Parra Alonso, I.,
Fernandez Llorca, D.,
Sotelo, M.A.,
Bergasa, L.M.,
Revenga de Toro, P.,
Nuevo, J.,
Ocana, M.,
Garcia Garrido, M.A.,
Combination of Feature Extraction Methods for SVM Pedestrian Detection,
ITS(8), No. 2, April 2007, pp. 292-307.
IEEE DOI
0706
BibRef
Montabone, S.[Sebastian],
Soto, A.[Alvaro],
Human detection using a mobile platform and novel features derived from
a visual saliency mechanism,
IVC(28), No. 3, March 2010, pp. 391-402.
Elsevier DOI
1001
Human detection; Visual saliency; Visual features; Moving cameras
BibRef
Pszczókowski, S.[Stefan],
Soto, A.[Alvaro],
Human Detection in Indoor Environments Using Multiple Visual Cues and a
Mobile Robot,
CIARP07(350-359).
Springer DOI
0711
BibRef
Liu, Y.F.[Yun-Fu],
Guo, J.M.[Jing-Ming],
Chang, C.H.[Che-Hao],
Low resolution pedestrian detection using light robust features and
hierarchical system,
PR(47), No. 4, 2014, pp. 1616-1625.
Elsevier DOI
1402
Pedestrian detection
BibRef
Paisitkriangkrai, S.[Sakrapee],
Shen, C.H.[Chun-Hua],
Zhang, J.[Jian],
Fast Pedestrian Detection Using a Cascade of Boosted Covariance
Features,
CirSysVideo(18), No. 8, August 2008, pp. 1140-1151.
IEEE DOI
0809
BibRef
And:
Real-time Pedestrian Detection Using a Boosted Multi-layer Classifier,
VS08(xx-yy).
0810
BibRef
Paisitkriangkrai, S.[Sakrapee],
Shen, C.H.[Chun-Hua],
Zhang, J.[Jian],
Performance evaluation of local features in human classification and
detection,
IET-CV(2), No. 4, December 2008, pp. 236-246.
DOI Link
0905
BibRef
Xu, J.S.[Jing-Song],
Wu, Q.[Qiang],
Zhang, J.[Jian],
Tang, Z.M.[Zhen-Min],
Fast and Accurate Human Detection Using a Cascade of Boosted MS-LBP
Features,
SPLetters(19), No. 10, October 2012, pp. 676-679.
IEEE DOI
1209
BibRef
Ma, Y.D.[Ying-Dong],
Deng, L.[Liang],
Chen, X.K.[Xian-Kai],
Guo, N.[Ning],
Integrating Orientation Cue With EOH-OLBP-Based Multilevel Features
for Human Detection,
CirSysVideo(23), No. 10, 2013, pp. 1755-1766.
IEEE DOI
1311
cameras
BibRef
Boudissa, A.[Ahmed],
Tan, J.K.[Joo Kooi],
Kim, H.[Hyoungseop],
Shinomiya, T.[Takashi],
Ishikawa, S.[Seiji],
A Novel Pedestrian Detector on Low-Resolution Images: Gradient LBP
Using Patterns of Oriented Edges,
IEICE(E96-D), No. 12, December 2013, pp. 2882-2887.
WWW Link.
1312
BibRef
Earlier: A1, A2, A3, A5, Only:
A simple pedestrian detection using LBP-based patterns of oriented
edges,
ICIP12(469-472).
IEEE DOI
1302
BibRef
Du, X.Y.[Xiao-Yun],
Laganiere, R.[Robert],
Wu, S.[Si],
Enhanced Contour Description for Pedestrian Detection,
IJCVSP(5), No. 1, 2015, pp. 14-22.
PDF File.
1506
Variational LBP combined with HOG.
BibRef
Zhu, C.[Chao],
Peng, Y.X.[Yu-Xin],
A Boosted Multi-Task Model for Pedestrian Detection With Occlusion
Handling,
IP(24), No. 12, December 2015, pp. 5619-5629.
