomas],
Variational Networks: An Optimal Control Approach to Early Stopping
Variational Methods for Image Restoration,
JMIV(62), No. 3, April 2020, pp. 396-416.
Springer DOI
2004
BibRef
Kobler, E.[Erich],
Klatzer, T.[Teresa],
Hammernik, K.[Kerstin],
Pock, T.[Thomas],
Variational Networks: Connecting Variational Methods and Deep Learning,
GCPR17(281-293).
Springer DOI
1711
Award, GCPR.
BibRef
Kobler, E.[Erich],
Effland, A.[Alexander],
Kunisch, K.[Karl],
Pock, T.[Thomas],
Total Deep Variation for Linear Inverse Problems,
CVPR20(7546-7555)
IEEE DOI
2008
Optimal control, Convolution, Training, Inverse problems,
Task analysis, Kernel, Imaging
BibRef
Chambolle, A.,
Holler, M.,
Pock, T.,
A Convex Variational Model for Learning Convolutional Image Atoms from
Incomplete Data,
JMIV(62), No. 3, April 2020, pp. 417-444.
Springer DOI
2004
BibRef
Lima, J.A.[Jonathan A.],
da Silva, F.B.[Felipe B.],
von Borries, R.[Ricardo],
Miosso, C.J.[Cristiano J.],
Farias, M.C.Q.[Mylène C.Q.],
Isotropic and anisotropic filtering norm-minimization: A
generalization of the TV and TGV minimizations using NESTA,
SP:IC(85), 2020, pp. 115856.
Elsevier DOI
2005
Compressive sensing, Filtering, NESTA, MRI
BibRef
Tran, T.T.T.,
Pham, C.T.,
Kopylov, A.V.,
Nguyen, V.N.,
An Adaptive Variational Model for Medical Images Restoration,
PTVSBB19(219-224).
DOI Link
1912
BibRef
Demircan-Tureyen, E.[Ezgi],
Kamasak, M.E.[Mustafa E.],
On the Direction Guidance in Structure Tensor Total Variation Based
Denoising,
IbPRIA(I:89-100).
Springer DOI
1910
BibRef
Kirisits, C.[Clemens],
Scherzer, O.[Otmar],
Setterqvist, E.[Eric],
Preservation of Piecewise Constancy under TV Regularization with
Rectilinear Anisotropy,
SSVM19(510-521).
Springer DOI
1909
BibRef
Burger, M.[Martin],
Korolev, Y.[Yury],
Schönlieb, C.B.[Carola-Bibiane],
Stollenwerk, C.[Christiane],
A Total Variation Based Regularizer Promoting Piecewise-Lipschitz
Reconstructions,
SSVM19(485-497).
Springer DOI
1909
BibRef
Parisotto, S.[Simone],
Schönlieb, C.B.[Carola-Bibiane],
Total Directional Variation for Video Denoising,
SSVM19(522-534).
Springer DOI
1909
BibRef
Rasch, J.,
Warno, V.,
Ptatt, J.,
Tischendorf, C.,
Marpe, D.,
Schwarz, H.,
Wiegand, T.,
A Signal Adaptive Diffusion Filter for Video Coding Using Directional
Total Variation,
ICIP18(2570-2574)
IEEE DOI
1809
Encoding, UHDTV, Video coding, Video codecs, Minimization,
Image edge detection, Smoothing methods,
Alternating Direction Method of Multipliers (ADMM)
BibRef
Smith, R.,
Basarab, A.,
Georgeot, B.,
Kouamé, D.,
Adaptive transform via quantum signal processing:
Application to signal and image denoising,
ICIP18(1523-1527)
IEEE DOI
1809
Noise reduction, Transforms, Quantum mechanics, Noise measurement,
Wave functions, TV, Signal to noise ratio,
quantum mechanics
BibRef
Liu, H.,
Xiong, R.,
Zhang, X.,
Zhang, Y.,
Ma, S.,
Gao, W.,
Nonlocal Gradient Sparsity Regularization for Image Restoration,
CirSysVideo(27), No. 9, September 2017, pp. 1909-1921.
