Bleck, J.S.,
Ranft, U.,
Gebel, M.,
Hecker, H.,
Westhoff-Bleck, M.,
Thiesemann, C.,
Wagner, S.,
Manns, M.,
Random field models in the textural analysis of ultrasonic images of
the liver,
MedImg(15), No. 6, December 1996, pp. 796-801.
IEEE Top Reference.
0203
BibRef
Kadah, Y.M.,
Farag, A.A.,
Zurada, J.M.,
Badawi, A.M.,
Youssef, A.B.M.,
Classification algorithms for quantitative tissue characterization of
diffuse liver disease from ultrasound images,
MedImg(15), No. 4, August 1996, pp. 466-478.
IEEE Top Reference.
0203
BibRef
Wu, C.M.,
Chen, Y.C.,
Multi-Threshold Dimension Vector for Texture Analysis and
Its Application to Liver Tissue Classification,
PR(26), No. 1, January 1993, pp. 137-144.
Elsevier DOI
BibRef
9301
Carrillo, A.,
Duerk, J.L.,
Lewin, J.S.,
Wilson, D.L.,
Semiautomatic 3-D image registration as applied to interventional MRI
liver cancer treatment,
MedImg(19), No. 3, March 2000, pp. 175-185.
IEEE Top Reference.
0110
BibRef
Meyer, C.R.,
Park, H.J.[Hyun-Jin],
Balter, J.M.,
Bland, P.H.,
Method for quantifying volumetric lesion change in interval liver CT
examinations,
MedImg(22), No. 6, June 2003, pp. 776-781.
IEEE Abstract.
0308
BibRef
Bauer, C.,
Aurich, V.,
Arzhaeva, Y.,
Styner, M.A.,
van Ginneken, B.,
Heimann, T.,
Beichel, R.,
Chi, Y.[Ying],
Cordova, A.,
Dawant, B.M.,
Fidrich, M.,
Furst, J.D.,
Furukawa, D.,
Grenacher, L.,
Hornegger, J.,
Kainmueller, D.,
Kitney, R.I.,
Kobatake, H.,
Lamecker, H.,
Lange, T.,
Lee, J.J.[Jeong-Jin],
Lennon, B.,
Li, R.[Rui],
Li, S.[Senhu],
Meinzer, H.P.,
Nemeth, G.,
Raicu, D.S.,
Rau, A.M.,
van Rikxoort, E.M.,
Rousson, M.,
Rusko, L.,
Saddi, K.A.,
Schmidt, G.,
Seghers, D.,
Shimizu, A.,
Slagmolen, P.,
Sorantin, E.,
Soza, G.,
Susomboon, R.,
Becker, C.,
Beck, A.,
Bekes, G.,
Bello, F.,
Binnig, G.,
Bischof, H.,
Bornik, A.,
Cashman, P.,
Waite, J.M.,
Wimmer, A.,
Wolf, I.,
Comparison and Evaluation of Methods for Liver Segmentation From CT
Datasets,
MedImg(28), No. 8, August 2009, pp. 1251-1265.
IEEE DOI
0909
Survey, Liver Segmentation.
Evaluation, Liver Segmentation.
BibRef
Lee, W.L.[Wen-Li],
Chen, Y.C.[Yung-Chang],
Hsieh, K.S.[Kai-Sheng],
Ultrasonic liver tissues classification by fractal feature vector based
on M -band wavelet transform,
MedImg(22), No. 3, March 2003, pp. 382-392.
IEEE Abstract.
0306
BibRef
Chen, S.R.[Si-Rong],
Ho, C.,
Feng, D.D.[David Dagan],
Chi, Z.[Zheru],
Tracer kinetic modeling of C11-acetate applied in the liver with
positron emission tomography,
MedImg(23), No. 4, April 2004, pp. 426-432.
IEEE Abstract.
0406
BibRef
Blackall, J.M.,
Penney, G.P.,
King, A.P.,
Hawkes, D.J.,
Alignment of sparse freehand 3-D ultrasound with preoperative images of
the liver using models of respiratory motion and deformation,
MedImg(24), No. 11, November 2005, pp. 1405-1416.
IEEE DOI
0512
BibRef
Lim, S.J.[Seong-Jae],
Jeong, Y.Y.[Yong-Yeon],
Ho, Y.S.[Yo-Sung],
Automatic liver segmentation for volume measurement in CT Images,
JVCIR(17), No. 4, August 2006, pp. 860-875.
Elsevier DOI
0711
Liver segmentation; Volume measurement; Morphological filtering;
Deformable contouring; Computer-aided diagnosis
BibRef
Casiraghi, E.[Elena],
Campadelli, P.[Paola],
Pratissoli, S.[Stella],
Lombardi, G.[Gabriele],
Automatic Abdominal Organ Segmentation from CT images,
ELCVIA(8), No. 1, July 2009, pp. xx-yy.
DOI Link
0909
BibRef
Earlier: A2, A1, A4, Only:
Automatic liver segmentation from abdominal CT scans,
CIAP07(731-736).
IEEE DOI
0709
BibRef
Bharathi, V.S.[V. Subbiah],
Ganesan, L.,
Orthogonal moments based texture analysis of CT liver images,
PRL(29), No. 13, 1 October 2008, pp. 1868-1872.
Elsevier DOI
0804
Orthogonal moments; Texture; Feature selection; Classifier
BibRef
Feuerstein, M.,
Mussack, T.,
Heining, S.M.,
Navab, N.,
Intraoperative Laparoscope Augmentation for Port Placement and
Resection Planning in Minimally Invasive Liver Resection,
MedImg(27), No. 3, March 2008, pp. 355-369.
IEEE DOI
0803
BibRef
Feuerstein, M.,
Reichl, T.,
Vogel, J.,
Traub, J.,
Navab, N.,
Magneto-Optical Tracking of Flexible Laparoscopic Ultrasound:
Model-Based Online Detection and Correction of Magnetic Tracking Errors,
MedImg(28), No. 6, June 2009, pp. 951-967.
IEEE DOI
0906
BibRef
Reichl, T.,
Gardiazabal, J.,
Navab, N.,
Electromagnetic Servoing: A New Tracking Paradigm,
MedImg(32), No. 8, 2013, pp. 1526-1535.
IEEE DOI
1308
Instrument and patient localization and tracking
BibRef
Mescam, M.,
Kretowski, M.,
Bezy-Wendling, J.,
Multiscale Model of Liver DCE-MRI Towards a Better Understanding of
Tumor Complexity,
MedImg(29), No. 3, March 2010, pp. 699-707.
IEEE DOI
1003
BibRef
Buerger, C.,
Clough, R.E.,
King, A.P.,
Schaeffter, T.,
Prieto, C.,
Nonrigid Motion Modeling of the Liver From 3-D Undersampled Self-Gated
Golden-Radial Phase Encoded MRI,
MedImg(31), No. 3, March 2012, pp. 805-815.
IEEE DOI
1203
BibRef
Bakas, S.[Spyridon],
Chatzimichail, K.[Katerina],
Hoppe, A.[Andreas],
Galariotis, V.[Vasileios],
Hunter, G.[Gordon],
Makris, D.[Dimitrios],
Histogram-based Motion Segmentation and Characterisation of Focal Liver
Lesions in CEUS,
BMVA(2012), No. 7, 2012, pp. 1-14.
PDF File.
1209
BibRef
Bakas, S.[Spyridon],
Hoppe, A.[Andreas],
Chatzimichail, K.[Katerina],
Galariotis, V.[Vasileios],
Hunter, G.[Gordon],
Makris, D.[Dimitrios],
Focal Liver Lesion Tracking in Ceus for Characterisation Based on
Dynamic Behaviour,
ISVC12(I: 32-41).
Springer DOI
1209
BibRef
Linguraru, M.G.,
Richbourg, W.J.,
Liu, J.F.[Jian-Fei],
Watt, J.M.,
Pamulapati, V.,
Wang, S.J.[Shi-Jun],
Summers, R.M.,
Tumor Burden Analysis on Computed Tomography by Automated Liver and
Tumor Segmentation,
MedImg(31), No. 10, October 2012, pp. 1965-1976.
IEEE DOI
1210
BibRef
Ho, H.,
Sorrell, K.,
Peng, L.,
Yang, Z.,
Holden, A.,
Hunter, P.,
Hemodynamic Analysis for Transjugular Intrahepatic Portosystemic Shunt
(TIPS) in the Liver Based on a CT-Image,
MedImg(32), No. 1, January 2013, pp. 92-98.
IEEE DOI
1301
BibRef
Kumar, S.S.,
Moni, R.S.,
Rajeesh, J.,
Automatic liver and lesion segmentation:
A primary step in diagnosis of liver diseases,
SIViP(7), No. 1, January 2013, pp. 163-172.
WWW Link.
1301
BibRef
Foruzan, A.H.[Amir H.],
Chen, Y.W.[Yen-Wei],
Zoroofi, R.A.[Reza A.],
Furukawa, A.[Akira],
Sato, Y.[Yoshinobu],
Hori, M.[Masatoshi],
Tomiyama, N.[Noriyuki],
Segmentation of Liver in Low-Contrast Images Using K-Means Clustering
and Geodesic Active Contour Algorithms,
IEICE(E96-D), No. 4, April 2013, pp. 798-807.
WWW Link.
1304
BibRef
Shimizu, A.[Akinobu],
Narihira, T.[Takuya],
Kobatake, H.[Hidefumi],
Furukawa, D.[Daisuke],
Nawano, S.[Shigeru],
Shinozaki, K.[Kenji],
Ensemble Learning Based Segmentation of Metastatic Liver Tumours in
Contrast-Enhanced Computed Tomography,
IEICE(E96-D), No. 4, April 2013, pp. 864-868.
WWW Link.
1304
BibRef
Cifor, A.,
Risser, L.,
Chung, D.,
Anderson, E.M.,
Schnabel, J.A.,
Hybrid Feature-Based Diffeomorphic Registration for Tumor Tracking in
2-D Liver Ultrasound Images,
MedImg(32), No. 9, 2013, pp. 1647-1656.