IEEE DOI
1512
feature extraction
BibRef
Kong, K.K.[Kang-Kook],
Hong, K.S.[Ki-Sang],
Design of coupled strong classifiers in AdaBoost framework and its
application to pedestrian detection,
PRL(68, Part 1), No. 1, 2015, pp. 63-69.
Elsevier DOI
1512
AdaBoost
BibRef
Kong, K.K.[Kang-Kook],
Lee, J.W.[Jong-Woo],
Hong, K.S.[Ki-Sang],
Effective Comparison Features for Pedestrian Detection,
ICIAR16(299-308).
Springer DOI
1608
BibRef
Fusek, R.[Radovan],
Sojka, E.[Eduard],
Energy transfer features combined with DCT for object detection,
SIViP(10), No. 3, March 2016, pp. 479-486.
WWW Link.
1602
BibRef
And:
Distance-Based Descriptors and Their Application in the Task of Object
Detection,
GCPR14(488-498).
Springer DOI
1411
BibRef
Fusek, R.[Radovan],
Sojka, E.[Eduard],
Mozdren, K.[Karel],
urkala, M.[Milan],
An Improvement of Energy-Transfer Features Using DCT for Face Detection,
ICISP14(511-519).
Springer DOI
1406
BibRef
Earlier:
Energy-transfer features and their application in the task of face
detection,
AVSS13(147-152)
IEEE DOI
1311
Haar transforms
BibRef
And:
Energy-Transfer Features for Pedestrian Detection,
ISVC13(II:425-434).
Springer DOI
1311
BibRef
Shen, J.F.[Ji-Feng],
Zuo, X.[Xin],
Li, J.[Jun],
Yang, W.K.[Wan-Kou],
Ling, H.B.[Hai-Bin],
A novel pixel neighborhood differential statistic feature for
pedestrian and face detection,
PR(63), No. 1, 2017, pp. 127-138.
Elsevier DOI
1612
Pedestrian detection
BibRef
Baek, J.H.[Jeong-Hyun],
Kim, J.[Jisu],
Kim, E.T.[Eun-Tai],
Fast and Efficient Pedestrian Detection via the Cascade
Implementation of an Additive Kernel Support Vector Machine,
ITS(18), No. 4, April 2017, pp. 902-916.
IEEE DOI
1704
Additives
BibRef
Baek, J.H.[Jeong-Hyun],
Hyun, J.[Junhyuk],
Kim, E.T.[Eun-Tai],
A Pedestrian Detection System Accelerated by Kernelized Proposals,
ITS(21), No. 3, March 2020, pp. 1216-1228.
IEEE DOI
2003
Proposals, Feature extraction, Support vector machines,
Real-time systems, Additives, Kernel, LDCF
BibRef
Kim, H.K.[Hak-Kyoung],
Kim, D.J.[Dai-Jin],
Robust pedestrian detection under deformation using simple boosted
features,
IVC(61), No. 1, 2017, pp. 1-11.
Elsevier DOI
1704
Regionlet
BibRef
Li, Q.,
Wang, H.,
Yan, Y.,
Li, B.,
Chen, C.W.,
Local Co-Occurrence Selection via Partial Least Squares for
Pedestrian Detection,
ITS(18), No. 6, June 2017, pp. 1549-1558.
IEEE DOI
1706
Computational efficiency, Decision trees, Detectors,
Feature extraction, Intelligent transportation systems,
Quantization (signal), Training, Local co-occurrence,
partial least squares, pedestrian detection
BibRef
Bilal, M.[Muhammad],
Algorithmic optimisation of histogram intersection kernel support
vector machine-based pedestrian detection using low complexity features,
IET-CV(11), No. 5, August 2017, pp. 350-357.
DOI Link
1707
BibRef
Bak, S.[Slawomir],
San-Biagio, M.[Marco],
Kumar, R.,
Murino, V.[Vittorio],
Brémond, F.[Francois],
Exploiting Feature Correlations by Brownian Statistics for People
Detection and Recognition,
SMCS(47), No. 9, September 2017, pp. 2538-2549.
