11.7 SuperQuadric Representations

Chapter Contents (Back)
Representation, Superquadric. Superquadric. Deformable Solids.

Barr, A.H.,
Superquadrics and Angle-Preserving Transformations,
IEEE_CGA(1), No. 1, January 1981, pp. 11-23. BibRef 8101

Barr, A.H.,
Global and Local Deformations of Solid Primitives,
Computer Graphics(18), No. 3, 1984, pp. xx. BibRef 8400

Raja, N.S., Jain, A.K.,
Recognizing Geons from Superquadrics Fitted to Range Data,
IVC(10), No. 3, April 1992, pp. 179-190.
WWW Link. BibRef 9204

Chen, L.H., Lin, W.C., Liao, H.Y.M.,
Recovery of Superquadric Primitive from Stereo Images,
IVC(12), No. 5, June 1994, pp. 285-296.
WWW Link. BibRef 9406

Keren, D., Cooper, D.B., and Subrahmonia, J.,
Describing Complicated Objects by Implicit Polynomials,
PAMI(16), No. 1, January 1994, pp. 38-53.
IEEE DOI BibRef 9401
Earlier: BrownLEMS-102, 1992. 2-D curves in images are represented by fourth order polynomials to describe basic shapes (superquadrics). BibRef

Solina, F., and Bajcsy, R.K.,
Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations,
PAMI(12), No. 2, February 1990, pp. 131-147.
IEEE DOI BibRef 9002
Earlier:
Range Image Interpretation of Mail Pieces with Superquadrics,
AAAI-87(733-737). Functional Minimization. Descriptions, Superquadrics. Descriptions, Parametric. BibRef

Jaklic, A.[Ales], Leonardis, A.[Ales], Solina, F.[Franc],
Segmentation and Recovery of Superquadrics,
KluwerSeptember 2000, ISBN 0-7923-6601-8
WWW Link. Or:
HTML Version. How to describe objects, how to computer superquadrics. BibRef 0009

Leonardis, A., Jaklic, A., Solina, F.,
Superquadrics for Segmenting and Modeling Range Data,
PAMI(19), No. 11, November 1997, pp. 1289-1295.
IEEE DOI 9712
Directly recover superquadric from range data. BibRef

Jaklic, A., Solina, F.,
Moments of superellipsoids and their application to range image registration,
SMC-B(33), No. 4, August 2003, pp. 648-657.
IEEE Abstract. 0308
BibRef

Leonardis, A., Solina, F., Macerl, A.,
A Direct Recovery of Superquadric Models in Range Images Using Recover-and-Select Paradigm,
ECCV94(A:309-318).
Springer DOI BibRef 9400

Solina, F., Leonardis, A.,
Selective Scene Modeling,
ICPR92(I:87-90).
IEEE DOI BibRef 9200

Krivic, J.[Jaka], Solina, F.[Franc],
Part-level object recognition using superquadrics,
CVIU(95), No. 1, July 2004, pp. 105-126.
WWW Link. 0407
BibRef
Earlier:
Superquadric-Based Object Recognition,
CAIP01(134 ff.).
Springer DOI 0210
Hypothesize in database, then verify by projecting and refitting. BibRef

Gupta, A., and Bogoni, L., and Bajcsy, R.,
Quantitative and Qualitative Measures for the Evaluation of the Superquadric Models,
3DWS89(162-169). BibRef 8900

Bajcsy, R.[Ruzena], Solina, F.[Franc], and Gupta, A.[Alok],
Segmentation Versus Object Representation: Are They Separable?,
AIRI90(207-223). BibRef 9000

Bajcsy, R.[Ruzena], and Solina, F.[Franc],
Three Dimensional Object Representation Revisited,
ICCV87(231-240). BibRef 8700

Ferrie, F.P., Lagarde, J., and Whaite, P.,
Darboux Frames, Snakes, and Super-Quadrics: Geometry from the Bottom Up,
PAMI(15), No. 8, August 1993, pp. 771-784.
IEEE DOI BibRef 9308
And: 3DWS89(170-176). BibRef
Earlier:
Recovery of Volumetric Object Descriptions from Laser Rangefinder Images,
ECCV90(385-396).
Springer DOI Bottom-up approach for articulated volumetric descriptions. Use ellipsoid and superquadric models. BibRef

Ferrie, F.P., and Levine, M.D.,
Deriving Coarse 3-D Models of Objects,
CVPR88(345-353).
IEEE DOI Models based on cylinders or ellipsoids. See also Integrating Information from Multiple Views. BibRef 8800

