Henning, J.G.[Jason G.],
Radtke, P.J.[Philip J.],
Multiview range-image registration for forested scenes using
explicitly-matched tie points estimated from natural surfaces,
PandRS(63), No. 1, January 2008, pp. 68-83.
Elsevier DOI
0711
Alignment; Terrestrial laser scanning; Canopy structure; Point cloud;
Ground-based lidar; Stem map; Stem profile; Digital terrain model
BibRef
van der Zande, D.,
Stuckens, J.,
Verstraeten, W.,
Muys, B.,
Coppin, P.,
Assessment of Light Environment Variability in Broadleaved Forest
Canopies Using Terrestrial Laser Scanning,
RS(2), No. 6, June 2010, pp. 1564-1574.
DOI Link
1203
BibRef
Moskal, L.M.,
Zheng, G.,
Retrieving Forest Inventory Variables with Terrestrial Laser Scanning
(TLS) in Urban Heterogeneous Forest,
RS(4), No. 1, January 2012, pp. 1-20.
DOI Link
1203
BibRef
Zheng, G.,
Moskal, L.M.,
Computational-Geometry-Based Retrieval of Effective Leaf Area Index
Using Terrestrial Laser Scanning,
GeoRS(50), No. 10, October 2012, pp. 3958-3969.
IEEE DOI
1210
BibRef
Zheng, G.,
Ma, L.,
He, W.,
Eitel, J.U.H.,
Moskal, L.M.,
Zhang, Z.,
Assessing the Contribution of Woody Materials to Forest Angular Gap
Fraction and Effective Leaf Area Index Using Terrestrial Laser
Scanning Data,
GeoRS(54), No. 3, March 2016, pp. 1475-1487.
IEEE DOI
1603
Distance measurement
BibRef
Zheng, G.,
Moskal, L.M.,
Kim, S.H.,
Retrieval of Effective Leaf Area Index in Heterogeneous Forests With
Terrestrial Laser Scanning,
GeoRS(51), No. 2, February 2013, pp. 777-786.
IEEE DOI
1302
BibRef
Pirotti, F.[Francesco],
Guarnieri, A.[Alberto],
Vettore, A.[Antonio],
Ground filtering and vegetation mapping using multi-return terrestrial
laser scanning,
PandRS(76), No. 1, February 2013, pp. 56-63.
Elsevier DOI
1301
BibRef
Earlier: A2, A1, A3:
Comparison Of Discrete Return And Waveform Terrestrial Laser Scanning
For Dense Vegetation Filtering,
ISPRS12(XXXIX-B7:511-516).
DOI Link
1209
BibRef
Earlier: A1, A2, A3:
Vegetation Characteristics Using Multi-Return Terrestrial Laser Scanner,
Laser11(xx-yy).
DOI Link
1109
Terrestrial laser scanning; Vegetation mapping; Spatial classification;
Point cloud processing; DEM/DTM
BibRef
Ramirez, F.A.[F. Alberto],
Armitage, R.P.[Richard P.],
Danson, F.M.[F. Mark],
Testing the Application of Terrestrial Laser Scanning to
Measure Forest Canopy Gap Fraction,
RS(5), No. 6, 2013, pp. 3037-3056.
DOI Link
1307
BibRef
Hancock, S.,
Gaulton, R.,
Danson, F.M.,
Angular Reflectance of Leaves With a Dual-Wavelength Terrestrial
Lidar and Its Implications for Leaf-Bark Separation and Leaf Moisture
Estimation,
GeoRS(55), No. 6, June 2017, pp. 3084-3090.
IEEE DOI
1706
Laser radar, Measurement by laser beam, Scattering,
Surface emitting lasers, Vegetation mapping,
Wavelength measurement, Laser radar, remote sensing,
technology assessment, vegetation
BibRef
Pueschel, P.[Pyare],
Newnham, G.[Glenn],
Hill, J.[Joachim],
Retrieval of Gap Fraction and Effective Plant Area Index from
Phase-Shift Terrestrial Laser Scans,
RS(6), No. 3, 2014, pp. 2601-2627.
DOI Link
1404
Gaps in the canopy.