IEEE DOI
1309
Block-matching; diffeomorphic registration; tumor tracking; ultrasound
BibRef
Rucker, D.C.,
Wu, Y.F.[Yi-Fei],
Clements, L.W.,
Ondrake, J.E.,
Pheiffer, T.S.,
Simpson, A.L.,
Jarnagin, W.R.,
Miga, M.I.,
A Mechanics-Based Nonrigid Registration Method for Liver Surgery
Using Sparse Intraoperative Data,
MedImg(33), No. 1, January 2014, pp. 147-158.
IEEE DOI
1402
biological tissues
BibRef
Peng, J.L.[Jia-Lin],
Wang, Y.[Ye],
Kong, D.X.[De-Xing],
Liver segmentation with constrained convex variational model,
PRL(43), No. 1, 2014, pp. 81-88.
Elsevier DOI
1404
Liver segmentation
BibRef
Peng, J.L.[Jia-Lin],
Wang, J.W.[Jin-Wei],
Kong, D.X.[De-Xing],
A new convex variational model for liver segmentation,
ICPR12(3754-3757).
WWW Link.
1302
Award, ICPR.
BibRef
Depeursinge, A.,
Kurtz, C.,
Beaulieu, C.F.,
Napel, S.,
Rubin, D.L.,
Predicting Visual Semantic Descriptive Terms From Radiological Image Data:
Preliminary Results With Liver Lesions in CT,
MedImg(33), No. 8, August 2014, pp. 1669-1676.
IEEE DOI
1408
Computational modeling
BibRef
Lamb, P.,
Sahani, D.V.,
Fuentes-Orrego, J.M.,
Patino, M.,
Ghosh, A.,
Mendonca, P.R.S.,
Stratification of Patients With Liver Fibrosis Using Dual-Energy CT,
MedImg(34), No. 3, March 2015, pp. 807-815.
IEEE DOI
1503
biological tissues
BibRef
Krishnan, K.R.[K. Raghesh],
Radhakrishnan, S.,
Focal and diffused liver disease classification from ultrasound
images based on isocontour segmentation,
IET-IPR(9), No. 4, 2015, pp. 261-270.
DOI Link
1505
biodiffusion
BibRef
Virmani, J.[Jitendra],
Kumar, V.[Vinod],
Kalra, N.[Naveen],
Khandelwal, N.[Niranjan],
PCA-SVM based CAD System for Focal Liver Lesions using
B-Mode Ultrasound Images,
DefenceScience(63), No. 5, September 2013, pp. 478-486.
1506
BibRef
Virmani, J.[Jitendra],
Kumar, V.[Vinod],
Kalra, N.[Naveen],
Khandelwal, N.[Niranjan],
Neural Network Ensemble Based CAD System for Focal Liver
Lesions from B-Mode Ultrasound,
DigitalImaging(), April, 2014.
Springer DOI
1506
Incomplete Reference.
BibRef
Virmani, J.[Jitendra],
Kumar, V.[Vinod],
Kalra, N.[Naveen],
Khandelwal, N.[Niranjan],
SVM-Based Characterization of Liver Ultrasound Images
Using Wavelet Packet Texture Descriptors,
DigitalImaging(26), No. 3, October, 2012, pp. 530-543.
Springer DOI
1506
BibRef
Virmani, J.[Jitendra],
Kumar, V.[Vinod],
Kalra, N.[Naveen],
Khandelwal, N.[Niranjan],
SVM-based characterisation of liver cirrhosis by
singular value decomposition of GLCM matrix,
AISC(3), No. 3, 2013, pp. 276-296.
1506
BibRef
Virmani, J.[Jitendra],
Kumar, V.[Vinod],
Kalra, N.[Naveen],
Khandelwal, N.[Niranjan],
Prediction of liver cirrhosis based on multiresolution
texture descriptors from B-mode ultrasound,
ConvergenceComputing(1), No. 1, 2013 pp. 19-37.
1506
BibRef
Virmani, J.[Jitendra],
Kumar, V.[Vinod],
Kalra, N.[Naveen],
Khandelwal, N.[Niranjan],
Characterization of Primary and Secondary Malignant
Liver Lesions from B-Mode Ultrasound,
DigitalImaging(), February, 2013.
Springer DOI
1506
Incomplete Reference.
BibRef
Virmani, J.[Jitendra],
Kumar, V.[Vinod],
Kalra, N.[Naveen],
Khandelwal, N.[Niranjan],
A comparative study of computer-aided classification systems for focal
hepatic lesions from B-mode ultrasound,
MedEngTech(37), No. 4, 2013, pp. 202-306.
DOI Link
1506
BibRef
Manth, N.[Nimisha],
Virmani, J.[Jitendra],
Bhadauria, H.S.,
Despeckle Filtering:
Performance Evaluation for Malignant Focal Hepatic Lesions,
ICCSGD15(1897-1902).
BibRef
1500
Virmani, J.[Jitendra],
Kumar, V.[Vinod],
Kalra, N.[Naveen],
Khandelwal, N.[Niranjan],
Prediction of cirrhosis from liver ultrasound B-mode images based on
Laws' masks analysis,
ICIIP11(1-5).
IEEE DOI
1112
BibRef
Virmani, J.[Jitendra],
Kumar, V.[Vinod],
Kalra, N.[Naveen],
Khandelwal, N.[Niranjan],
A Rapid Approach for Prediction of Liver Cirrhosis based on
First Order Statistics,
MSPCT11(212-215).
1506
BibRef
Virmani, J.[Jitendra],
Kumar, V.[Vinod],
Kalra, N.[Naveen],
Khandelwal, N.[Niranjan],
Prediction of Cirrhosis Based on Singular Value Decomposition of
Gray Level Co-Occurence Matrix and a Neural Network Classifier,
E-Systems11(146-151).
DOI Link
1506
BibRef
Audigier, C.,
Mansi, T.,
Delingette, H.,
Rapaka, S.,
Mihalef, V.,
Carnegie, D.,
Boctor, E.,
Choti, M.,
Kamen, A.,
Ayache, N.,
Comaniciu, D.,
Efficient Lattice Boltzmann Solver for Patient-Specific
Radiofrequency Ablation of Hepatic Tumors,
MedImg(34), No. 7, July 2015, pp. 1576-1589.
IEEE DOI
1507
Biological system modeling
BibRef
Shi, C.F.[Chang-Fa],
Cheng, Y.Z.[Yuan-Zhi],
Liu, F.[Fei],
Wang, Y.D.[Ya-Dong],
Bai, J.[Jing],
Tamura, S.[Shinichi],
A hierarchical local region-based sparse shape composition for liver
segmentation in CT scans,
PR(50), No. 1, 2016, pp. 88-106.
Elsevier DOI
1512
Liver segmentation
BibRef
Li, G.D.[Guo-Dong],
Chen, X.J.[Xin-Jian],
Shi, F.[Fei],
Zhu, W.F.[Wei-Fang],
Tian, J.[Jie],
Xiang, D.[Dehui],
Automatic Liver Segmentation Based on Shape Constraints and
Deformable Graph Cut in CT Images,
IP(24), No. 12, December 2015, pp. 5315-5329.
IEEE DOI
1512
computerised tomography
BibRef
Dakua, S.P.[Sarada Prasad],
Abinahed, J.[Julien],
Al-Ansari, A.A.[Abdulla A.],
Pathological liver segmentation using stochastic resonance and
cellular automata,
JVCIR(34), No. 1, 2016, pp. 89-102.
Elsevier DOI
1601
CT
BibRef
Christofides, D.,
Leen, E.,
Averkiou, M.A.,
Evaluation of the Accuracy of Liver Lesion DCEUS Quantification With
Respiratory Gating,
MedImg(35), No. 2, February 2016, pp. 622-629.
IEEE DOI
1602
Imaging
BibRef
Liang, X.,
Lin, L.,
Cao, Q.,
Huang, R.,
Wang, Y.,
Recognizing Focal Liver Lesions in CEUS With Dynamically Trained
Latent Structured Models,
MedImg(35), No. 3, March 2016, pp. 713-727.
IEEE DOI
1603
Cancer
BibRef
McDermott, J.[James],
Forsyth, R.S.[Richard S.],
Diagnosing a disorder in a classification benchmark,
PRL(73), No. 1, 2016, pp. 41-43.
Elsevier DOI
1604
Machine learning. Liver disorder database.
BibRef
Chaieb, F.[Faten],
Said, T.B.[Tarek Ben],
Mabrouk, S.[Sabra],
Ghorbel, F.[Faouzi],
Accelerated liver tumor segmentation in four-phase computed tomography
images,
RealTimeIP(13), No. 1, March 2017, pp. 121-133.
Springer DOI
1704
BibRef
Krishnan, K.R.[K. Raghesh],
Radhakrishnan, S.[Sudhakar],
Hybrid approach to classification of focal and diffused liver disorders
using ultrasound images with wavelets and texture features,
IET-IPR(11), No. 7, July 2017, pp. 530-538.
DOI Link
1707
BibRef
Kondo, S.,
Takagi, K.,
Nishida, M.,
Iwai, T.,
Kudo, Y.,
Ogawa, K.,
Kamiyama, T.,
Shibuya, H.,
Kahata, K.,
Shimizu, C.,
Computer-Aided Diagnosis of Focal Liver Lesions Using
Contrast-Enhanced Ultrasonography With Perflubutane Microbubbles,
MedImg(36), No. 7, July 2017, pp. 1427-1437.
IEEE DOI
1707
Frequency locked loops, Lesions, Liver, Metastasis, Portals,
Sensitivity, Support vector machines, Computer-aided diagnosis,
contrast-enhanced ultrasonography, focal liver lesion,
support vector machine, time, intensity, curve
BibRef
Yan, Z.,
Chen, F.,
Kong, D.,
Liver Venous Tree Separation via Twin-Line RANSAC and Murray's Law,
MedImg(36), No. 9, September 2017, pp. 1887-1900.
IEEE DOI
1709
blood vessels, computerised tomography, diagnostic radiography,
liver,
abdominal CT angiography, hepatic surgery, Murray's Law
BibRef
Delavari, M.[Mahdi],
Foruzan, A.H.[Amir Hossein],
Anatomical decomposition of human liver volume to build accurate
statistical shape models,
SIViP(12), No. 2, February 2018, pp. 331-338.
WWW Link.