Ayoung-Chee, N., Dudek, G., Ferrie, F.P.,
Enhanced 3D Representation Using a Hybrid Model,
ICPR96(I: 575-579).
IEEE DOI 9608
(McGill Univ., CDN) BibRef

Hanson, A.J.,
Hyperquadrics: Smoothly Deformable Shapes with Convex Polyhedral Bounds,
CVGIP(44), No. 2, November 1988, pp. 191-210.
WWW Link. Hyperquadrics. The introductions of Hyperquadrics a generalization of superquadrics. BibRef 8811

Chen, L.H., Liu, Y.T., Liao, H.Y.,
Similarity Measure for Superquadrics,
VISP(144), No. 4, August 1997, pp. 237-243. 9806
BibRef

Pilu, M.[Maurizio], Fisher, R.B.[Robert B.],
Training PDMs on models: the case of deformable superellipses,
PRL(20), No. 5, May 1999, pp. 463-474. BibRef 9905
Earlier: Add: second of three: Fitzgibbon, A.W., BMVC96(Deformable Models). 9608
BibRef
And: DAINo. 818, July 1996. BibRef EdinburghUniversity of Edinburgh. Trying to simplify the complex model. BibRef

Pilu, M., and Fisher, R.B.,
Equal-Distance Sampling of Superellipse Models,
BMVC95(xx-yy).
PDF File. 9509
BibRef
And: DAI-No. 764, July 1995. BibRef Edinburgh BibRef

Tasdizen, T.[Tolga], Tarel, J.P.[Jean-Philippe], Cooper, D.B.[David B.],
Improving the Stability of Algebraic Curves for Applications,
IP(9), No. 3, March 2000, pp. 405-416.
IEEE DOI
HTML Version. 0003
BibRef
Earlier:
Algebraic Curves that Work Better,
CVPR99(II: 35-41).
IEEE DOI Better than conics or superquadrics. BibRef

Tasdizen, T.[Tolga], Cooper, D.B.,
Boundary Estimation from Intensity/Color Images with Algebraic Curve Models,
ICPR00(Vol I: 225-228).
IEEE DOI 0009
BibRef

Zhou, L.[Lin], Kambhamettu, C.[Chandra],
Extending Superquadrics with Exponent Functions: Modeling and Reconstruction,
GM(63), No. 1, January 2001, pp. 1-20. 0102
BibRef
And:
Representing and recognizing complete set of geons using extended superquadrics,
ICPR02(III: 713-718).
IEEE DOI 0211
BibRef
Earlier: CVPR99(II: 73-78).
IEEE DOI BibRef

Hu, W.C., Sheu, H.T.,
Efficient and consistent method for superellipse detection,
VISP(148), No. 4, August 2001, pp. 227-233. 0201
See also Contour-Based Correspondence Using Fourier Descriptors. BibRef

Zhang, X.M.[Xiao-Ming], Rosin, P.L.[Paul L.],
Superellipse fitting to partial data,
PR(36), No. 3, March 2003, pp. 743-752.
WWW Link.
PDF File. 0301
BibRef

Pickup, D.[David], Sun, X.F.[Xian-Fang], Rosin, P.L.[Paul L.], Martin, R.R.[Ralph R.],
Euclidean-distance-based canonical forms for non-rigid 3D shape retrieval,
PR(48), No. 8, 2015, pp. 2500-2512.
Elsevier DOI 1505
Shape retrieval BibRef

Zhang, Y.[Yan],
Experimental comparison of superquadric fitting objective functions,
PRL(24), No. 14, October 2003, pp. 2185-2193.
WWW Link. 0307
BibRef

Wen, F.[Fur_Ong], Yuan, B.[Bao_Zong],
Least-squares fitting for deformable superquadric model based on orthogonal distance,
PRL(25), No. 8, June 2004, pp. 933-941.
WWW Link. 0405
See retraction. BibRef

Ho, T.K.[Tin Kam],
Article retraction: Least-squares fitting for deformable superquadric model based on orthogonal distance,
PRL(26), No. 6, 1 May 2005, pp. 685-686.
WWW Link. 0501
BibRef

Katsoulas, D.[Dimitrios], Bastidas, C.C.[Christian Cea], Kosmopoulos, D.I.[Dimitrios I.],
Superquadric Segmentation in Range Images via Fusion of Region and Boundary Information,
PAMI(30), No. 5, May 2008, pp. 781-795.
IEEE DOI 0803
BibRef

Katsoulas, D.[Dimitrios], Kosmopoulos, D.I.[Dimitrios I.],
Box-like Superquadric Recovery in Range Images by Fusing Region and Boundary Information,
ICPR06(I: 719-722).
IEEE DOI 0609
BibRef