IEEE DOI
1708
Correlation, Covariance matrices,
Feature extraction, Manifolds, Standards,
Brownian descriptor, covariance descriptor, pedestrian detection,
reidentification
BibRef
Cheng, R.Z.[Ru-Zhong],
Zhang, Y.J.[Yong-Jun],
Wang, G.P.[Guo-Ping],
Zhao, Y.[Yong],
Khusravsho, R.[Rahmatulloev],
Haar-Like Multi-Granularity Texture Features for Pedestrian Detection,
IJIG(17), No. 04, 2017, pp. 1750023.
DOI Link
1711
BibRef
You, M.,
Zhang, Y.,
Shen, C.,
Zhang, X.,
An Extended Filtered Channel Framework for Pedestrian Detection,
ITS(19), No. 5, May 2018, pp. 1640-1651.
IEEE DOI
1805
Convolution, Deformable models, Feature extraction,
Image color analysis, Kernel, Nonhomogeneous media, Semantics,
filtered channel features
BibRef
Pfeifer, L.[Lienhard],
Shearlet Features for Pedestrian Detection,
JMIV(61), No. 3, March 2019, pp. 292-309.
WWW Link.
1903
BibRef
Bastian, B.T.[Blossom Treesa],
Jiji, C.V.[C. Victor],
Pedestrian detection using first- and second-order aggregate channel
features,
MultInfoRetr(8), No. 2, June 2019, pp. 127-133.
Springer DOI
1906
BibRef
Earlier:
Aggregated Channel Features with Optimum Parameters for Pedestrian
Detection,
PReMI17(155-161).
Springer DOI
1711
BibRef
Shen, J.,
Zuo, X.,
Zhu, L.,
Li, J.,
Yang, W.,
Ling, H.,
Pedestrian Proposal and Refining Based on the Shared Pixel
Differential Feature,
ITS(20), No. 6, June 2019, pp. 2085-2095.
IEEE DOI
1906
Proposals, Feature extraction, Detectors,
Image color analysis, Pipelines, Boosting, Pedestrian proposal,
directional radius pooling
BibRef
Demiröz, B.E.[Baris Evrim],
Salah, A.A.[Albert Ali],
Bastanlar, Y.L.[Ya-Lin],
Akarun, L.[Lale],
Affordable person detection in omnidirectional cameras using radial
integral channel features,
MVA(30), No. 4, June 2019, pp. 645-655.
Springer DOI
1906
BibRef
Kiaee, N.[Nadia],
Hashemizadeh, E.[Elham],
Zarrinpanjeh, N.[Nima],
Using GLCM features in Haar wavelet transformed space for moving object
classification,
IET-ITS(13), No. 7, July 2019, pp. 1148-1153.
DOI Link
1906
Car and pedestrian from their side-view in a video sequence.
grey-level co-occurrence matrix in Haar wavelet space.
BibRef
Braun, M.,
Krebs, S.,
Flohr, F.[Fabian],
Gavrila, D.M.[Dariu M.],
EuroCity Persons:
A Novel Benchmark for Person Detection in Traffic Scenes,
PAMI(41), No. 8, August 2019, pp. 1844-1861.
IEEE DOI
1907
Proposals, Benchmark testing, Object detection, Feature extraction,
Urban areas, Deep learning, Training, Object detection, benchmarking
BibRef
Shen, J.,
Zuo, X.,
Yang, W.,
Prokhorov, D.,
Mei, X.,
Ling, H.,
Differential Features for Pedestrian Detection: A Taylor Series
Perspective,
ITS(20), No. 8, August 2019, pp. 2913-2922.