IEEE DOI
1709
Adaptation models, Estimation, Image edge detection,
Image restoration, Predictive models, TV, Transforms,
Content-adaptive modeling, gradient sparsity, image restoration,
nonlocal (NL) similarity, total, variation, (TV), regularization
BibRef
Liu, H.,
Zhang, X.,
Xiong, R.,
Content-adaptive low rank regularization for image denoising,
ICIP16(3091-3095)
IEEE DOI
1610
Bayes methods
BibRef
Peng, J.J.[Jiang-Jun],
Xie, Q.[Qi],
Zhao, Q.[Qian],
Wang, Y.[Yao],
Yee, L.[Leung],
Meng, D.Y.[De-Yu],
Enhanced 3DTV Regularization and Its Applications on HSI Denoising
and Compressed Sensing,
IP(29), 2020, pp. 7889-7903.
IEEE DOI
2007
Noise reduction, Task analysis, Compressed sensing, Correlation,
Tensile stress, TV, Sensors, Hyperspectral image, denoising,
total variation
BibRef
Chambolle, A.[Antonin],
Pock, T.[Thomas],
Crouzeix-Raviart Approximation of the Total Variation on Simplicial
Meshes,
JMIV(62), No. 6-7, July 2020, pp. 872-899.
Springer DOI
2007
BibRef
Lin, X.L.[Xue-Lei],
Ng, M.K.[Michael K.],
Zhao, X.L.[Xi-Le],
Tensor Factorization with Total Variation and Tikhonov Regularization
for Low-Rank Tensor Completion in Imaging Data,
JMIV(62), No. 6-7, July 2020, pp. 900-918.
Springer DOI
2007
BibRef
Thanh, D.N.H.[Dang N. H.],
Prasath, V.B.S.[V. B. Surya],
Hieu, L.M.[Le Minh],
Dvoenko, S.[Sergey],
An adaptive method for image restoration based on high-order total
variation and inverse gradient,
SIViP(14), No. 6, September 2020, pp. 1189-1197.
Springer DOI
2008
BibRef
Rahiman, V.A.[V. Abdu],
George, S.N.[Sudhish N.],
Multi-frame image super resolution using spatially weighted total
variation regularisations,
IET-IPR(14), No. 10, August 2020, pp. 2187-2194.
DOI Link
2008
BibRef
Azimpour, P.,
Bahraini, T.,
Yazdi, H.S.,
Hyperspectral Image Denoising via Clustering-Based Latent Variable in
Variational Bayesian Framework,
GeoRS(59), No. 4, April 2021, pp. 3266-3276.
IEEE DOI
2104
Runtime, Gaussian noise, Simulation, Noise reduction, Switches,
Bayes methods, Mathematical model,
nonindependent and identically distributed (non-i.i.d.) noise modeling
BibRef
Zeng, H.,
Xie, X.,
Cui, H.,
Yin, H.,
Ning, J.,
Hyperspectral Image Restoration via Global L1-2 Spatial-Spectral
Total Variation Regularized Local Low-Rank Tensor Recovery,
GeoRS(59), No. 4, April 2021, pp. 3309-3325.
IEEE DOI
2104
Tensile stress, Image restoration, Noise reduction, TV,
Sparse matrices, Hyperspectral sensors, Solid modeling, restoration
BibRef
Wang, Y.M.[Ying-Mei],
Wang, Z.D.[Zhen-Dong],
Image denoising method based on variable exponential
fractional-integer-order total variation and tight frame sparse
regularization,
IET-IPR(15), No. 1, 2021, pp. 101-114.
DOI Link
2106
BibRef
Wang, M.H.[Ming-Hua],
Wang, Q.[Qiang],
Chanussot, J.[Jocelyn],
Hong, D.F.[Dan-Feng],
L0-L1 Hybrid Total Variation Regularization and its Applications on
Hyperspectral Image Mixed Noise Removal and Compressed Sensing,
GeoRS(59), No. 9, September 2021, pp. 7695-7710.