1802
BibRef
Liu, H.[Hui],
Tang, P.[Pinpin],
Guo, D.M.[Dong-Mei],
Liu, H.X.[Hai-Xia],
Zheng, Y.J.[Yuan-Jie],
Dan, G.[Guo],
Liver MRI segmentation with edge-preserved intensity inhomogeneity
correction,
SIViP(12), No. 4, May 2018, pp. 791-798.
Springer DOI
1805
BibRef
Gloger, O.[Oliver],
Tönnies, K.[Klaus],
Subject-Specific prior shape knowledge in feature-oriented
probability maps for fully automatized liver segmentation in MR
volume data,
PR(84), 2018, pp. 288-300.
Elsevier DOI
1809
Expectation maximization, Subject-specific shape model,
3D prior shape level set segmentation, Bayesian probability,
Principal component analysis
BibRef
Zhao, J.W.[Jing-Wen],
Wang, S.H.[Shuo Hong],
Liu, X.[Xiang],
Liu, Y.[Ye],
Chen, Y.Q.[Yan Qiu],
Early diagnosis of cirrhosis via automatic location and geometric
description of liver capsule,
VC(34), No. 12, December 2018, pp. 1677-1689.
WWW Link.
1811
BibRef
Balagourouchetty, L.[Lakshmipriya],
Pragatheeswaran, J.K.[Jayanthi K.],
Pottakkat, B.[Biju],
Govindarajalou, R.[Ramkumar],
Enhancement approach for liver lesion diagnosis using unenhanced CT
images,
IET-CV(12), No. 8, December 2018, pp. 1078-1087.
DOI Link
1812
BibRef
Li, X.,
Chen, H.,
Qi, X.,
Dou, Q.,
Fu, C.,
Heng, P.,
H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor
Segmentation From CT Volumes,
MedImg(37), No. 12, December 2018, pp. 2663-2674.
IEEE DOI
1812
Liver, Image segmentation, Feature extraction, Lesions, CT,
hybrid features
BibRef
Parent, F.,
Gérard, M.,
Monet, F.,
Loranger, S.,
Soulez, G.,
Kashyap, R.,
Kadoury, S.,
Intra-Arterial Image Guidance With Optical Frequency Domain
Reflectometry Shape Sensing,
MedImg(38), No. 2, February 2019, pp. 482-492.
IEEE DOI
1902
Catheters, Shape, Optical sensors,
Arteries, Strain, Liver cancer, intra-arterial therapies,
curvature matching
BibRef
Sreeja, P.,
Hariharan, S.,
Three-dimensional fusion of clustered and classified features for
enhancement of liver and lesions from abdominal radiology images,
IET-IPR(13), No. 10, 22 August 2019, pp. 1680-1685.
DOI Link
1909
BibRef
Mirasadi, M.S.[Mansoureh Sadat],
Foruzan, A.H.[Amir Hossein],
Content-based medical image retrieval of CT images of liver lesions
using manifold learning,
MultInfoRetr(8), No. 4, December 2019, pp. 233-240.
WWW Link.
1912
BibRef
Renukadevi, T.[Thangavel],
Karunakaran, S.[Saminathan],
Optimizing deep belief network parameters using grasshopper algorithm
for liver disease classification,
IJIST(30), No. 1, 2020, pp. 168-184.
DOI Link
2002
deep belief network (DBN),
grasshopper optimization algorithm (GOA),
principal component analysis (PCA)
BibRef
Wang, J.[Jian],
Li, J.[Jing],
Han, X.H.[Xian-Hua],
Lin, L.F.[Lan-Fen],
Hu, H.J.[Hong-Jie],
Xu, Y.Y.[Ying-Ying],
Chen, Q.Q.[Qing-Qing],
Iwamoto, Y.T.[Yu-Taro],
Chen, Y.W.[Yen-Wei],
Tensor-based sparse representations of multi-phase medical images for
classification of focal liver lesions,
PRL(130), 2020, pp. 207-215.
Elsevier DOI
2002
Multi-phase CT, Tensor analysis, Sparse coding,
Image classification, Focal liver lesion
BibRef
Seo, H.,
Huang, C.,
Bassenne, M.,
Xiao, R.,
Xing, L.,
Modified U-Net (mU-Net) With Incorporation of Object-Dependent High
Level Features for Improved Liver and Liver-Tumor Segmentation in CT
Images,
MedImg(39), No. 5, May 2020, pp. 1316-1325.
IEEE DOI
2005
Feature extraction, Liver, Convolution, Image segmentation, Tumors,
Data mining, Biomedical imaging, Frequency analysis, deep learning,
U-Net
BibRef
Liang, L.,
Cool, D.,
Kakani, N.,
Wang, G.,
Ding, H.,
Fenster, A.,
Automatic Radiofrequency Ablation Planning for Liver Tumors With
Multiple Constraints Based on Set Covering,
MedImg(39), No. 5, May 2020, pp. 1459-1471.
IEEE DOI
2005
Radiofrequency ablation, treatment planning, set cover, liver tumors
BibRef
Daniel, V.A.A.[V. Antony Asir],
Ravi, R.,
Noninvasive methods of classification and staging of chronic hepatic
diseases,
IJIST(30), No. 2, 2020, pp. 358-366.
DOI Link
2005
chronic hepatic disease, chronic viral hepatitis, cirrhosis,
hepatology, liver disease, noninvasive, ultrasound transducer
BibRef
Sinduja, A.,
Suruliandi, A.,
Raja, S.P.,
Empirical Evaluation of Texture Features and Classifiers for Liver
Disease Diagnosis,
IJIG(20), No. 2, April 2020, pp. 2050015.
DOI Link
2005
BibRef
Heiselman, J.S.,
Jarnagin, W.R.,
Miga, M.I.,
Intraoperative Correction of Liver Deformation Using Sparse Surface
and Vascular Features via Linearized Iterative Boundary
Reconstruction,
MedImg(39), No. 6, June 2020, pp. 2223-2234.
IEEE DOI
2006
Deformation, image guided surgery, liver, registration, ultrasound
BibRef
Heiselman, J.S.,
Miga, M.I.,
Strain Energy Decay Predicts Elastic Registration Accuracy From
Intraoperative Data Constraints,
MedImg(40), No. 4, April 2021, pp. 1290-1302.
IEEE DOI
2104
Strain, Uncertainty, Boundary conditions, Mathematical model,
Tensors, Predictive models, Graphical models, Accuracy, deformation,
uncertainty
BibRef
Zhou, Z.,
Siddiquee, M.M.R.,
Tajbakhsh, N.,
Liang, J.,
UNet++: Redesigning Skip Connections to Exploit Multiscale Features
in Image Segmentation,
MedImg(39), No. 6, June 2020, pp. 1856-1867.
IEEE DOI
2006
Neuronal structure segmentation, liver segmentation,
cell segmentation, nuclei segmentation, brain tumor segmentation,
model pruning
BibRef
Pan, J.H.[Jia-Hui],
Zhang, J.H.[Jian-Hao],
Luo, S.Q.[Si-Qi],
Zhang, J.T.[Jian-Tao],
Liang, Y.[Yan],
Automatic annotation of liver computed tomography images based on a
vessel-skeletonization method,
IJIST(30), No. 3, 2020, pp. 704-715.
DOI Link
2008
automatic, CT image, liver annotation, liver segment, vessel skeletonization
BibRef
Zhang, F.,
Dvornek, N.,
Yang, J.,
Chapiro, J.,
Duncan, J.,
Layer Embedding Analysis in Convolutional Neural Networks for
Improved Probability Calibration and Classification,
MedImg(39), No. 11, November 2020, pp. 3331-3342.
IEEE DOI
2011
Calibration, Liver, Task analysis, Computational modeling,
Convolutional neural networks, Predictive models,
liver tissue classification
BibRef
Mahdy, L.N.[Lamia N.],
Ezzat, K.A.[Kadry A.],
Torad, M.[Mohamed],
Hassanien, A.E.[Aboul E.],
Automatic segmentation system for liver tumors based on the
multilevel thresholding and electromagnetism optimization algorithm,
IJIST(30), No. 4, 2020, pp. 1256-1270.
DOI Link
2011
liver, multilevel thresholding, optimization, Otsu, tumor segmentation
BibRef
Wang, S.,
Cao, S.,
Chai, Z.,
Wei, D.,
Ma, K.,
Wang, L.,
Zheng, Y.,
Conquering Data Variations in Resolution:
A Slice-Aware Multi-Branch Decoder Network,
MedImg(39), No. 12, December 2020, pp. 4174-4185.
IEEE DOI
2012
Liver, Tumors, Computed tomography, Decoding, deep learning
BibRef
Mourya, G.K.[Gajendra Kumar],
Bhatia, D.[Dinesh],
Handique, A.[Akash],
Empirical greedy machine-based automatic liver segmentation in CT
images,
IET-IPR(14), No. 14, December 2020, pp. 3333-3340.
DOI Link
2012
BibRef
Zeng, Q.,
Honarvar, M.,
Schneider, C.,
Mohammad, S.K.,
Lobo, J.,
Pang, E.H.T.,
Lau, K.T.,
Hu, C.,
Jago, J.,
Erb, S.R.,
Rohling, R.,
Salcudean, S.E.,
Three-Dimensional Multi-Frequency Shear Wave Absolute
Vibro-Elastography (3D S-WAVE) With a Matrix Array Transducer:
Implementation and Preliminary In Vivo Study of the Liver,
MedImg(40), No. 2, February 2021, pp. 648-660.
IEEE DOI
2102
Liver, Transducers, Elastography, Elasticity, Ultrasound, liver fibrosis
BibRef
Stähli, P.,
Frenz, M.,
Jaeger, M.,
Bayesian Approach for a Robust Speed-of-Sound Reconstruction Using
Pulse-Echo Ultrasound,
MedImg(40), No. 2, February 2021, pp. 457-467.
IEEE DOI
2102
Imaging, Image reconstruction, Graphical models,
Distribution functions, Liver, Ultrasonic imaging, Phase noise,
inverse problem
BibRef
Ali, S.[Safdar],
Hassan, M.[Mehdi],
Saleem, M.[Muhammad],
Tahir, S.F.[Syed Fahad],
Deep transfer learning based hepatitis B virus diagnosis using
spectroscopic images,
IJIST(31), No. 1, 2021, pp. 94-105.