BibRef
Othmani, A.[Ahlem],
Voon, L.F.C.L.Y.[Lew F.C. Lew Yan],
Stolz, C.[Christophe],
Piboule, A.[Alexandre],
Single tree species classification from Terrestrial Laser Scanning
data for forest inventory,
PRL(34), No. 16, 2013, pp. 2144-2150.
Elsevier DOI
1310
Single tree species classification
BibRef
Othmani, A.[Ahlem],
Lomenie, N.[Nicolas],
Piboule, A.[Alexandre],
Stolz, C.[Christophe],
Voon, L.F.C.L.Y.[Lew F.C. Lew Yan],
Region-based segmentation on depth images from a 3D reference surface
for tree species recognition,
ICIP13(3399-3402)
IEEE DOI
1402
Forest inventory
BibRef
Gupta, V.[Vaibhav],
Reinke, K.J.[Karin J.],
Jones, S.D.[Simon D.],
Wallace, L.[Luke],
Holden, L.[Lucas],
Assessing Metrics for Estimating Fire Induced Change in the Forest
Understorey Structure Using Terrestrial Laser Scanning,
RS(7), No. 6, 2015, pp. 8180.
DOI Link
1507
BibRef
Wallace, L.[Luke],
Gupta, V.[Vaibhav],
Reinke, K.J.[Karin J.],
Jones, S.D.[Simon D.],
An Assessment of Pre- and Post Fire Near Surface Fuel Hazard in an
Australian Dry Sclerophyll Forest Using Point Cloud Data Captured
Using a Terrestrial Laser Scanner,
RS(8), No. 8, 2016, pp. 679.
DOI Link
1609
BibRef
Ma, L.,
Zheng, G.,
Eitel, J.U.H.,
Moskal, L.M.,
He, W.,
Huang, H.,
Improved Salient Feature-Based Approach for Automatically Separating
Photosynthetic and Nonphotosynthetic Components Within Terrestrial
Lidar Point Cloud Data of Forest Canopies,
GeoRS(54), No. 2, February 2016, pp. 679-696.
IEEE DOI
1601
Accuracy
BibRef
Liang, X.L.[Xin-Lian],
Kankare, V.[Ville],
Hyyppä, J.[Juha],
Wang, Y.S.[Yun-Sheng],
Kukko, A.[Antero],
Haggrén, H.[Henrik],
Yu, X.W.[Xiao-Wei],
Kaartinen, H.[Harri],
Jaakkola, A.[Anttoni],
Guan, F.Y.[Feng-Ying],
Holopainen, M.[Markus],
Vastaranta, M.[Mikko],
Terrestrial laser scanning in forest inventories,
PandRS(115), No. 1, 2016, pp. 63-77.
Elsevier DOI
1604
Forest inventory
BibRef
Liang, X.L.[Xin-Lian],
Hyyppä, J.[Juha],
Kaartinen, H.[Harri],
Lehtomäki, M.[Matti],
Pyörälä, J.[Jiri],
Pfeifer, N.[Norbert],
Holopainen, M.[Markus],
Brolly, G.[Gábor],
Francesco, P.[Pirotti],
Hackenberg, J.[Jan],
Huang, H.[Huabing],
Jo, H.W.[Hyun-Woo],
Katoh, M.[Masato],
Liu, L.X.[Lu-Xia],
Mokroš, M.[Martin],
Morel, J.[Jules],
Olofsson, K.[Kenneth],
Poveda-Lopez, J.[Jose],
Trochta, J.[Jan],
Wang, D.[Di],
Wang, J.H.[Jin-Hu],
Xi, Z.X.[Zhou-Xi],
Yang, B.S.[Bi-Sheng],
Zheng, G.[Guang],
Kankare, V.[Ville],
Luoma, V.[Ville],
Yu, X.W.[Xiao-Wei],
Chen, L.[Liang],
Vastaranta, M.[Mikko],
Saarinen, N.[Ninni],
Wang, Y.S.[Yun-Sheng],
International benchmarking of terrestrial laser scanning approaches
for forest inventories,
PandRS(144), 2018, pp. 137-179.