IEEE DOI
1908
Feature extraction, Transforms, Taylor series,
Graphics processing units, Task analysis, Robustness, Detectors,
integral channel feature
BibRef
Liu, W.[Wei],
Liao, S.C.[Sheng-Cai],
Hu, W.D.[Wei-Dong],
Efficient Single-Stage Pedestrian Detector by Asymptotic Localization
Fitting and Multi-Scale Context Encoding,
IP(29), 2020, pp. 1413-1425.
IEEE DOI
1911
Detectors, Proposals, Object detection, Head, Feature extraction,
Benchmark testing, Fitting, Pedestrian detection,
asymptotic localization fitting
BibRef
Liu, W.[Wei],
Liao, S.C.[Sheng-Cai],
Hu, W.D.[Wei-Dong],
Liang, X.Z.[Xue-Zhi],
Chen, X.[Xiao],
Learning Efficient Single-Stage Pedestrian Detectors by Asymptotic
Localization Fitting,
ECCV18(XIV: 643-659).
Springer DOI
1810
BibRef
Ye, Q.X.[Qi-Xiang],
Zhang, T.L.[Tian-Liang],
Ke, W.[Wei],
Progressive Latent Models for Self-Learning Scene-Specific Pedestrian
Detectors,
ITS(21), No. 4, April 2020, pp. 1415-1426.
IEEE DOI
2004
Detectors, Proposals, Optimization, Feature extraction, Cameras,
Stability analysis, Deep learning, Pedestrian detection,
difference of convex
BibRef
Zhang, T.L.[Tian-Liang],
Han, Z.J.[Zhen-Jun],
Xu, H.J.[Hui-Juan],
Zhang, B.C.[Bao-Chang],
Ye, Q.X.[Qi-Xiang],
CircleNet: Reciprocating Feature Adaptation for Robust Pedestrian
Detection,
ITS(21), No. 11, November 2020, pp. 4593-4604.
IEEE DOI
2011
Feature extraction, Object detection, Training, Visualization,
Proposals, Cameras, Detectors, CircleNet, feature learning,
traffic scenes
BibRef
Ye, Q.X.[Qi-Xiang],
Zhang, T.L.[Tian-Liang],
Ke, W.[Wei],
Qiu, Q.,
Chen, J.,
Sapiro, G.,
Zhang, B.,
Self-Learning Scene-Specific Pedestrian Detectors Using a Progressive
Latent Model,
CVPR17(2057-2066)
IEEE DOI
1711
Detectors, Linear programming, Optimization, Proposals,
Stability analysis, Supervised learning, Training
BibRef
Wang, M.J.[Min-Jun],
Chen, H.J.[Hou-Jin],
Li, Y.F.[Yan-Feng],
You, Y.H.[Yu-Hao],
Zhu, J.L.[Jin-Lei],
Multi-scale pedestrian detection based on self-attention and
adaptively spatial feature fusion,
IET-ITS(15), No. 6, 2021, pp. 837-849.