IEEE DOI
2109
TV, Tensors, Image restoration, Image edge detection,
Compressed sensing, Minimization, Noise reduction,
hyperspectral image (HSI) denoising
BibRef
Li, M.M.[Meng-Meng],
Li, B.Z.[Bing-Zhao],
A novel weighted total variation model for image denoising,
IET-IPR(15), No. 12, 2021, pp. 2749-2760.
DOI Link
2109
BibRef
And:
Corrigendum:
IET-IPR(16), No. 1, 2022, pp. 285-288.
DOI Link
2112
BibRef
Demircan-Tureyen, E.[Ezgi],
Kamasak, M.E.[Mustafa E.],
Adaptive direction-guided structure tensor total variation,
SP:IC(99), 2021, pp. 116497.
Elsevier DOI
2111
Variational models, Image denoising,
Directional total variation, Structure tensor, Inverse problems
BibRef
Li, C.C.[Chun-Chao],
Tang, X.[Xuebin],
Shi, L.[Lulu],
Peng, Y.X.[Yuan-Xi],
Tang, Y.H.[Yu-Hua],
A Two-Staged Feature Extraction Method Based on Total Variation for
Hyperspectral Images,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Soh, J.W.[Jae Woong],
Cho, N.I.[Nam Ik],
Variational Deep Image Restoration,
IP(31), 2022, pp. 4363-4376.
IEEE DOI
2207
Image restoration, Degradation, Task analysis, Training,
Noise reduction, Superresolution, Image coding, Image restoration,
JPEG compression artifacts reduction
BibRef
Rahiche, A.[Abderrahmane],
Cheriet, M.[Mohamed],
Nonlinear Orthogonal NMF on the Stiefel Manifold With Graph-Based
Total Variation Regularization,
SPLetters(29), 2022, pp. 1457-1461.
IEEE DOI
2207
Kernel, Data models, Optimization, TV, Standards, Matrix converters,
Linear programming, multispectral image
BibRef
Huo, L.[Limei],
Chen, W.[Wengu],
Ge, H.[Huanmin],
Ng, M.K.[Michael K.],
Stable Image Reconstruction Using Transformed Total Variation
Minimization,
SIIMS(15), No. 3, 2022, pp. 1104-1139.
DOI Link
2208
BibRef
de los Reyes, J.C.[Juan Carlos],
Villacis, D.[David],
Optimality Conditions for Bilevel Imaging Learning Problems with
Total Variation Regularization,
SIIMS(15), No. 4, 2022, pp. 1646-1689.
DOI Link
2211
BibRef
Pagliari, V.[Valerio],
Papafitsoros, K.[Kostas],
Raibta, B.[Bogdan],
Vikelis, A.[Andreas],
Bilevel Training Schemes in Imaging for Total Variation: Type
Functionals with Convex Integrands,
SIIMS(15), No. 4, 2022, pp. 1690-1728.
DOI Link
2211
BibRef
Qi, H.Q.[Hui-Qing],
Tan, S.L.[Sheng-Li],
Li, Z.C.[Zhi-Chao],
Anisotropic Weighted Total Variation Feature Fusion Network for
Remote Sensing Image Denoising,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
El Bouchairi, I.[Imad],
Elmoataz, A.[Abderrahim],
Fadili, J.[Jalal],
Nonlocal Perimeters and Curvature Flows on Graphs with Applications
in Image Processing and High-Dimensional Data Classification,
SIIMS(16), No. 1, 2023, pp. 368-392.
DOI Link
2303
BibRef
Kumar, K.P.[K. Praveen],
Narasimhulu, C.V.[C. Venkata],
Prasad, K.S.[K. Satya],
2D Wavelet Tree Ordering Based Localized Total Variation Model for
Efficient Image Restoration,
IJIG(23), No. 3 2023, pp. 2240009.