DOI Link
2102
blood plasma, deep learning, disease diagnosis, HBV infection,
Raman spectroscopy, transfer learning
BibRef
Ramalhinho, J.,
Tregidgo, H.F.J.,
Gurusamy, K.,
Hawkes, D.J.,
Davidson, B.,
Clarkson, M.J.,
Registration of Untracked 2D Laparoscopic Ultrasound to CT Images of
the Liver Using Multi-Labelled Content-Based Image Retrieval,
MedImg(40), No. 3, March 2021, pp. 1042-1054.
IEEE DOI
2103
Computed tomography, Liver, Probes, Veins, Laparoscopes, Surgery,
Image retrieval, Multi-modal registration,
content-based image retrieval
BibRef
Rela, M.[Munipraveena],
Rao, S.N.[Suryakari Nagaraja],
Reddy, P.R.[Patil Ramana],
Optimized segmentation and classification for liver tumor
segmentation and classification using opposition-based spotted hyena
optimization,
IJIST(31), No. 2, 2021, pp. 627-656.
DOI Link
2105
abdominal CT images, and convolutional neural network,
fuzzy centroid-based optimized region growing algorithm,
recurrent neural network
BibRef
Gunasekhar, P.,
Vijayalakshmi, S.,
Analysis on segmentation and biomarker-based approaches for liver
cancer detection: A survey,
IET-IPR(15), No. 4, 2021, pp. 845-855.
DOI Link
2106
BibRef
Navaneethakrishnan, M.[Mariappan],
Vairamuthu, S.[Subbiah],
Parthasarathy, G.[Govindaswamy],
Cristin, R.[Rajan],
Atom search-Jaya-based deep recurrent neural network for liver cancer
detection,
IET-IPR(15), No. 2, 2021, pp. 337-349.
DOI Link
2106
BibRef
Siri, S.K.[Sangeeta K.],
Kumar, S.P.[S. Pramod],
Latte, M.V.[Mrityunjaya V.],
Accurate Liver Border Identification Model in CT Scan Images,
IJIG(21), No. 3, July 2021, pp. 2150039.
DOI Link
2107
BibRef
Krishnamurthy, R.K.[Raghesh Krishnan],
Radhakrishnan, S.[Sudhakar],
Kattuva, M.A.K.[Mohaideen Abdul Kadhar],
Particle swarm optimization-based liver disorder ultrasound image
classification using multi-level and multi-domain features,
IJIST(31), No. 3, 2021, pp. 1366-1385.
DOI Link
2108
biomedical image classification, fractals,
particle swarm optimization, segmentation, texture features, wavelets
BibRef
Choi, C.[Changhoon],
Choi, W.[Wonseok],
Kim, J.[Jeesu],
Kim, C.[Chulhong],
Non-Invasive Photothermal Strain Imaging of Non-Alcoholic Fatty Liver
Disease in Live Animals,
MedImg(40), No. 9, September 2021, pp. 2487-2495.
IEEE DOI
2109
Silicides, Platinum alloys, Imaging, Strain, Heating systems, Fats,
Laser beams, Photothermal strain imaging, preclinical research,
tissue characterization
BibRef
Xue, Z.L.[Zhong-Liang],
Li, P.[Ping],
Zhang, L.[Liang],
Lu, X.Y.[Xiao-Yuan],
Zhu, G.M.[Guang-Ming],
Shen, P.Y.[Pei-Yi],
Shah, S.A.A.[Syed Afaq Ali],
Bennamoun, M.[Mohammed],
Multi-Modal Co-Learning for Liver Lesion Segmentation on PET-CT
Images,
MedImg(40), No. 12, December 2021, pp. 3531-3542.
IEEE DOI
2112
Lesions, Computed tomography, Image segmentation, Liver,
Feature extraction, Imaging, Task analysis, PET-CT
BibRef
Wu, Y.L.[Yan-Lin],
Wang, G.L.[Guang-Lei],
Wang, Z.Y.[Zhong-Yang],
Wang, H.R.[Hong-Rui],
PCAF-Net: A liver segmentation network based on deep learning,
IET-IPR(16), No. 1, 2022, pp. 229-238.
DOI Link
2112
BibRef
Tummala, B.M.[Bindu Madhavi],
Barpanda, S.S.[Soubhagya Sankar],
Liver tumor segmentation from computed tomography images using
multiscale residual dilated encoder-decoder network,
IJIST(32), No. 2, 2022, pp. 600-613.
DOI Link
2203
dilated convolutions, encoder-decoder architecture,
liver tumor segmentation, medical imaging, semantic segmentation
BibRef
Arulappan, A.[Anisha],
Thankaraj, A.B.R.[Ajith Bosco Raj],
Liver tumor segmentation using a new asymmetrical dilated
convolutional semantic segmentation network in CT images,
IJIST(32), No. 3, 2022, pp. 815-830.
DOI Link
2205
CNN, dilated convolutions, liver segmentation,
transposed convolutions, tumor segmentation
BibRef
Lyu, F.[Fei],
Ma, A.J.[Andy J.],
Yip, T.C.F.[Terry Cheuk-Fung],
Wong, G.L.H.[Grace Lai-Hung],
Yuen, P.C.[Pong C.],
Weakly Supervised Liver Tumor Segmentation Using Couinaud Segment
Annotation,
MedImg(41), No. 5, May 2022, pp. 1138-1149.
IEEE DOI
2205
Tumors, Image segmentation, Liver, Annotations, Training,
Biomedical imaging, Pathology, Liver tumor segmentation,
Couinaud segment
BibRef
Affane, A.[Abir],
Lebre, M.A.[Marie-Ange],
Mittal, U.[Utkarsh],
Vacavant, A.[Antoine],
Literature Review of Deep Learning Models for Liver Vessels
Reconstruction,
IPTA20(1-6)
IEEE DOI
2206
Deep learning, Image segmentation, Shape, Bibliographies, Liver,
Topology, Image reconstruction, Deep learning, SLR
BibRef
Lyu, F.[Fei],
Ye, M.[Mang],
Ma, A.J.[Andy J.],
Yip, T.C.F.[Terry Cheuk-Fung],
Wong, G.L.H.[Grace Lai-Hung],
Yuen, P.C.[Pong C.],
Learning From Synthetic CT Images via Test-Time Training for Liver
Tumor Segmentation,
MedImg(41), No. 9, September 2022, pp. 2510-2520.
IEEE DOI
2209
Task analysis, Tumors, Training, Image segmentation, Liver,
Image reconstruction, Adaptation models,
test-time training
BibRef
Zheng, R.C.[Ren-Cheng],
Wang, Q.D.[Qi-Dong],
Lv, S.Z.[Shuang-Zhi],
Li, C.P.[Cui-Ping],
Wang, C.Y.[Cheng-Yan],
Chen, W.[Weibo],
Wang, H.[He],
Automatic Liver Tumor Segmentation on Dynamic Contrast Enhanced MRI
Using 4D Information: Deep Learning Model Based on 3D Convolution and
Convolutional LSTM,
MedImg(41), No. 10, October 2022, pp. 2965-2976.
IEEE DOI
2210
Image segmentation, Liver, Tumors, Magnetic resonance imaging,
Deep learning, Solid modeling, 4D information, deep learning,
tumor segmentation
BibRef
Xing, S.W.[Shu-Wei],
Romero, J.C.[Joeana Cambranis],
Cool, D.W.[Derek W.],
Mujoomdar, A.[Amol],
Chen, E.C.S.[Elvis C. S.],
Peters, T.M.[Terry M.],
Fenster, A.[Aaron],
3D US-Based Evaluation and Optimization of Tumor Coverage for
US-Guided Percutaneous Liver Thermal Ablation,
MedImg(41), No. 11, November 2022, pp. 3344-3356.
IEEE DOI
2211
Tumors, Applicators, Liver, Imaging, Image segmentation, Measurement,
3D ultrasound, liver ablation, tumor coverage, safety margin,
intra-procedural evaluation
BibRef
Karthikamani, R.,
Rajaguru, H.[Harikumar],
Detection of liver abnormalities: A new paradigm in medical image
processing and classification techniques,
IJIST(32), No. 6, 2022, pp. 2219-2239.
DOI Link
2212
cuckoo search, dragonfly, elephant search, firefly,
GLCM features, GMM, PSO, statistical feature, ultrasonic liver cirrhosis
BibRef
Shi, Y.Y.[Yang-Yang],
Deng, X.S.[Xue-Song],
Tong, Y.Q.[Yu-Qi],
Li, R.T.[Ruo-Tong],
Zhang, Y.F.[Yan-Fang],
Ren, L.J.[Li-Jie],
Si, W.X.[Wei-Xin],
Synergistic Digital Twin and Holographic Augmented-Reality-Guided
Percutaneous Puncture of Respiratory Liver Tumor,
HMS(52), No. 6, December 2022, pp. 1364-1374.
IEEE DOI
2212
Liver, Surgery, Navigation, Real-time systems, Tumors, Correlation,
Digital twins, Augmented reality, Holography, Respiratory system,
respiratory motion
BibRef
Pattwakkar, V.N.[Vaidehi Nayantara],
Kamath, S.[Surekha],
Nanjundappa, M.K.[Manjunath Kanabagatte],
Kadavigere, R.[Rajagopal],
Automatic liver tumor segmentation on multiphase computed tomography
volume using SegNet deep neural network and K-means clustering,
IJIST(33), No. 2, 2023, pp. 729-745.
DOI Link
2303
computed tomography, contrast enhancement, K-means clustering,
liver tumor segmentation, power-law transformation, SegNet,
semantic segmentation
BibRef
Elghazy, H.L.[Hagar Louye],
Fakhr, M.W.[Mohamed Waleed],
Dual- and triple-stream RESUNET/UNET architectures for multi-modal
liver segmentation,
IET-IPR(17), No. 4, 2023, pp. 1224-1235.
DOI Link
2303
liver segmentation, medical image segmentation, multiple-stream, UNET
BibRef
Tan, Z.G.[Zheng-Guo],
Unterberg-Buchwald, C.[Christina],
Blumenthal, M.[Moritz],
Scholand, N.[Nick],
Schaten, P.[Philip],
Holme, C.[Christian],
Wang, X.Q.[Xiao-Qing],
Raddatz, D.[Dirk],
Uecker, M.[Martin],
Free-Breathing Liver Fat, R2* and B0 Field Mapping Using Multi-Echo
Radial FLASH and Regularized Model-Based Reconstruction,
MedImg(42), No. 5, May 2023, pp. 1374-1387.