DOI Link
2106
BibRef
Li, G.[Gang],
Zhang, S.S.[Shan-Shan],
Yang, J.[Jian],
Nighttime Pedestrian Detection Based on Feature Attention and
Transformation,
ICPR21(9180-9187)
IEEE DOI
2105
Lighting, Detectors, Feature extraction, Video surveillance,
Fats, Noise measurement
BibRef
Tezcan, M.O.[M. Ozan],
Duan, Z.H.[Zhi-Hao],
Cokbas, M.[Mertcan],
Ishwar, P.[Prakash],
Konrad, J.[Janusz],
WEPDTOF: A Dataset and Benchmark Algorithms for In-the-Wild People
Detection and Tracking from Overhead Fisheye Cameras,
WACV22(1381-1390)
IEEE DOI
2202
Surveillance, Coherence, Benchmark testing, Cameras,
Optics, Spatiotemporal phenomena, Datasets,
Object Detection/Recognition/Categorization
BibRef
Duan, Z.H.[Zhi-Hao],
Tezcan, M.O.[M. Ozan],
Nakamura, H.,
Ishwar, P.[Prakash],
Konrad, J.[Janusz],
RAPiD: Rotation-Aware People Detection in Overhead Fisheye Images,
OmniCV20(2700-2709)
IEEE DOI
2008
Feature extraction, Cameras, Head, Standards, Prediction algorithms,
Object detection, Detectors
BibRef
Wu, J.,
Zhou, C.,
Yang, M.,
Zhang, Q.,
Li, Y.,
Yuan, J.,
Temporal-Context Enhanced Detection of Heavily Occluded Pedestrians,
CVPR20(13427-13436)
IEEE DOI
2008
Proposals, Electron tubes, Detectors, Feature extraction,
Reliability, Videos, Semantics
BibRef
Kataoka, H.,
Ohki, S.,
Iwata, K.,
Satoh, Y.,
Occlusion Handling Human Detection with Refocused Images,
ICPR18(1701-1706)
IEEE DOI
1812
Cameras, Feature extraction, Databases, Training, Arrays,
Visualization, Image edge detection
BibRef
Rahman, M.A.,
Kapoor, P.,
Laganičre, R.,
Laroche, D.,
Zhu, C.,
Xu, X.,
Osman Ors, A.,
Deep People Detection: A Comparative Study of SSD and LSTM-decoder,
CRV18(305-312)
IEEE DOI
1812
Feature extraction, Head, Real-time systems,
Videos, Detectors, Magnetic heads, deep learning, people detection,
SSD
BibRef
Noh, J.,
Lee, S.,
Kim, B.,
Kim, G.,
Improving Occlusion and Hard Negative Handling for Single-Stage
Pedestrian Detectors,
CVPR18(966-974)
IEEE DOI
1812
Detectors, Object detection, Predictive models, Proposals,
Feature extraction, Semantics
BibRef
Song, T.[Tao],
Sun, L.Y.[Lei-Yu],
Xie, D.[Di],
Sun, H.M.[Hai-Ming],
Pu, S.L.[Shi-Liang],
Small-Scale Pedestrian Detection Based on Topological Line Localization
and Temporal Feature Aggregation,
ECCV18(VII: 554-569).
Springer DOI
1810
BibRef
Zhou, M.H.[Meng-Han],
Ma, J.X.[Jian-Xiang],
Ming, A.L.[An-Long],
Zhou, Y.[Yu],
Objectness-Aware Tracking via Double-Layer Model,
ICIP18(3713-3717)
IEEE DOI
1809
Proposals, Target tracking, Predictive models, Correlation,
Support vector machines, Feature extraction,
Objectness Layer
BibRef
Lim, Y.C.[Young Chul],
Kang, M.S.[Min-Sung],
Multi-Pedestrian detection and tracking using unified multi-channel
features,
AVSS17(1-5)
IEEE DOI
1806
BibRef
Earlier: A2, A1:
High performance and fast object detection in road environments,
IPTA17(1-6)
IEEE DOI
1804
image classification, image fusion, object detection,
object tracking, pedestrians, vectors, data association,
Visualization.
driver information systems, feedforward neural nets,
learning (artificial intelligence),
BibRef
Trichet, R.,
Bremond, F.,
LBP Channels for Pedestrian Detection,
WACV18(1066-1074)
IEEE DOI
1806
Haar transforms, feature extraction, image classification,
image filtering, image texture,
Training
BibRef
Zhang, C.,
Kim, J.,
Improving channel features using statistical analysis for pedestrian
detection,
ICIP17(2329-2333)
IEEE DOI
1803
Feature extraction, Filtering, Head, Histograms, Shape,
Statistical analysis, Training, channel features,
statistical model
BibRef
Kuranuki, Y.,
Patras, I.,
Minimal filtered channel features for pedestrian detection,
ICPR16(681-686)
IEEE DOI
1705
Color, Decorrelation, Feature extraction,
Optical filters, Shape, Training
BibRef
Alzughaibi, A.,
Chaczko, Z.,
A precise human detection model using combination of feature
extraction techniques in a dynamic environment,
IVCNZ17(1-6)
IEEE DOI
1902
BibRef
Earlier:
Human detection model using feature extraction method in video frames,
ICVNZ16(1-6)
IEEE DOI
1701
feature extraction, image classification,
learning (artificial intelligence), object detection,
Testing.