DOI Link
2306
BibRef
Li, J.[Jun],
Han, Y.X.[Yu-Xuan],
Gao, Y.[Yin],
Li, Q.M.[Qi-Ming],
Wang, S.[Sumei],
An Enhance Relative Total Variation With BF Model for Edge-Preserving
Image Smoothing,
CirSysVideo(33), No. 10, October 2023, pp. 5420-5432.
IEEE DOI
2310
BibRef
Kuric, M.[Muhamed],
Ahmetspahic, J.[Jan],
Pock, T.[Thomas],
Total Generalized Variation on a Tree,
SIIMS(17), No. 2, 2024, pp. 1040-1077.
DOI Link
2407
BibRef
Liu, Y.[Yuan],
Wu, C.L.[Chun-Lin],
Zeng, C.[Chao],
Non-Lipschitz Variational Models and their Iteratively Reweighted
Least Squares Algorithms for Image Denoising on Surfaces,
SIIMS(17), No. 2, 2024, pp. 1255-1283.
DOI Link
2407
BibRef
Yi, L.X.[Li-Xuan],
Zhao, Q.[Qian],
Xu, Z.B.[Zong-Ben],
Hyperspectral Image Denoising by Pixel-Wise Noise Modeling and
TV-Oriented Deep Image Prior,
RS(16), No. 15, 2024, pp. 2694.
DOI Link
2408
BibRef
Pan, Z.S.[Zhong-Shan],
Liu, Z.T.[Zhao-Ting],
Luo, K.[Kang],
Zhao, Y.[Yinan],
Xu, X.R.[Xiao-Rong],
Compressive Sensing Total-Variation Primal-Dual Algorithms for Image
Reconstruction,
SPLetters(31), 2024, pp. 1965-1969.
IEEE DOI
2408
Image reconstruction, Signal processing algorithms, TV, Compressed sensing,
Vectors, Convex functions, Convergence, total-variation
BibRef
Yue, Z.S.[Zong-Sheng],
Yong, H.W.[Hong-Wei],
Zhao, Q.[Qian],
Zhang, L.[Lei],
Meng, D.Y.[De-Yu],
Wong, K.Y.K.[Kwan-Yee K.],
Deep Variational Network Toward Blind Image Restoration,
PAMI(46), No. 11, November 2024, pp. 7011-7026.
IEEE DOI
2410
Task analysis, Degradation, Image restoration, Testing,
Superresolution, Noise reduction, Bayes methods, Image restoration,
variational inference
BibRef
Li, L.[Lan],
Song, M.P.[Mei-Ping],
Zhang, Q.[Qiang],
Dong, Y.S.[Yu-Shuai],
Wang, Y.[Yulei],
Yuan, Q.Q.[Qiang-Qiang],
Local Extremum Constrained Total Variation Model for Natural and
Hyperspectral Image Non-Blind Deblurring,
CirSysVideo(34), No. 9, September 2024, pp. 8547-8561.
IEEE DOI
2410
TV, Image restoration, Adaptation models, Kernel,
Computational modeling, Noise, Image edge detection,
total variation (TV)
BibRef
Gong, Y.H.[Yuan-Hao],
A Multiscale Residual Solver for Total Variation Models,
ICIP23(151-155)
IEEE DOI
2312
BibRef
Gong, Y.H.[Yuan-Hao],
Imposing Total Variation Prior Into Guided Filter,
ICIP23(156-160)
IEEE DOI
2312
BibRef
Bogensperger, L.[Lea],
Chambolle, A.[Antonin],
Effland, A.[Alexander],
Pock, T.[Thomas],
Learned Discretization Schemes for the Second-order Total Generalized
Variation,
SSVM23(484-497).