IEEE DOI
2305
Fats, Image reconstruction, Liver, Sensitivity,
Magnetic resonance imaging, Phantoms, Iron,
water/fat separation
BibRef
Xie, L.J.[Li-Jie],
Zhu, F.[Fubao],
Yao, N.[Ni],
MDR-Net: Multiscale dense residual networks for liver image
segmentation,
IET-IPR(17), No. 8, 2023, pp. 2309-2320.
DOI Link
2306
biological organs, biological techniques, biological tissues,
biomedical imaging, biomedical optical imaging,
feature selection
BibRef
Gao, Z.[Zhan],
Zong, Q.[Qiuhao],
Wang, Y.Q.[Yi-Qi],
Yan, Y.[Yan],
Wang, Y.Q.[Yu-Qing],
Zhu, N.[Ning],
Zhang, J.[Jin],
Wang, Y.[Yunfu],
Zhao, L.[Liang],
Laplacian Salience-Gated Feature Pyramid Network for Accurate Liver
Vessel Segmentation,
MedImg(42), No. 10, October 2023, pp. 3059-3068.
IEEE DOI
2310
BibRef
Zamanian, H.[Hamed],
Shalbaf, A.[Ahmad],
Grading of steatosis, fibrosis, lobular inflammation, and ballooning
from liver pathology images using pre-trained convolutional neural
networks,
IJIST(33), No. 6, 2023, pp. 2178-2193.
DOI Link
2311
classification, deep convolutional neural networks, hepatology,
liver disease, machine learning
BibRef
Kuang, H.[Haopeng],
Yang, X.[Xue],
Li, H.J.[Hong-Jun],
Wei, J.W.[Jing-Wei],
Zhang, L.H.[Li-Hua],
Adaptive Multiphase Liver Tumor Segmentation With Multiscale
Supervision,
SPLetters(31), 2024, pp. 426-430.
IEEE DOI
2402
Tumors, Feature extraction, Liver, Image segmentation,
Computed tomography, Annotations, Hospitals,
multi-scale supervision
BibRef
Ni, Y.F.[Yang-Fan],
Chen, G.[Geng],
Feng, Z.[Zhan],
Cui, H.[Heng],
Metaxas, D.N.[Dimitris N.],
Zhang, S.T.[Shao-Ting],
Zhu, W.T.[Wen-Tao],
DA-Tran: Multiphase liver tumor segmentation with a domain-adaptive
transformer network,
PR(149), 2024, pp. 110233.
Elsevier DOI
2403
Multiphase CT, Liver tumor segmentation, Domain adaption, Transformer
BibRef
Li, J.F.[Jian-Feng],
Niu, Y.M.[Yan-Min],
Dual encoding DDS-UNet liver tumour segmentation based on multi-scale
deep and shallow feature fusion,
IET-IPR(18), No. 5, 2024, pp. 1189-1199.
DOI Link
2404
arithmetic codes, biomedical imaging, biomedical MRI, cancer,
convolutional neural nets, image denoising, image enhancement
BibRef
Beuret, S.[Samuel],
H©riard-Dubreuil, B.[Baptiste],
Martiartu, N.K.[Naiara Korta],
Jaeger, M.[Michael],
Thiran, J.P.[Jean-Philippe],
Windowed Radon Transform for Robust Speed-of-Sound Imaging With
Pulse-Echo Ultrasound,
MedImg(43), No. 4, April 2024, pp. 1579-1593.
IEEE DOI
2404
Imaging, Transforms, Ultrasonic imaging, Image reconstruction,
Transducers, Array signal processing, Apertures,
liver imaging
BibRef
Wen, R.[Ruxue],
Yuan, H.J.[Hang-Jie],
Ni, D.[Dong],
Xiao, W.B.[Wen-Bo],
Wu, Y.Y.[Yao-Yao],
From Denoising Training to Test-Time Adaptation: Enhancing Domain
Generalization for Medical Image Segmentation,
WACV24(453-463)
IEEE DOI Code:
WWW Link.
2404
Training, Image segmentation, Adaptation models, Noise reduction,
Liver, Self-supervised learning, Data models, Algorithms, and algorithms
BibRef
Ali, A.R.[Abder-Rahman],
Samir, A.E.[Anthony E.],
Guo, P.[Peng],
Self-Supervised Learning for Accurate Liver View Classification in
Ultrasound Images with Minimal Labeled Data,
DL-UIA23(3087-3093)
IEEE DOI
2309
BibRef
Shi, J.Y.[Jia-Yin],
Kamata, S.I.[Sei-Ichiro],
Extended Res-UNet with Hierarchical Inner-Modules for Liver Tumor
Segmentation from CT Volumes,
ICRVC22(169-174)
IEEE DOI
2301
Image segmentation, Liver cancer, Shape, Computed tomography, Liver,
Medical services, Feature extraction, liver tumor segmentation,
deep learning
BibRef
Ali, O.[Omar],
Bone, A.[Alexandre],
Rohe, M.M.[Marc-Michel],
Vibert, E.[Eric],
Vignon-Clementel, I.[Irene],
Learning to Jointly Segment the Liver, Lesions and Vessels from
Partially Annotated Datasets,
ICIP22(3626-3630)
IEEE DOI
2211
Image segmentation, Fuses, Semantics, Pipelines, Liver, Surgery,
Semantic segmentation, multi-task learning, weighted loss function
BibRef
Chandra, V.[Vincent],
Fan, W.K.[Wen-Kang],
Chen, Y.R.[Yin-Ran],
Luo, X.B.[Xiong-Biao],
Residual U-Structure Nested Conditional Adversarial Nets Colorized CT
Improves Deep Learning Based Abdominal Multi-Organ Segmentation,
ICIP22(2061-2065)
IEEE DOI
2211
Deep learning, Image segmentation, Image color analysis,
Computed tomography, Semantics, Liver, Pancreas, Image Colorization,
Abdominal Multi-Organ Segmentation
BibRef
Pavone, A.M.[Anna Maria],
Benfante, V.[Viviana],
Stefano, A.[Alessandro],
Mamone, G.[Giuseppe],
Milazzo, M.[Mariapina],
di Pizza, A.[Ambra],
Parenti, R.[Rosalba],
Maruzzelli, L.[Luigi],
Miraglia, R.[Roberto],
Comelli, A.[Albert],
Automatic Liver Segmentation in Pre-TIPS Cirrhotic Patients: A
Preliminary Step for Radiomics Studies,
AIRCAD22(408-418).
Springer DOI
2208
BibRef
Demir, U.[Ugur],
Zhang, Z.Y.[Zhe-Yuan],
Wang, B.[Bin],
Antalek, M.[Matthew],
Keles, E.[Elif],
Jha, D.[Debesh],
Borhani, A.[Amir],
Ladner, D.[Daniela],
Bagci, U.[Ulas],
Transformer Based Generative Adversarial Network for Liver Segmentation,
MEDXF22(340-347).
Springer DOI
2208
BibRef
Pan, C.[Chao],
Zhou, P.Y.[Pei-Yun],
Tan, J.R.[Jing-Ru],
Sun, B.[Baoye],
Guan, R.[Ruoyu],
Wang, Z.T.[Zhu-Tao],
Luo, Y.[Ye],
Lu, J.W.[Jian-Wei],
Liver Tumor Detection Via A Multi-Scale Intermediate Multi-Modal
Fusion Network on MRI Images,
ICIP21(299-303)
IEEE DOI
2201
Image segmentation, Magnetic resonance imaging, Semantics, Liver,
Medical services, Feature extraction, Deep learning,
Enhanced feature pyramid
BibRef
Zhang, J.F.[Jian-Feng],
Chang, W.[Wanru],
Wu, F.[Fa],
Kong, D.[Dexing],
Pixel-RRT*: A Novel Skeleton Trajectory Search Algorithm for Hepatic
Vessels,
DICTA20(1-8)
IEEE DOI
2201
Image segmentation, Liver diseases, Digital images, Minimization,
Skeleton, Trajectory, Tumors, Pixel-RRT, Skeleton Trajectory,
Topological Continuity
BibRef
Huang, C.F.[Chong-Fei],
Qiu, C.H.[Chen-Hui],
Peng, Z.Y.[Zhi-Yi],
Yuan, J.[Jing],
Kong, D.X.[De-Xing],
Iterative Reweighted Local Cross Correlation Method for Nonlinear
Registration of Multiphase Liver CT Images,
ICIP21(136-140)
IEEE DOI
2201
Measurement, Correlation, Computed tomography, Liver, Imaging,
Radiology, Physiology, Nonlinear Registration,
Coarse-to-Fine optimization
BibRef
Nakai, K.[Katsuhiro],
Qiao, X.[Xu],
Han, X.H.[Xian-Hua],
Angular Margin Constrained Loss for Automatic Liver Fibrosis Staging,
MVA21(1-5)
DOI Link
2109
Training, Shape, Magnetic resonance imaging, Neural networks, Liver,
Performance gain, Task analysis
BibRef
Lamy, J.[Jonas],
Merveille, O.[Odyssée],
Kerautret, B.[Bertrand],
Passat, N.[Nicolas],
Vacavant, A.[Antoine],
Vesselness Filters: A Survey with Benchmarks Applied to Liver Imaging,
ICPR21(3528-3535)
IEEE DOI
2105
Knowledge engineering, Magnetic resonance imaging, Liver, Surgery,
Benchmark testing, Software, Robustness
BibRef
Wang, B.[Bo],
Yan, Q.Z.[Qin-Zsen],
Xu, Z.Q.[Zheng-Qing],
Ai, J.Y.[Jing-Yang],
Jin, S.[Shuo],
Xu, W.[Wei],
Zhao, W.[Wei],
Zhang, L.[Liang],
You, Z.[Zheng],
A Benchmark Dataset for Segmenting Liver, Vasculature and Lesions
from Large-scale Computed Tomography Data,
ICPR21(6584-6591)
IEEE DOI
2105
Measurement, Deep learning, Image segmentation, Systematics,
Computed tomography, Liver, Surgery, Computer assisted diagnosis,
Liver vasculature segmentation
BibRef
Wei, Y.[Yanan],
Tian, J.[Jiang],
Zhong, C.[Cheng],
Shi, Z.C.[Zhong-Chao],
AKFNET: An Anatomical Knowledge Embedded Few-Shot Network for Medical
Image Segmentation,
ICIP21(11-15)
IEEE DOI
2201
Knowledge engineering, Training, Image segmentation, Annotations,
Transfer learning, Training data, Medical Image, Segmentation, Few-shot Learning
BibRef
Zhang, Y.[Yao],
Tian, J.[Jiang],
Zhong, C.[Cheng],
Zhang, Y.[Yang],
Shi, Z.C.[Zhong-Chao],
He, Z.Q.[Zhi-Qiang],
DARN: Deep Attentive Refinement Network for Liver Tumor Segmentation
from 3D CT volume,
ICPR21(7796-7803)
IEEE DOI
2105
Image segmentation,
Computed tomography, Semantics, Liver, Surgery, Planning,
CT image
BibRef
Alksas, A.[Ahmed],
Shehata, M.[Mohamed],
Saleh, G.A.[Gehad A.],
Shaffie, A.[Ahmed],
Soliman, A.[Ahmed],
Ghazal, M.[Mohammed],
Khalifeh, H.A.[Hadil Abu],
Razek, A.A.[Ahmed Abdel],
El-Baz, A.[Ayman],
A Novel Computer-Aided Diagnostic System for Early Assessment of
Hepatocellular Carcinoma,
ICPR21(10375-10382)
IEEE DOI
2105
Solid modeling, Design automation, Shape, Malignant tumors, Liver,
Benign tumors, Tools, CE-MRI, HCC, LI-RADS, CAD
BibRef
Li, C.,
Tan, Y.,
Chen, W.,
Luo, X.,
Gao, Y.,
Jia, X.,
Wang, Z.,
Attention Unet++: A Nested Attention-Aware U-Net for Liver CT Image
Segmentation,
ICIP20(345-349)
IEEE DOI
2011
Image segmentation, Liver, Logic gates, Feature extraction,
Computed tomography, Task analysis, Cancer, Attention, UNet++,
Liver Segmentation
BibRef
Raju, A.[Ashwin],
Cheng, C.T.[Chi-Tung],
Huo, Y.K.[Yuan-Kai],
Cai, J.Z.[Jin-Zheng],
Huang, J.Z.[Jun-Zhou],
Xiao, J.[Jing],
Lu, L.[Le],
Liao, C.H.[Chien-Hung],
Harrison, A.P.[Adam P.],
Co-heterogeneous and Adaptive Segmentation from Multi-source and
Multi-phase CT Imaging Data:
A Study on Pathological Liver and Lesion Segmentation,
ECCV20(XXIII:448-465).