Elsevier DOI
1809
Benchmarking, State-of-the-art, Forest, Modeling, Point cloud,
Terrestrial laser scanning, TLS
BibRef
Saarinen, N.[Ninni],
Kankare, V.[Ville],
Vastaranta, M.[Mikko],
Luoma, V.[Ville],
Pyörälä, J.[Jiri],
Tanhuanpää, T.[Topi],
Liang, X.[Xinlian],
Kaartinen, H.[Harri],
Kukko, A.[Antero],
Jaakkola, A.[Anttoni],
Yu, X.W.[Xiao-Wei],
Holopainen, M.[Markus],
Hyyppä, J.[Juha],
Feasibility of Terrestrial laser scanning for collecting stem volume
information from single trees,
PandRS(123), No. 1, 2017, pp. 140-158.
Elsevier DOI
1612
Forest mensuration
BibRef
Kelbe, D.,
van Aardt, J.,
Romanczyk, P.,
van Leeuwen, M.,
Cawse-Nicholson, K.,
Marker-Free Registration of Forest Terrestrial Laser Scanner Data
Pairs With Embedded Confidence Metrics,
GeoRS(54), No. 7, July 2016, pp. 4314-4330.
IEEE DOI
1606
Imaging
BibRef
Kelbe, D.,
van Aardt, J.,
Romanczyk, P.,
van Leeuwen, M.,
Cawse-Nicholson, K.,
Multiview Marker-Free Registration of Forest Terrestrial Laser
Scanner Data With Embedded Confidence Metrics,
GeoRS(55), No. 2, February 2017, pp. 729-741.
IEEE DOI
1702
forestry
BibRef
Jiang, Y.T.[Yi-Tong],
Weng, Q.H.[Qi-Hao],
Speer, J.H.[James H.],
Baker, S.[Steven],
Estimating Tree Frontal Area in Urban Areas Using Terrestrial LiDAR
Data,
RS(8), No. 5, 2016, pp. 401.
DOI Link
1606
BibRef
Polewski, P.[Przemyslaw],
Yao, W.[Wei],
Heurich, M.[Marco],
Krzystek, P.[Peter],
Stilla, U.[Uwe],
A voting-based statistical cylinder detection framework applied to
fallen tree mapping in terrestrial laser scanning point clouds,
PandRS(129), No. 1, 2017, pp. 118-130.
Elsevier DOI
1706
TLS
BibRef
Guo, X.X.[Xian-Xian],
Wang, L.[Le],
Tian, J.Y.[Jin-Yan],
Yin, D.M.[Da-Meng],
Shi, C.[Chen],
Nie, S.[Sheng],
Vegetation Horizontal Occlusion Index (VHOI) from TLS and UAV Image
to Better Measure Mangrove LAI,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Rehush, N.[Nataliia],
Abegg, M.[Meinrad],
Waser, L.T.[Lars T.],
Brändli, U.B.[Urs-Beat],
Identifying Tree-Related Microhabitats in TLS Point Clouds Using
Machine Learning,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Xi, Z.X.[Zhou-Xin],
Hopkinson, C.[Chris],
Chasmer, L.[Laura],
Filtering Stems and Branches from Terrestrial Laser Scanning Point
Clouds Using Deep 3-D Fully Convolutional Networks,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
LIDAR point clouds in forest.
BibRef
Frey, J.[Julian],
Joa, B.[Bettina],
Schraml, U.[Ulrich],
Koch, B.[Barbara],
Same Viewpoint Different Perspectives: A Comparison of Expert Ratings
with a TLS Derived Forest Stand Structural Complexity Index,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Liu, J.[Jing],
Skidmore, A.K.[Andrew K.],
Wang, T.J.[Tie-Jun],
Zhu, X.[Xi],
Premier, J.[Joe],
Heurich, M.[Marco],
Beudert, B.[Burkhard],
Jones, S.[Simon],
Variation of leaf angle distribution quantified by terrestrial LiDAR
in natural European beech forest,
PandRS(148), 2019, pp. 208-220.
Elsevier DOI
1901
Leaf inclination, Leaf inclination distribution function,
Leaf angle distribution, Variation,
European beech
BibRef
Liu, J.[Jing],
Wang, T.J.[Tie-Jun],
Skidmore, A.K.[Andrew K.],
Jones, S.[Simon],
Heurich, M.[Marco],
Beudert, B.[Burkhard],
Premier, J.[Joe],
Comparison of terrestrial LiDAR and digital hemispherical photography
for estimating leaf angle distribution in European broadleaf beech
forests,
PandRS(158), 2019, pp. 76-89.