Springer DOI
2307
BibRef
Yoshida, R.[Rino],
Kodama, K.[Kazuya],
Vu, H.[Huy],
Cheung, G.[Gene],
Hamamoto, T.[Takayuki],
Unrolling Graph Total Variation for Light Field Image Denoising,
ICIP22(1262-2166)
IEEE DOI
2211
Visualization, Image edge detection, Low-pass filters,
Light fields, Robustness, Numerical models,
convolutional neural nets
BibRef
Qiu, H.Q.[Hai-Quan],
Wang, Y.[Yao],
Meng, D.Y.[De-Yu],
Effective Snapshot Compressive-spectral Imaging via Deep Denoising
and Total Variation Priors,
CVPR21(9123-9132)
IEEE DOI
2111
Image coding, TV, Noise reduction, Imaging, Sensors,
Optimization
BibRef
Prost, J.[Jean],
Houdard, A.[Antoine],
Almansa, A.[Andrés],
Papadakis, N.[Nicolas],
Learning Local Regularization for Variational Image Restoration,
SSVM21(358-370).
Springer DOI
2106
BibRef
de Castro, Y.[Yohann],
Duval, V.[Vincent],
Petit, R.[Romain],
Towards Off-the-grid Algorithms for Total Variation Regularized Inverse
Problems,
SSVM21(553-564).
Springer DOI
2106
BibRef
Cohen, I.[Ido],
Berkov, T.[Tom],
Gilboa, G.[Guy],
Total-variation Mode Decomposition,
SSVM21(52-64).
Springer DOI
2106
BibRef
Ishihara, S.,
Kodama, K.,
Hamamoto, T.,
A Study On Light Field Denoising For 3d Consistent Visualization,
ICIP20(2800-2804)
IEEE DOI
2011
Noise reduction, Correlation, Image restoration, Smoothing methods,
total variation
BibRef
He, C.,
Hu, C.,
Li, X.,
A parallel linearized ADMM with application to multichannel tgv-based
image restoration,
ICIP17(1187-1191)
IEEE DOI
1803
Acceleration, Convergence, Convex functions, Image restoration,
Imaging, Inverse problems, TV, Nonsmooth optimization, PLADMM, TGV,
image restoration
BibRef
Yokota, T.,
Hontani, H.,
Simultaneous Visual Data Completion and Denoising Based on Tensor
Rank and Total Variation Minimization and Its Primal-Dual Splitting
Algorithm,
CVPR17(3843-3851)
IEEE DOI
1711
Convex functions, Minimization, Noise measurement, Noise reduction,
Optimization, TV, Tensile, stress
BibRef
Demircan-Tureyen, E.[Ezgi],
Kamasak, M.E.[Mustafa E.],
Directional Total Variation Based Image Deconvolution with Unknown
Boundaries,
CAIP17(II: 473-484).
Springer DOI
1708
BibRef
Wang, R.[Rui],
Wang, G.Y.[Guo-Yu],
Medical X-ray image enhancement method based on TV-homomorphic filter,
ICIVC17(315-318)
IEEE DOI
1708
Histograms, Image enhancement, Information filtering,
Medical diagnostic imaging, TV, X-ray imaging, X-ray image,
image denoising, image enhancement, medical image, total, variation, (TV)
BibRef
Said, A.B.[Ahmed Ben],
Foufou, S.[Sebti],
Modified total variation regularization using fuzzy complement for
image denoising,
ICVNZ15(1-6)
IEEE DOI
1701
edge detection
BibRef
Yuan, X.,
Generalized alternating projection based total variation minimization
for compressive sensing,
ICIP16(2539-2543)
IEEE DOI
1610
Apertures
BibRef
Tierney, S.,
Guo, Y.,
Gao, J.,
Selective Multi-Source Total Variation Image Restoration,
DICTA15(1-8)
IEEE DOI
1603
image denoising
BibRef
Moeller, M.[Michael],
Diebold, J.,
Gilboa, G.[Guy],
Cremers, D.,
Learning Nonlinear Spectral Filters for Color Image Reconstruction,
ICCV15(289-297)
IEEE DOI
1602
Color
See also Total Variation Spectral Framework for Scale and Texture Analysis, A.