Computational modeling
BibRef
Li, Z.X.[Zhi-Xuan],
Zhao, Y.Y.[Yan-Yun],
Pedestrian detection in single frame by edgelet-LBP part detectors,
AVSS13(420-425)
IEEE DOI
1311
edge detection
BibRef
Zhang, S.S.[Shan-Shan],
Benenson, R.[Rodrigo],
Schiele, B.[Bernt],
Filtered channel features for pedestrian detection,
CVPR15(1751-1760)
IEEE DOI
1510
BibRef
Shao, S.[Song],
Liu, H.[Hong],
Wang, X.D.[Xiang-Dong],
Qian, Y.L.[Yue-Liang],
Local Associated Features for Pedestrian Detection,
RoLoD14(513-526).
Springer DOI
1504
BibRef
Costea, A.D.[Arthur Daniel],
Varga, R.,
Nedevschi, S.[Sergiu],
Fast Boosting Based Detection Using Scale Invariant Multimodal
Multiresolution Filtered Features,
CVPR17(993-1002)
IEEE DOI
1711
Benchmark testing, Feature extraction, Image color analysis,
Image resolution, Machine learning,
BibRef
Costea, A.D.[Arthur Daniel],
Nedevschi, S.[Sergiu],
Semantic Channels for Fast Pedestrian Detection,
CVPR16(2360-2368)
IEEE DOI
1612
BibRef
Earlier:
Word Channel Based Multiscale Pedestrian Detection without Image
Resizing and Using Only One Classifier,
CVPR14(2393-2400)
IEEE DOI
1409
boosting
BibRef
Bell, A.E.,
Robust feature vector for efficient human detection,
AIPR13(1-5)
IEEE DOI
1408
data compression
BibRef
Mekonnen, A.A.[Alhayat Ali],
Lerasle, F.[Frédéric],
Herbulot, A.[Ariane],
Briand, C.,
People Detection with Heterogeneous Features and Explicit
Optimization on Computation Time,
ICPR14(4322-4327)
IEEE DOI
1412
BibRef
Earlier: A1, A2, A3, Only:
Person Detection with a Computation Time Weighted AdaBoost,
ACIVS13(632-644).
Springer DOI
1311
Cascading style sheets
BibRef
Liu, Z.F.[Zhi-Fang],
Duan, G.Q.[Gen-Quan],
Ai, H.Z.[Hai-Zhou],
Yamashita, T.[Takayoshi],
Adaptation of boosted pedestrian detectors by feature reselection,
ICIP12(481-484).
IEEE DOI
1302
BibRef
Cao, Y.Y.[Yun-Yun],
Pranata, S.[Sugiri],
Yasugi, M.[Makoto],
Niu, Z.H.[Zhi-Heng],
Nishimura, H.[Hirofumi],
Stagged multi-scale LBP for pedestrian detection,
ICIP12(449-452).
IEEE DOI
1302
BibRef
Park, W.J.[Won-Jae],
Kim, D.H.[Dae-Hwan],
Suryanto,
Lyuh, C.G.[Chun-Gi],
Roh, T.M.[Tae Moon],
Ko, S.J.[Sung-Jea],
Fast human detection using selective block-based HOG-LBP,
ICIP12(601-604).
IEEE DOI
1302
BibRef
Wang, Q.Y.[Qing-Yuan],
Pang, J.B.[Jun-Biao],
Liu, G.Y.[Guo-Yi],
Qin, L.[Lei],
Huang, Q.M.[Qing-Ming],
Jiang, S.Q.[Shu-Qiang],
Color Maximal-Dissimilarity Pattern for pedestrian detection,
ICPR12(1952-1955).
WWW Link.