Springer DOI
2011
BibRef
Yang, J.,
Dvornek, N.C.,
Zhang, F.,
Zhuang, J.,
Chapiro, J.,
Lin, M.,
Duncan, J.S.,
Domain-Agnostic Learning With Anatomy-Consistent Embedding for
Cross-Modality Liver Segmentation,
VRMI19(323-331)
IEEE DOI
2004
image representation, image segmentation,
learning (artificial intelligence), liver,
Cross Modality Segmentation
BibRef
Zhao, S.,
Dong, Y.,
Chang, E.,
Xu, Y.,
Recursive Cascaded Networks for Unsupervised Medical Image
Registration,
ICCV19(10599-10609)
IEEE DOI
2004
image registration, iterative methods,
learning (artificial intelligence), medical image processing, Liver
BibRef
Chen, Y.,
Li, D.,
Zhu, Q.,
Wang, C.,
Li, J.,
Automated Extraction of Liver Outlines From Computed Tomography Scan
Images Using a Cuda-based Segmentation Method,
PTVSBB19(31-36).
DOI Link
1912
BibRef
Wu, Y.,
Zhou, Q.,
Hu, H.,
Rong, G.,
Li, Y.,
Wang, S.,
Hepatic Lesion Segmentation by Combining Plain and Contrast-Enhanced
CT Images with Modality Weighted U-Net,
ICIP19(255-259)
IEEE DOI
1910
Medical Image Segmentation, Deep Neural Networks, Multimodal Fusion
BibRef
Liu, Y.,
Tan, D.S.,
Chen, J.,
Cheng, W.,
Hua, K.,
Segmenting Hepatic Lesions Using Residual Attention U-Net with an
Adaptive Weighted Dice Loss,
ICIP19(3322-3326)
IEEE DOI
1910
CT image segmentation, residual block, attention module, hepatic lesion factor
BibRef
Ju, H.,
Wang, G.,
Men, S.,
Zhang, H.,
Gu, L.,
Zhou, W.,
Discrepancy Steered Conditional Adversarial Network For Deep Feature
Based Malignancy Characterization of Hepatocellular Carcinoma,
ICIP19(1342-1345)
IEEE DOI
1910
hepatocellular carcinoma, conditional adversarial network,
malignancy characterization, deep feature
BibRef
Morales-Navarrete, H.,
Segovia-Miranda, F.,
Zerial, M.,
Kalaidzidis, Y.,
Prediction of Multiple 3D Tissue Structures Based on Single-Marker
Images Using Convolutional Neural Networks,
ICIP19(1361-1365)
IEEE DOI
1910
Deep Learning, convolutional neural networks,
fluorescence microscopy, biological tissue, liver
BibRef
Yu, W.,
Fang, B.,
Liu, Y.,
Gao, M.,
Zheng, S.,
Wang, Y.,
Liver Vessels Segmentation Based on 3d Residual U-NET,
ICIP19(250-254)
IEEE DOI
1910
3D Residual U-Net, Weighted Dice Loss Function,
3D Morphological Closed Operation
BibRef
Liang, D.[Dong],
Lin, L.F.[Lan-Fen],
Chen, X.[Xiao],
Hu, H.J.[Hong-Jie],
Zhang, Q.W.[Qiao-Wei],
Chen, Q.Q.[Qing-Qing],
Iwamoto, Y.T.[Yu-Taro],
Han, X.H.[Xian-Hua],
Chen, Y.W.[Yen-Wei],
Tong, R.F.[Ruo-Feng],
Wu, J.[Jian],
Multi-Stream Scale-Insensitive Convolutional and Recurrent Neural
Networks for Liver Tumor Detection in Dynamic Ct Images,
ICIP19(794-798)
IEEE DOI
1910
Liver tumor detection, scale-insensitive, GCLSTM, MSCR
BibRef
Chen, X.,
Lin, L.,
Liang, D.,
Hu, H.,
Zhang, Q.,
Iwamoto, Y.,
Han, X.,
Chen, Y.,
Tong, R.,
Wu, J.,
A Dual-Attention Dilated Residual Network for Liver Lesion
Classification and Localization on CT Images,
ICIP19(235-239)
IEEE DOI
1910
Dual-attention, dilated residual network, lesion classification, weakly-supervised localization
BibRef
Zhou, Y.,
Sun, Y.,
Yang, W.,
Lu, Z.,
Huang, M.,
Lu, L.,
Zhang, Y.,
Feng, Y.,
Chen, W.,
Feng, Q.,
Correlation-Weighted Sparse Representation for Robust Liver DCE-MRI
Decomposition Registration,
MedImg(38), No. 10, October 2019, pp. 2352-2363.
IEEE DOI
1910
Liver, Lesions, Strain, Dictionaries, Encoding, Image coding,
Principal component analysis, DCE-MRI, registration, sparse representation
BibRef
Lu, Z.,
Shimizu, A.,
Ho, H.,
Evaluation of a Statistical Shape Model for the Liver,
IVCNZ18(1-4)
IEEE DOI
1902
Liver, Shape, Image segmentation, Training, Indexes, Brain modeling,
Computed tomography, Liver, statistical shape, parametric mesh, Jaccard index
BibRef
Zhang, Y.,
Jiang, X.,
Zhong, C.,
Zhang, Y.,
Shi, Z.,
Li, Z.,
He, Z.,
SequentialSegNet: Combination with Sequential Feature for Multi-Organ
Segmentation,
ICPR18(3947-3952)
IEEE DOI
1812
Feature extraction, Image segmentation, Computed tomography,
Liver, Gallbladder
BibRef
Lebre, M.,
Vacavant, A.,
Grand-Brochier, M.,
Merveille, O.,
Chabrot, P.,
Abergel, A.,
Magnin, B.,
Automatic 3-D Skeleton-Based Segmentation of Liver Vessels from MRI
and CT for Couinaud Representation,
ICIP18(3523-3527)
IEEE DOI
1809
Liver, Magnetic resonance imaging, Image segmentation,
Computed tomography, Veins, Biomedical imaging, Surgery,
vessels. skeleton
BibRef
Küstner, T.,
Müller, S.,
Fischer, M.,
Weiß, J.,
Nikolaou, K.,
Bamberg, F.,
Yang, B.,
Schick, F.,
Gatidis, S.,
Semantic Organ Segmentation in 3D Whole-Body MR Images,
ICIP18(3498-3502)
IEEE DOI
1809
Image segmentation, Radio frequency, Liver,
Imaging, Semantics, Training data,
semantic segmentation
BibRef
Rafiei, S.,
Nasr-Esfahani, E.,
Najarian, K.,
Karimi, N.,
Samavi, S.,
Soroushmehr, S.M.R.,
Liver Segmentation in CT Images Using Three Dimensional to Two
Dimensional Fully Convolutional Network,
ICIP18(2067-2071)
IEEE DOI
1809
Liver, Kernel, Training,
Computed tomography, Encoding,
conditional random field
BibRef
Cinque, L.[Luigi],
de Santis, A.[Alberto],
di Giamberardino, P.[Paolo],
Iacoviello, D.[Daniela],
Placidi, G.[Giuseppe],
Pompili, S.[Simona],
Sferra, R.[Roberta],
Spezialetti, M.[Matteo],
Vetuschi, A.[Antonella],
Design of a Classification Strategy for Light Microscopy Images of the
Human Liver,
CIAP17(I:626-636).