BibRef
Lu, Z.B.[Zhen-Bo],
Li, H.Q.[Hou-Qiang],
Li, W.P.[Wei-Ping],
A Bayesian adaptive weighted total generalized variation model for
image restoration,
ICIP15(492-496)
IEEE DOI
1512
Adaptive Learning; Bayesian Theory; Total Generalized Variation
BibRef
Hosseini, M.S.[Mahdi S.],
Plataniotis, K.N.[Konstantinos N.],
Sparse tensor recovery via combined first and second order
high-accuracy total variation,
ICIP15(701-705)
IEEE DOI
1512
alternating direction method of multipliers
BibRef
Guo, X.J.[Xiao-Jie],
Ma, Y.[Yi],
Generalized Tensor Total Variation minimization for visual data
recovery?,
CVPR15(3603-3611)
IEEE DOI
1510
BibRef
Baust, M.[Maximilian],
Demaret, L.[Laurent],
Storath, M.[Martin],
Navab, N.[Nassir],
Weinmann, A.[Andreas],
Total variation regularization of shape signals,
CVPR15(2075-2083)
IEEE DOI
1510
BibRef
Brinkmann, E.M.[Eva-Maria],
Burger, M.[Martin],
Grah, J.[Joana],
Regularization with Sparse Vector Fields:
From Image Compression to TV-type Reconstruction,
SSVM15(191-202).
Springer DOI
1506
BibRef
Lenzen, F.[Frank],
Berger, J.[Johannes],
Solution-Driven Adaptive Total Variation Regularization,
SSVM15(203-215).
Springer DOI
1506
BibRef
Aujol, J.F.[Jean-François],
Gilboa, G.[Guy],
Papadakis, N.[Nicolas],
Fundamentals of Non-Local Total Variation Spectral Theory,
SSVM15(66-77).
Springer DOI
1506
BibRef
Rodreguez, P.[Paul],
Wohlberg, B.[Brendt],
Performance comparison of iterative reweighting methods for total
variation regularization,
ICIP14(1758-1762)
IEEE DOI
1502
Accuracy
BibRef
Ozere, S.[Solene],
Le Guyader, C.[Carole],
A joint segmentation-registration framework based on weighted total
variation and nonlinear elasticity principles,
ICIP14(3552-3556)
IEEE DOI
1502
Biological system modeling
BibRef
Li, T.[Ting],
Papamichalis, P.E.[Panos E.],
A novel total variation optimization method and its application on
blind super-resolution,
ICIP14(3892-3896)
IEEE DOI
1502
Equations
BibRef
Bonettini, S.[Silvia],
Benfenati, A.[Alessandro],
Ruggiero, V.[Valeria],
Primal-dual first order methods for total variation image restoration
in presence of poisson noise,
ICIP14(4156-4160)
IEEE DOI
1502
Convergence
BibRef
Jalalzai, K.[Khalid],
Chambolle, A.[Antonin],
Properties of minimizers of the total variation and of the solutions
of the total variation flow,
ICIP14(4832-4836)
IEEE DOI
1502
Active contours
BibRef
Ono, S.[Shunsuke],
Yamada, I.[Isao],
Decorrelated Vectorial Total Variation,
CVPR14(4090-4097)
IEEE DOI
1409
BibRef
Chan, R.H.[Raymond H.],
Liang, H.X.[Hai-Xia],
Half-Quadratic Algorithm for lp-lq Problems with Applications to
TV-l1 Image Restoration and Compressive Sensing,
Optimization11(78-103).
Springer DOI
1405
BibRef
Oh, A.K.[Albert K.],
Harmany, Z.T.[Zachary T.],
Willett, R.M.[Rebecca M.],
Logarithmic total variation regularization for cross-validation in
photon-limited imaging,
ICIP13(484-488)
IEEE DOI
1402
Image reconstruction
BibRef
Loosli, C.[Cédric],
Lecellier, F.[François],
A Color-Based Selective and Interactive Filter Using Weighted TV,
CAIP13(II:315-323).