Elsevier DOI
1912
Leaf inclination, Leaf orientation, Leaf angle distribution,
Terrestrial LiDAR, Digital hemispherical photography, Gap fraction
BibRef
Xu, Q.F.[Qiang-Fa],
Cao, L.[Lin],
Xue, L.F.[Lian-Feng],
Chen, B.Q.[Bang-Qian],
An, F.[Feng],
Yun, T.[Ting],
Extraction of Leaf Biophysical Attributes Based on a Computer
Graphic-based Algorithm Using Terrestrial Laser Scanning Data,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Huo, L.N.[Lang-Ning],
Zhang, X.L.[Xiao-Li],
A new method of equiangular sectorial voxelization of single-scan
terrestrial laser scanning data and its applications in forest
defoliation estimation,
PandRS(151), 2019, pp. 302-312.
Elsevier DOI
1904
Single-scan TLS, Voxelization, Point density, Defoliation, Regression
BibRef
Yrttimaa, T.[Tuomas],
Saarinen, N.[Ninni],
Kankare, V.[Ville],
Liang, X.[Xinlian],
Hyyppä, J.[Juha],
Holopainen, M.[Markus],
Vastaranta, M.[Mikko],
Investigating the Feasibility of Multi-Scan Terrestrial Laser
Scanning to Characterize Tree Communities in Southern Boreal Forests,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Calders, K.[Kim],
Schnitzer, S.A.[Stefan A.],
Verbeeck, H.[Hans],
Semi-automatic extraction of liana stems from terrestrial LiDAR point
clouds of tropical rainforests,
PandRS(154), 2019, pp. 114-126.
Elsevier DOI
1907
Automated liana extraction, Lianas, Terrestial LiDAR,
Machine learning, Python package, Tropical forests
BibRef
Schneider, R.[Robert],
Calama, R.[Rafael],
Martin-Ducup, O.[Olivier],
Understanding Tree-to-Tree Variations in Stone Pine (Pinus pinea L.)
Cone Production Using Terrestrial Laser Scanner,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Wu, B.X.[Bing-Xiao],
Zheng, G.[Guang],
Chen, Y.[Yang],
An Improved Convolution Neural Network-Based Model for Classifying
Foliage and Woody Components from Terrestrial Laser Scanning Data,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Shao, J.[Jie],
Zhang, W.[Wuming],
Mellado, N.[Nicolas],
Wang, N.[Nan],
Jin, S.[Shuangna],
Cai, S.S.[Shang-Shu],
Luo, L.[Lei],
Lejemble, T.[Thibault],
Yan, G.J.[Guang-Jian],
SLAM-aided forest plot mapping combining terrestrial and mobile laser
scanning,
PandRS(163), 2020, pp. 214-230.
Elsevier DOI
2005
Forest mapping, LiDAR, SLAM, Single-scan TLS, MLS
BibRef
LaRue, E.A.[Elizabeth A.],
Wagner, F.W.[Franklin W.],
Fei, S.[Songlin],
Atkins, J.W.[Jeff W.],
Fahey, R.T.[Robert T.],
Gough, C.M.[Christopher M.],
Hardiman, B.S.[Brady S.],
Compatibility of Aerial and Terrestrial LiDAR for Quantifying Forest
Structural Diversity,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Wang, D.[Di],
Unsupervised semantic and instance segmentation of forest point
clouds,
PandRS(165), 2020, pp. 86-97.
Elsevier DOI
2006
Terrestrial LiDAR, Tree isolation, Component classification,
Segmentation, Superpoint graph
BibRef
Yrttimaa, T.[Tuomas],
Luoma, V.[Ville],
Saarinen, N.[Ninni],
Kankare, V.[Ville],
Junttila, S.[Samuli],
Holopainen, M.[Markus],
Hyyppä, J.[Juha],
Vastaranta, M.[Mikko],
Structural Changes in Boreal Forests Can Be Quantified Using
Terrestrial Laser Scanning,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Yrttimaa, T.[Tuomas],
Saarinen, N.[Ninni],
Kankare, V.[Ville],
Hynynen, J.[Jari],
Huuskonen, S.[Saija],
Holopainen, M.[Markus],
Hyyppä, J.[Juha],
Vastaranta, M.[Mikko],
Performance of terrestrial laser scanning to characterize managed
Scots pine (Pinus sylvestris L.) stands is dependent on forest
structural variation,
PandRS(168), 2020, pp. 277 - 287.