Katsoulas, D.[Dimitrios],
Reliable recovery of piled box-like objects via parabolically deformable superquadrics,
ICCV03(931-938).
IEEE DOI 0311
Hypothesis generation and refinement. BibRef

Katsoulas, D., Jakli, A.,
Fast Recovery of Piled Deformable Objects Using Superquadrics,
DAGM02(174 ff.).
Springer DOI 0303
BibRef

Biegelbauer, G.[Georg], Vincze, M.[Markus], Wohlkinger, W.[Walter],
Model-based 3D object detection: Efficient approach using superquadrics,
MVA(21), No. 4, June 2010, pp. xx-yy.
Springer DOI 1006
See also fast stereo matching algorithm suitable for embedded real-time systems, A. BibRef

Fougerolle, Y.D.[Yohan D.], Gielis, J.[Johan], Truchetet, F.[Frederic],
A robust evolutionary algorithm for the recovery of rational Gielis curves,
PR(46), No. 8, August 2013, pp. 2078-2091.
Elsevier DOI 1304
Superquadrics; Gielis curves; Optimization; Evolutionary algorithm; R-functions BibRef

Lin, Z.C.[Zhou-Chen], Huang, Y.[Yameng],
Fast Multidimensional Ellipsoid-Specific Fitting by Alternating Direction Method of Multipliers,
PAMI(38), No. 5, May 2016, pp. 1021-1026.
IEEE DOI 1604
Accuracy BibRef


Mock, S.[Sebastian], Lensing, P.[Philipp], Broll, W.[Wolfgang],
Achieving Flexible 3D Reconstruction Volumes for RGB-D and RGB Camera Based Approaches,
ICCVG16(221-232).
Springer DOI 1611
BibRef

Thamer, H.[Hendrik], Taj, F.[Faisal], Weimer, D.[Daniel], Kost, H.[Henning], Scholz-Reiter, B.[Bernd],
Combined Categorization and Localization of Logistic Goods Using Superquadrics,
ICIAR13(215-224).
Springer DOI 1307
BibRef

Zhou, L.P.[Lu-Ping], Salvado, O.,
A Comparison Study of Ellipsoid Fitting for Pose Normalization of Hippocampal Shapes,
DICTA11(285-290).
IEEE DOI 1205
BibRef

Ditrich, F.[Frank], Suesse, H.[Herbert],
Robust Fitting of 3D Objects by Affinely Transformed Superellipsoids Using Normalization,
CAIP07(490-497).
Springer DOI 0708
See also Robust Determination of Rotation-Angles for Closed Regions Using Moments. BibRef

Zhang, Y., Paik, J., Koschan, A.F.[Andreas F.], Abidi, M.A.[Mongi A.],
3-D object representation from multi-view range data applying deformable superquadrics,
ICPR02(III: 611-614).
IEEE DOI 0211
BibRef

Chevalier, L., Jaillet, F., Baskurt, A.,
3d Shape Coding with Superquadrics,
ICIP01(II: 93-96).
IEEE DOI 0108
BibRef

Plaenkers, R.[Ralf], Fua, P.V.[Pascal V.],
Articulated Soft Objects for Video-based Body Modeling,
ICCV01(I: 394-401).
IEEE DOI 0106
Model of shape and motion from video. Skeleton plus meta-ball surfaces plus skin. BibRef

Zha, H.B.[Hong-Bin], Hoshide, T.[Tsuyoshi], Hasegawa, T.[Tsutomu],
A Recursive Fitting-and-Splitting Algorithm for 3-D Object Modeling Using Superquadrics,
ICPR98(Vol I: 658-662).
IEEE DOI 9808
BibRef

van Dop, E.R.[Erik R.], Regtien, P.P.L.[Paul P.L.],
Fitting Undeformed Superquadrics to Range Data: Improving Model Recovery and Classification,
CVPR98(396-401).
IEEE DOI BibRef 9800

Yokoya, N., Kaneta, M., Yamamoto, K.,
Recovery Of Superquadric Primitives from a Range Image Using Simulated Annealing,
ICPR92(I:168-172).
IEEE DOI BibRef 9200

Horikoshi, T., and Suzuki, S.,
3D Parts Decomposition from Sparse Range Data Information Criterion,
CVPR93(168-173).
IEEE DOI Segmented descriptions for superquadrics. BibRef 9300

Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Active Volumes, Deformable Solids, 3-D Snakes, etc. .


Last update:Dec 7, 2017 at 17:23:10