Springer DOI
1311
BibRef
Martín, A.[Adrián],
Schiavi, E.[Emanuele],
Automatic Total Generalized Variation-Based DTI Rician Denoising,
ICIAR13(581-588).
Springer DOI
1307
BibRef
Miyata, T.[Takamichi],
Inter-channel relation based vectorial total variation for color
image recovery,
ICIP15(2251-2255)
IEEE DOI
1512
BibRef
Earlier:
L infinity total generalized variation for color image recovery,
ICIP13(449-453)
IEEE DOI
1402
Total variation.
Color
BibRef
Miyata, T.[Takamichi],
Sakai, Y.[Yoshinori],
Vectorized total variation defined by weighted L infinity norm for
utilizing inter channel dependency,
ICIP12(3057-3060).
IEEE DOI
1302
BibRef
Zhang, H.,
Hyperspectral Image Denoising with Cubic Total Variation Model,
AnnalsPRS(I-7), No. 2012, pp. 95-98.
DOI Link
1209
BibRef
Xiao, L.[Liang],
Huang, L.[Lili],
Zhang, F.[Fanbiao],
Perceptual Saliency Driven Total Variation for Image Denoising Using
Tensor Voting,
ICIG11(111-116).
IEEE DOI
1109
BibRef
Ono, S.[Shunsuke],
Miyata, T.[Takamichi],
Yamaoka, K.[Katsunori],
Total variation-wavelet-curvelet regularized optimization for image
restoration,
ICIP11(2665-2668).
IEEE DOI
1201
BibRef
Ciril, I.[Igor],
Darbon, J.[Jérôme],
Image Denoising with a Constrained Discrete Total Variation Scale Space,
DGCI11(465-476).
Springer DOI
1104
BibRef
Shu, X.B.[Xian-Biao],
Ahuja, N.[Narendra],
Hybrid Compressive Sampling via a New Total Variation TVL1,
ECCV10(VI: 393-404).
Springer DOI
1009
I.e. insufficient by Nyquist/Shannon sampling theorem.
BibRef
Shishkin, S.L.[Serge L.],
Wang, H.C.[Hong-Cheng],
Hagen, G.S.[Gregory S.],
Total Variation Minimization with Separable Sensing Operator,
ICISP10(86-93).
Springer DOI
1006
for compressed imaging.
solve coupled Sylvester equations rather than
iterative optimization procedure. Much faster.
BibRef
Denis, L.,
Tupin, F.,
Rondeau, X.,
Exact discrete minimization for TV+L0 image decomposition models,
ICIP10(2525-2528).
IEEE DOI
1009
Noise. Decompose and denoise each separately.
BibRef
Huang, Y.L.[Yong-Lin],
Ye, Y.T.[Yu-Tang],
Qiao, N.S.[Nao-Sheng],
An Improved TV Model for Image Restoration,
CISP09(1-5).
IEEE DOI
0910
BibRef
Zeng, T.Y.[Tie-Yong],
Incorporating known features into a total variation dictionary model
for source separation,
ICIP08(577-580).
IEEE DOI
0810
BibRef
Figueiredo, M.A.T.,
Dias, J.B.,
Oliveira, J.P.,
Nowak, R.D.[Robert D.],
On Total Variation Denoising: A New Majorization-Minimization Algorithm
and an Experimental Comparison with Wavalet Denoising,
ICIP06(2633-2636).
IEEE DOI
0610
BibRef
Yu, G.Q.[Guo-Qiang],
Li, L.[Liang],
Gu, J.W.[Jian-Wei],
Zhang, L.[Li],
Total Variation Based Iterative Image Reconstruction,
CVBIA05(526-534).
Springer DOI
0601
BibRef
Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Noise Removal, Adaptive, Non-linear Techniques .