Springer DOI
1711
BibRef
Andersson, T.[Thord],
Borga, M.[Magnus],
Leinhard, O.D.[Olof Dahlqvist],
Geodesic registration for interactive atlas-based segmentation using
learned multi-scale anatomical manifolds,
PRL(112), 2018, pp. 340-345.
Elsevier DOI
1809
BibRef
Earlier: A2, A1, A3:
Semi-supervised learning of anatomical manifolds for atlas-based
segmentation of medical images,
ICPR16(3146-3149)
IEEE DOI
1705
Atlas-based segmentation, Image registration,
Manifold learning, MRI.
Biomedical imaging, Image segmentation, Liver,
Magnetic resonance imaging, Manifolds, Prototypes,
BibRef
Xu, Y.,
Lin, L.,
Hu, H.,
Wang, D.,
Liu, Y.,
Wang, J.,
Han, X.,
Chen, Y.W.,
Bag of temporal co-occurrence words for retrieval of focal liver
lesions using 3D multiphase contrast-enhanced CT images,
ICPR16(2282-2287)
IEEE DOI
1705
Computed tomography, Feature extraction, Frequency locked loops,
Lesions, Liver, Visualization, Vocabulary,
Computer-aided diagnosis (CAD) systems,
bag of temporal co-occurrence words (BoTCoW),
bag of visual words (BoVW), enhancement pattern, multiphase,
contrast-enhanced, CT, images
BibRef
Han, X.H.[Xian-Hua],
Wang, J.[Jian],
Konno, Y.[Yuu],
Chen, Y.W.[Yen-Wei],
Bayesian Saliency Model for Focal Liver Lesion Enhancement and
Detection,
MCBMIIA16(III: 32-45).
Springer DOI
1704
BibRef
Gueziri, H.E.[Houssem-Eddine],
Tremblay, S.[Sebastien],
Laporte, C.[Catherine],
Brooks, R.[Rupert],
Graph-Based 3D-Ultrasound Reconstruction of the Liver in the Presence
of Respiratory Motion,
RAMBO16(48-57).
Springer DOI
1703
BibRef
Batool, N.,
Detection and spatial analysis of hepatic steatosis in histopathology
images using sparse linear models,
IPTA16(1-6)
IEEE DOI
1703
blood vessels
BibRef
Sedlar, J.,
Bajger, M.,
Caon, M.,
Lee, G.,
Model-Guided Segmentation of Liver in CT and PET-CT Images of Child
Patients Based on Statistical Region Merging,
DICTA16(1-8)
IEEE DOI
1701
Computational modeling
BibRef
Conegliano, A.[Andrew],
Schulze, J.P.[Jürgen P.],
Realistic 3D Modeling of the Liver from MRI Images,
ISVC16(II: 223-232).
Springer DOI
1701
BibRef
Al-Kadi, O.S.,
Multiscale Nakagami parametric imaging for improved liver tumor
localization,
ICIP16(3384-3388)
IEEE DOI
1610
Estimation
BibRef
Fenwa, O.D.,
Ajala, F.A.,
Aku, A.M.,
Performance evaluation of support vector machine and artificial
neural network in the classification of liver cirhosis and
hemachromatosis,
ICCVIA15(1-6)
IEEE DOI
1603
image classification
BibRef
Kitrungrotsakul, T.[Titinunt],
Han, X.H.[Xian-Hua],
Chen, Y.W.[Yen-Wei],
Liver segmentation using superpixel-based graph cuts and restricted
regions of shape constrains,
ICIP15(3368-3371)
IEEE DOI
1512
estimated shape constrain
BibRef
Chen, B.[Bin],
Chen, Y.[Yang],
Yang, G.[Guanyu],
Meng, J.Y.[Jing-Yu],
Zeng, R.[Rui],
Luo, L.M.[Li-Min],
Segmentation of liver tumor via nonlocal active contours,
ICIP15(3745-3748)
IEEE DOI
1512
BibRef
Conze, P.H.[Pierre-Henri],
Rousseau, F.[François],
Noblet, V.[Vincent],
Heitz, F.[Fabrice],
Memeo, R.[Riccardo],
Pessaux, P.[Patrick],
Semi-automatic Liver Tumor Segmentation in Dynamic Contrast-Enhanced CT
Scans Using Random Forests and Supervoxels,
MLMI15(212-219).
Springer DOI
1511
BibRef
Domingo, J.[Juan],
Dura, E.[Esther],
Ayala, G.[Guillermo],
Ruiz-España, S.[Silvia],
Means of 2D and 3D Shapes and Their Application in Anatomical Atlas
Building,
CAIP15(I:522-533).
Springer DOI
1511
BibRef
Dura, E.[Esther],
Domingo, J.[Juan],
Rojas-Arboleda, A.F.,
Marti-Bonmati, L.,
Mean sets for building 3D probabilistic liver atlas from perfusion MR
images,
IPTA12(186-191)
IEEE DOI
1503
biomedical MRI
BibRef
Goceri, E.,
Unlu, M.Z.,
Guzelis, C.,
Dicle, O.,
An automatic level set based liver segmentation from MRI data sets,
IPTA12(192-197)
IEEE DOI
1503
approximation theory
BibRef
Li, X.[Xuhui],
Huang, C.[Cheng],
Jia, F.C.[Fu-Cang],
Li, Z.M.[Zong-Min],
Fang, C.H.[Chi-Hua],
Fan, Y.F.[Ying-Fang],
Automatic Liver Segmentation Using Statistical Prior Models and
Free-form Deformation,
MCV14(181-188).
Springer DOI
1501
BibRef
Deng, J.P.[Jun-Ping],
Han, X.H.[Xian-Hua],
Xu, G.[Gang],
Chen, Y.W.[Yen-Wei],
Sparse and Low Rank Matrix Decomposition Based Local Morphological
Analysis and Its Application to Diagnosis of Cirrhosis Livers,
ICPR14(3363-3368)
IEEE DOI
1412
Accuracy
BibRef
Yan, Z.N.[Zhen-Nan],
Tan, C.W.[Chao-Wei],
Zhang, S.T.[Shao-Ting],
Zhou, Y.[Yan],
Belaroussi, B.[Boubakeur],
Yu, H.J.[Hui Jing],
Miller, C.[Colin],
Metaxas, D.N.[Dimitris N.],
Automatic Liver Segmentation and Hepatic Fat Fraction Assessment in
MRI,
ICPR14(3280-3285)
IEEE DOI
1412
Accuracy
BibRef
Garnier, M.[Mickaël],
Ali, M.A.[Maya Alsheh],
Seguin, J.[Johanne],
Mignet, N.[Nathalie],
Hurtut, T.[Thomas],
Wendling, L.[Laurent],
Grading Cancer from Liver Histology Images Using Inter and Intra Region
Spatial Relations,
ICIAR14(II: 247-254).
Springer DOI
1410
BibRef
Anter, A.M.,
Hassanien, A.E.,
Schaefer, G.,
Automatic Segmentation and Classification of Liver Abnormalities
Using Fractal Dimension,
ACPR13(937-941)
IEEE DOI
1408
computerised tomography
BibRef
Ogihara, H.,
Fujita, Y.,
Hamamoto, Y.,
Iizuka, N.,
Oka, M.,
Classification Based on Boolean Algebra and Its Application to the
Prediction of Recurrence of Liver Cancer,
ACPR13(838-841)
IEEE DOI
1408
Boolean algebra
BibRef
Luo, J.[Jie],
Chen, Y.W.[Yen-Wei],
Han, X.H.[Xian-Hua],
Tateyama, T.[Tomoko],
Furukawa, A.[Akira],
Kanasaki, S.[Shuzo],
Pilot study of applying shape analysis to liver cirrhosis diagnosis,
ICIP13(3537-3541)
IEEE DOI
1402
Computer-Aided Diagnosis
BibRef
Chen, Y.W.[Yen-Wei],
Luo, J.[Jie],
Han, X.H.[Xian-Hua],
Tateyama, T.[Tomoko],
Furukawa, A.[Akira],
Kanasaki, S.[Shuzo],
A Morphologic Analysis of Cirrhotic Liver in CT Images,
ICIAR13(494-501).
Springer DOI
1307
BibRef
Ribeiro, R.[Ricardo],
Marinho, R.T.[Rui Tato],
Sanches, J.M.[João Miguel],
Cirrhosis Prognostic Quantification with Ultrasound:
An Approximation to Model for End-Stage Liver Disease,
IbPRIA13(551-558).
Springer DOI
1307
BibRef
Wu, D.[Dijia],
Liu, D.[David],
Suehling, M.[Michael],
Zhou, K.S.[Kevin S.],
Tietjen, C.[Christian],
A Cascade Learning Method for Liver Lesion Detection in CT Images,
MCVM12(206-214).
Springer DOI
1305
BibRef
Weon, C.J.[Chi Jun],
Nam, W.H.[Woo Hyun],
Lee, D.[Duhgoon],
Hwang, Y.[Youngkyoo],
Kim, J.B.[Jung-Bae],
Bang, W.C.[Won-Chul],
Ra, J.B.[Jong Beom],
Position estimation of moving liver lesion based on registration
between 2D ultrasound and 4D MR images,
ICIP12(1677-1680).
IEEE DOI
1302
BibRef
Gloger, O.[Oliver],
Toennies, K.[Klaus],
Kuehn, J.P.[Jens-Peter],
Fully Automatic Liver Volumetry Using 3D Level Set Segmentation for
Differentiated Liver Tissue Types in Multiple Contrast MR Datasets,
SCIA11(512-523).
Springer DOI
1105
BibRef
Kohara, S.[Shinya],
Tateyama, T.[Tomoko],
Foruzan, A.H.[Amir Hossein],
Furukawa, A.[Akira],
Kanasaki, S.[Shuzo],
Wakamiya, M.[Makoto],
Wei, X.[Xiong],
Chen, Y.W.[Yen-Wei],
Preliminary study on statistical shape model applied to diagnosis of
liver cirrhosis,
ICIP11(2921-2924).