Elsevier DOI
2009
LiDAR, Remote sensing, Forest inventory, Point cloud,
Close-range, Forest management
BibRef
Terryn, L.[Louise],
Calders, K.[Kim],
Disney, M.[Mathias],
Origo, N.[Niall],
Malhi, Y.[Yadvinder],
Newnham, G.[Glenn],
Raumonen, P.[Pasi],
Åkerblom, M.[Markku],
Verbeeck, H.[Hans],
Tree species classification using structural features derived from
terrestrial laser scanning,
PandRS(168), 2020, pp. 170 - 181.
Elsevier DOI
2009
Quantitative structure model, Structural tree features,
Terrestrial laser scanning, Tree species classification,
Machine learning classifiers
BibRef
Xi, Z.X.[Zhou-Xin],
Hopkinson, C.[Chris],
Rood, S.B.[Stewart B.],
Peddle, D.R.[Derek R.],
See the forest and the trees: Effective machine and deep learning
algorithms for wood filtering and tree species classification from
terrestrial laser scanning,
PandRS(168), 2020, pp. 1 - 16.
Elsevier DOI
2009
Tree species classification, 3D classification, Deep learning,
Forests, Terrestrial laser scanning, LiDAR
BibRef
Park, T.[Taejin],
Potential Lidar Height, Intensity, and Ratio Parameters for Plot
Dominant Species Discrimination and Volume Estimation,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Li, L.,
Mu, X.,
Soma, M.,
Wan, P.,
Qi, J.,
Hu, R.,
Zhang, W.,
Tong, Y.,
Yan, G.,
An Iterative-Mode Scan Design of Terrestrial Laser Scanning in
Forests for Minimizing Occlusion Effects,
GeoRS(59), No. 4, April 2021, pp. 3547-3566.
IEEE DOI
2104
Vegetation, Indexes, Forestry, Estimation, Measurement by laser beam,
Laser radar, Nickel, Forest inventory, occlusion effect, scan design,
visibility analysis
BibRef
Seidel, D.[Dominik],
Annighöfer, P.[Peter],
Ammer, C.[Christian],
Ehbrecht, M.[Martin],
Willim, K.[Katharina],
Bannister, J.[Jan],
Soto, D.P.[Daniel P.],
Quantifying Understory Complexity in Unmanaged Forests Using TLS and
Identifying Some of Its Major Drivers,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Camarretta, N.[Nicolò],
Harrison, P.A.[Peter A.],
Lucieer, A.[Arko],
Potts, B.M.[Brad M.],
Davidson, N.[Neil],
Hunt, M.[Mark],
Handheld Laser Scanning Detects Spatiotemporal Differences in the
Development of Structural Traits among Species in Restoration
Plantings,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Song, J.L.[Jin-Ling],
Zhu, X.[Xiao],
Qi, J.B.[Jian-Bo],
Pang, Y.[Yong],
Yang, L.[Lei],
Yu, L.H.[Li-Hong],
A Method for Quantifying Understory Leaf Area Index in a Temperate
Forest through Combining Small Footprint Full-Waveform and Point
Cloud LiDAR Data,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Ge, X.M.[Xu-Ming],
Zhu, Q.[Qing],
Target-based automated matching of multiple terrestrial laser scans
for complex forest scenes,
PandRS(179), 2021, pp. 1-13.