1302
BibRef
Zhang, Y.[Ying],
Li, S.T.[Shu-Tao],
Gabor-LBP Based Region Covariance Descriptor for Person
Re-identification,
ICIG11(368-371).
IEEE DOI
1109
BibRef
Ma, Y.D.[Ying-Dong],
Chen, X.[Xiankai],
Jin, L.[Liu],
Chen, G.[George],
A Monocular Human Detection System Based on EOH and Oriented LBP
Features,
ISVC11(I: 551-562).
Springer DOI
1109
BibRef
Han, H.[Hong],
Fan, Y.J.[You-Jian],
Jiao, L.C.[Li-Cheng],
Chen, Z.C.[Zhi-Chao],
Concatenated edge and co-occurrence feature extracted from Curvelet
Transform for human detection,
IVCNZ10(1-8).
IEEE DOI
1203
BibRef
Cao, Y.Y.[Yun-Yun],
Pranata, S.[Sugiri],
Nishimura, H.[Hirofumi],
Local Binary Pattern features for pedestrian detection at night/dark
environment,
ICIP11(2053-2056).
IEEE DOI
1201
BibRef
Wang, J.Q.[Jun-Qiang],
Ma, H.D.[Hua-Dong],
MPL-Boosted Integrable Features Pool for pedestrian detection,
ICIP11(805-808).
IEEE DOI
1201
BibRef
Pedrocca, P.J.[Pablo Julian],
Allili, M.S.[Mohand Saďd],
Real-Time People Detection in Videos Using Geometrical Features and
Adaptive Boosting,
ICIAR11(I: 314-324).
Springer DOI
1106
BibRef
Zheng, Y.B.[Yong-Bin],
Shen, C.H.[Chun-Hua],
Hartley, R.I.[Richard I.],
Huang, X.S.[Xin-Sheng],
Pyramid Center-Symmetric Local Binary/Trinary Patterns for Effective
Pedestrian Detection,
ACCV10(IV: 281-292).
Springer DOI
1011
BibRef
Leithy, A.[Alaa],
Moustafa, M.N.[Mohamed N.],
Wahba, A.[Ayman],
Fast and Accurate Pedestrian Detection Using a Cascade of Multiple
Features,
VS10(153-163).
Springer DOI
1109
BibRef
And:
Cascade of Complementary Features for Fast and Accurate Pedestrian
Detection,
PSIVT10(343-348).
IEEE DOI
1011
BibRef
Begard, J.,
Allezard, N.,
Sayd, P.,
Real-time human detection in urban scenes: Local descriptors and
classifiers selection with AdaBoost-like algorithms,
OTCBVS08(1-8).
IEEE DOI
0806
BibRef
Earlier:
Real-Time Humans Detection in Urban Scenes,
BMVC07(xx-yy).
PDF File.
0709
BibRef
Meng, L.[Long],
Li, L.[Liang],
Mei, S.Q.[Shu-Qi],
Wu, W.G.[Wei-Guo],
Directional entropy feature for human detection,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Jones, M.J.[Michael J.],
Snow, D.[Daniel],
Pedestrian detection using boosted features over many frames,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Duan, G.Q.[Gen-Quan],
Huang, C.[Chang],
Ai, H.Z.[Hai-Zhou],
Lao, S.H.[Shi-Hong],
Boosting Associated Pairing Comparison Features for pedestrian
detection,
VS09(1097-1104).
IEEE DOI
0910
See also High-Performance Rotation Invariant Multiview Face Detection.
BibRef
Harasse, S.[Sebastien],
Bonnaud, L.[Laurent],
Desvignes, M.[Michel],
A Human Model for Detecting People in Video from Low Level Features,
ICIP06(1845-1848).
IEEE DOI
0610
BibRef
Earlier:
Human model for people detection in dynamic scenes,
ICPR06(I: 335-354).
IEEE DOI
0609
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
HoG, Gradients, Histogram of Gradients for Human Detection, People Detection, Pedestrians .