IEEE DOI
1201
BibRef
Masuda, Y.[Yu],
Tateyama, T.[Tomoko],
Xiong, W.[Wei],
Zhou, J.[Jiayin],
Wakamiya, M.[Makoto],
Kanasaki, S.[Syuzo],
Furukawa, A.[Akira],
Chen, Y.W.[Yen Wei],
Liver tumor detection in CT images by adaptive contrast enhancement and
the EM/MPM algorithm,
ICIP11(1421-1424).
IEEE DOI
1201
BibRef
Lee, J.G.[June-Goo],
Cai, W.L.[Wen-Li],
Singh, A.[Anand],
Yoshida, H.[Hiroyuki],
Estimation of Necrosis Volumes in Focal Liver Lesions Based on
Multi-phase Hepatic CT Images,
VirtualColon10(60-67).
Springer DOI
1112
BibRef
Li, C.Y.[Chang-Yang],
Wang, X.Y.[Xiu-Ying],
Eberl, S.[Stefan],
Fulham, M.J.[Michael J.],
Yin, Y.[Yong],
Feng, D.D.[David Dagan],
Fully automated liver segmentation for low- and high- contrast CT
volumes based on probabilistic atlases,
ICIP10(1733-1736).
IEEE DOI
1009
BibRef
Badakhshannoory, H.[Hossein],
Saeedi, P.[Parvaneh],
Automatic Liver Segmentation from CT Scans Using Multi-layer
Segmentation and Principal Component Analysis,
ISVC10(II: 342-350).
Springer DOI
1011
BibRef
Badakhshannoory, H.[Hossein],
Saeedi, P.[Parvaneh],
Qayumi, K.[Karim],
Liver segmentation based on deformable registration and multi-layer
segmentation,
ICIP10(2549-2552).
IEEE DOI
1009
BibRef
Wu, D.[Dijia],
Liu, D.[David],
Suehling, M.[Michael],
Tietjen, C.[Christian],
Soza, G.[Grzegorz],
Zhou, K.S.[Kevin S.],
Automatic detection of liver lesion from 3D computed tomography images,
MCV12(31-37).
IEEE DOI
1207
BibRef
Militzer, A.[Arne],
Hager, T.[Tobias],
Jager, F.[Florian],
Tietjen, C.[Christian],
Hornegger, J.[Joachim],
Automatic Detection and Segmentation of Focal Liver Lesions in Contrast
Enhanced CT Images,
ICPR10(2524-2527).
IEEE DOI
1008
BibRef
Xie, X.H.[Xiao-Hui],
Zhang, L.[Lei],
Yu, X.F.[Xiao-Fang],
Du, R.[Ruxu],
An interventional treatment plan system design on liver tumor,
IASP10(248-253).
IEEE DOI
1004
BibRef
Jha, A.K.[Abhinav K.],
Rodriguez, J.J.[Jeffrey J.],
A maximum-likelihood approach for ADC estimation of lesions in visceral
organs,
Southwest12(21-24).
IEEE DOI
1205
BibRef
Jha, A.K.[Abhinav K.],
Rodriguez, J.J.[Jeffrey J.],
Stephen, R.M.[Renu M.],
Stopeck, A.T.[Alison T.],
A clustering algorithm for liver lesion segmentation of
diffusion-weighted MR images,
Southwest10(93-96).
IEEE DOI
1005
BibRef
Fujita, Y.[Yusuke],
Hamamoto, Y.[Yoshihiko],
Segawa, M.[Makoto],
Terai, S.[Shuji],
Sakaida, I.[Isao],
An Improved Method for Cirrhosis Detection Using Liver's Ultrasound
Images,
ICPR10(2294-2297).
IEEE DOI
1008
BibRef
Ribeiro, R.[Ricardo],
Marinho, R.[Rui],
Velosa, J.[José],
Ramalho, F.[Fernando],
Sanches, J.M.[João Miguel],
Diffuse Liver Disease Classification from Ultrasound Surface
Characterization, Clinical and Laboratorial Data,
IbPRIA11(167-175).
Springer DOI
1106
BibRef
Ribeiro, R.[Ricardo],
Sanches, J.M.[João M.],
Fatty Liver Characterization and Classification by Ultrasound,
IbPRIA09(354-361).
Springer DOI
0906
BibRef
Xiong, W.[Wei],
Ong, S.H.,
Tian, Q.[Qi],
Xu, G.Z.[Guo-Zhen],
Zhou, J.Y.[Jia-Yin],
Liu, J.[Jiang],
Venkatash, S.K.,
Construction of a linear unbiased diffeomorphic probabilistic liver
atlas from CT images,
ICIP09(1773-1776).
IEEE DOI
0911
BibRef
Liu, J.H.[Jian-Hua],
Zhang, R.[Rui],
Wang, J.W.[Jian-Wei],
Contour Correction Liver Cancer CT Image Segmentation Method Based on
Snake Model,
CISP09(1-4).
IEEE DOI
0910
BibRef
Dagon, B.[Benoit],
Baur, C.[Charles],
Bettschart, V.[Vincent],
Real-time update of 3D deformable models for computer aided liver
surgery,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Chen, Y.W.[Yen-Wei],
Tsubokawa, K.[Katsumi],
Xu, R.[Rui],
Morikawa, S.[Shigehiro],
Kurumi, Y.[Yoshimasa],
Semiautomatic non-rigid 3-D image registration for MR-Guided Liver
Cancer Surgery,
ICIP08(1800-1803).
IEEE DOI
0810
BibRef
Caldeira, L.L.[Liliana L.],
Silva, I.[Isabela],
Sanches, J.M.[Joao M.],
Automatic liver tumor diagnosis with Dynamic-Contrast Enhanced MRI,
ICIP08(2256-2259).
IEEE DOI
0810
BibRef
Caldeira, L.L.[Liliana L.],
Sanches, J.M.[João M.],
Pharmacokinetic Perfusion Curves Estimation for Liver Tumor Diagnosis
from DCE-MRI,
ICIAR08(xx-yy).
Springer DOI
0806
BibRef
Ling, H.B.[Hai-Bin],
Zhou, S.K.[S. Kevin],
Zheng, Y.F.[Ye-Feng],
Georgescu, B.[Bogdan],
Suehling, M.[Michael],
Comaniciu, D.[Dorin],
Hierarchical, learning-based automatic liver segmentation,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Garamendi, J.F.,
Malpica, N.,
Martel, J.,
Schiavi, E.,
Automatic Segmentation of the Liver in CT Using Level Sets Without
Edges,
IbPRIA07(I: 161-168).
Springer DOI
0706
See also Fast Anisotropic Mumford-Shah Functional Based Segmentation, A.
See also Box Relaxation Schemes in Staggered Discretizations for the Dual Formulation of Total Variation Minimization.
BibRef
Areste, R.,
Yang, Y.Y.[Yong-Yi],
Hsieh, J.[Jiang],
An Image Enhancement Procedure for 3D Visualization of Liver CT Data,
Southwest06(153-157).
IEEE DOI
0603
BibRef
Evans, A.,
Lambrou, T.,
Linney, A.D.,
Todd-Pokropek, A.,
Automatic 3D Segmentation of the Liver from Computed Tomography Images,
a Discrete Deformable Model Approach,
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Li, Y.Z.[Yuan-Zhong],
Hara, S.[Shoji],
Shimura, K.[Kazuo],
A Machine Learning Approach for Locating Boundaries of Liver Tumors in
CT Images,
ICPR06(I: 400-403).
IEEE DOI
0609
BibRef
Tang, S.Y.[Song-Yuan],
Chen, Y.W.[Yen-Wei],
Xu, R.[Rui],
Wang, Y.T.[Yong-Tian],
Morikawa, S.[Shigehiro],
Kurumi, Y.[Yoshimasa],
MR-CT Image Registration in Liver Cancer Treatment with an Open
Configuration MR Scanner,
WBIR06(289-296).
Springer DOI
0607
BibRef
Mekada, Y.[Yoshito],
Wakida, Y.[Yuki],
Hayashi, Y.[Yuichiro],
Ide, I.[Ichiro],
Murase, H.[Hiroshi],
Spatiotemporal Density Feature Analysis to Detect Liver Cancer from
Abdominal CT Angiography,
ACCV06(II:702-711).
Springer DOI
0601
BibRef
Hiransakolwong, N.[Nualsawat],
Automated Liver Detection in Ultrasound Images,
CIVR05(619-628).
Springer DOI
0507
BibRef
Kissi, A.,
Cormier, S.,
Pourcelot, L.,
Bleuzen, A.,
Tranquart, F.,
Perfusion Analysis of Nonlinear Liver Ultrasound Images Based on
Nonlinear Matrix Diffusion,
ScaleSpace05(528-535).
Springer DOI
0505
BibRef
Krishnamurthy, C.,
Rodriguez, J.J.,
Gillies, R.J.,
Snake-based liver lesion segmentation,
Southwest04(187-191).
IEEE DOI
0411
BibRef
Saitoh, T.,
Tamura, Y.,
Kaneko, T.,
Automatic segmentation of liver region through blood vessels on
multi-phase ct,
ICPR02(I: 735-738).
IEEE DOI
0211
BibRef
Agrafiotis, D.,
Jones, M.,
Nikolov, S.G.,
Halliwell, M.,
Bull, D.R.,
Canagarajah, C.N.,
Virtual Liver Biopsy: Image Processing and 3d Visualization,
ICIP01(II: 331-334).
IEEE DOI
0108
See also Fusion of 2-D Images Using Their Multiscale Edges.
BibRef
King, A.P.,
Blackall, J.M.,
Penney, G.P.,
Hawkes, D.J.,
Tracking Liver Motion Using 3-D Ultrasound and a Surface-Based
Statistical Shape Model,
MMBIA01(xx-yy).
0110
BibRef
Boes, J.L.,
Meyer, C.R.,
Weymouth, T.E.,
Liver Definition in CT Using a Population-Based Shape Model,
CVRMed95(XX-YY)
BibRef
9500
Kovalev, V.A.[Vassili A.],
Rule-based method for tumor recognition in liver ultrasonic images,
CIAP95(216-222).
Springer DOI
9509
BibRef
Albregtsen, F.[Fritz],
Schulerud, H.[Helene],
Yang, L.[Luren],
Texture classification of mouse liver cell nuclei using invariant
moments of consistent regions,
CAIP95(496-502).
Springer DOI
9509
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Kidney Disease, Tomography, CAT Analysis, Other Methods .