Elsevier DOI
2108
Point clouds, Forest, Registration, Target-based, Multiple scans
BibRef
Arseniou, G.[Georgios],
MacFarlane, D.W.[David W.],
Seidel, D.[Dominik],
Woody Surface Area Measurements with Terrestrial Laser Scanning
Relate to the Anatomical and Structural Complexity of Urban Trees,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Panagiotidis, D.[Dimitrios],
Abdollahnejad, A.[Azadeh],
Reliable Estimates of Merchantable Timber Volume from Terrestrial
Laser Scanning,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Alvites, C.[Cesar],
Santopuoli, G.[Giovanni],
Hollaus, M.[Markus],
Pfeifer, N.[Norbert],
Maesano, M.[Mauro],
Moresi, F.V.[Federico Valerio],
Marchetti, M.[Marco],
Lasserre, B.[Bruno],
Terrestrial Laser Scanning for Quantifying Timber Assortments from
Standing Trees in a Mixed and Multi-Layered Mediterranean Forest,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Xu, S.[Sheng],
Li, X.[Xin],
Yun, J.Y.[Jia-Yan],
Xu, S.S.[Shan-Shan],
An Effectively Dynamic Path Optimization Approach for the Tree
Skeleton Extraction from Portable Laser Scanning Point Clouds,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Dai, W.X.[Wen-Xia],
Guan, Q.F.[Qing-Feng],
Cai, S.S.[Shang-Shu],
Liu, R.D.[Run-Dong],
Chen, R.[Ruibo],
Liu, Q.[Qing],
Chen, C.[Chao],
Dong, Z.[Zhen],
A Comparison of the Performances of Unmanned-Aerial-Vehicle (UAV) and
Terrestrial Laser Scanning for Forest Plot Canopy Cover Estimation in
Pinus massoniana Forests,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Sferlazza, S.[Sebastiano],
Maltese, A.[Antonino],
Dardanelli, G.[Gino],
Veca, D.S.L.M.[Donato Salvatore La Mela],
Optimizing the Sampling Area across an Old-Growth Forest via
UAV-Borne Laser Scanning, GNSS, and Radial Surveying,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Wang, M.[Meilian],
Wong, M.S.[Man Sing],
Abbas, S.[Sawaid],
Tropical Species Classification with Structural Traits Using Handheld
Laser Scanning Data,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Xie, Y.Y.[Yu-Yang],
Yang, T.[Tao],
Wang, X.F.[Xiao-Feng],
Chen, X.[Xi],
Pang, S.X.[Shu-Xin],
Hu, J.[Juan],
Wang, A.X.[An-Xian],
Chen, L.[Ling],
Shen, Z.[Zehao],
Applying a Portable Backpack Lidar to Measure and Locate Trees in a
Nature Forest Plot: Accuracy and Error Analyses,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Liu, B.J.[Bing-Jie],
Chen, S.[Shuxin],
Huang, H.G.[Hua-Guo],
Tian, X.[Xin],
Tree Species Classification of Backpack Laser Scanning Data Using the
PointNet++ Point Cloud Deep Learning Method,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Liu, B.J.[Bing-Jie],
Huang, H.G.[Hua-Guo],
Su, Y.[Yong],
Chen, S.[Shuxin],
Li, Z.Y.[Zeng-Yuan],
Chen, E.[Erxue],
Tian, X.[Xin],
Tree Species Classification Using Ground-Based LiDAR Data by Various
Point Cloud Deep Learning Methods,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Vandendaele, B.[Bastien],
Martin-Ducup, O.[Olivier],
Fournier, R.A.[Richard A.],
Pelletier, G.[Gaetan],
Lejeune, P.[Philippe],
Mobile Laser Scanning for Estimating Tree Structural Attributes in a
Temperate Hardwood Forest,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Bobrowski, R.[Rogério],
Winczek, M.[Monika],
Silva, L.P.[Lucas Polo],
Cuchi, T.[Tarik],
Szostak, M.[Marta],
Wezyk, P.[Piotr],
Promising Uses of the iPad Pro Point Clouds: The Case of the Trunk
Flare Diameter Estimation in the Urban Forest,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Martínez-Rodrigo, R.[Raquel],
Gómez, C.[Cristina],
Toraño-Caicoya, A.[Astor],
Bohnhorst, L.[Luke],
Uhl, E.[Enno],
Águeda, B.[Beatriz],
Stand Structural Characteristics Derived from Combined TLS and
Landsat Data Support Predictions of Mushroom Yields in Mediterranean
Forest,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Ronoud, G.[Ghasem],
Poorazimy, M.[Maryam],
Yrttimaa, T.[Tuomas],
Luoma, V.[Ville],
Huuskonen, S.[Saija],
Hynynen, J.[Jari],
Hyyppä, J.[Juha],
Saarinen, N.[Ninni],
Kankare, V.[Ville],
Vastaranta, M.[Mikko],
Terrestrial Laser Scanning in Assessing the Effect of Different
Thinning Treatments on the Competition of Scots Pine (Pinus
sylvestris L.) Forests,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Batchelor, J.L.[Jonathan L.],
Wilson, T.M.[Todd M.],
Olsen, M.J.[Michael J.],
Ripple, W.J.[William J.],
New Structural Complexity Metrics for Forests from Single Terrestrial
Lidar Scans,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Olofsson, K.[Kenneth],
Holmgren, J.[Johan],
Stem Quality Estimates Using Terrestrial Laser Scanning Voxelized
Data and a Voting-Based Branch Detection Algorithm,
RS(15), No. 8, 2023, pp. 2082.
DOI Link
2305
BibRef
Xu, Z.Z.[Zhuang-Zhi],
Shen, X.[Xin],
Cao, L.[Lin],
Extraction of Forest Structural Parameters by the Comparison of
Structure from Motion (SfM) and Backpack Laser Scanning (BLS) Point
Clouds,
RS(15), No. 8, 2023, pp. 2144.
DOI Link
2305
BibRef
Wielgosz, M.[Maciej],
Puliti, S.[Stefano],
Wilkes, P.[Phil],
Astrup, R.[Rasmus],
Point2Tree(P2T): Framework for Parameter Tuning of Semantic and
Instance Segmentation Used with Mobile Laser Scanning Data in
Coniferous Forest,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Chen, C.[Chao],
Zhou, L.[Lv],
Li, X.J.[Xue-Jian],
Zhao, Y.[Yinyin],
Yu, J.C.[Jia-Cong],
Lv, L.J.[Lu-Jin],
Du, H.Q.[Hua-Qiang],
Optimizing the Spatial Structure of Metasequoia Plantation Forest
Based on UAV-LiDAR and Backpack-LiDAR,
RS(15), No. 16, 2023, pp. 4090.
DOI Link
2309
BibRef
Schindler, Z.[Zoe],
Larysch, E.[Elena],
Frey, J.[Julian],
Sheppard, J.P.[Jonathan P.],
Obladen, N.[Nora],
Kröner, K.[Katja],
Seifert, T.[Thomas],
Morhart, C.[Christopher],
From Dawn to Dusk: High-Resolution Tree Shading Model Based on
Terrestrial LiDAR Data,
RS(16), No. 12, 2024, pp. 2189.
DOI Link
2406
BibRef
Faitli, T.[Tamás],
Hyyppä, E.[Eric],
Hyyti, H.[Heikki],
Hakala, T.[Teemu],
Kaartinen, H.[Harri],
Kukko, A.[Antero],
Muhojoki, J.[Jesse],
Hyyppä, J.[Juha],
Integration of a Mobile Laser Scanning System with a Forest Harvester
for Accurate Localization and Tree Stem Measurements,
RS(16), No. 17, 2024, pp. 3292.
DOI Link
2409
BibRef
Tang, H.[Hao],
Li, S.H.[Shi-Hua],
Su, Z.H.[Zhong-Hua],
He, Z.[Ze],
Cluster-Based Wood-Leaf Separation Method for Forest Plots Using
Terrestrial Laser Scanning Data,
RS(16), No. 18, 2024, pp. 3355.
DOI Link
2410
BibRef
Magnuson, R.[Robert],
Erfanifard, Y.[Yousef],
Kulicki, M.[Maksymilian],
Gasica, T.A.[Torana Arya],
Tangwa, E.[Elvis],
Mielcarek, M.[Milosz],
Sterenczak, K.[Krzysztof],
Mobile Devices in Forest Mensuration: A Review of Technologies and
Methods in Single Tree Measurements,
RS(16), No. 19, 2024, pp. 3570.
DOI Link
2410
BibRef
Mizoguchi, T.,
Ishii, A.,
Nakamura, H.,
Individual Tree Species Classification Based On Terrestrial Laser
Scanning Using Curvature Estimation and Convolutional Neural Network,
Laser19(1077-1082).
DOI Link
1912
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Forest Analysis, Canopy Heights, LiDAR .