Castellano, G.[Gabriela],
Boyce, J.[James],
Sandler, M.[Mark],
Regularized CDWT optical flow applied to moving-target detection in IR
imagery,
MVA(11), No. 6, 2000, pp. 277-288.
Springer DOI
0005
BibRef
Earlier:
Moving Target Detection in Infrared Imagery Using a Regularised CDWT
Optical Flow,
CVBVS99(13).
IEEE DOI
9906
BibRef
Sarkar, S.[Sudeep],
Majchrzak, D.[Daniel],
Korimilli, K.[Kishore],
Perceptual Organization Based Computational Model for Robust
Segmentation of Moving Objects,
CVIU(86), No. 3, June 2002, pp. 141-170.
DOI Link
0301
BibRef
Earlier: A3, A1, Only:
Motion Segmentation Based on Perceptual Organization of Spatio-temporal
Volumes,
ICPR00(Vol III: 844-849).
IEEE DOI
0009
BibRef
Zhang, X.P.[Xiao-Ping],
Chen, Z.[Zhenhe],
An Automated Video Object Extraction System Based on Spatiotemporal
Independent Component Analysis and Multiscale Segmentation,
JASP(2006), 2006, pp. 1-22.
WWW Link.
0603
BibRef
Dosil, R.[Raquel],
Fdez-Vidal, X.R.[Xose R.],
Pardo, X.M.[Xose M.],
Motion representation using composite energy features,
PR(41), No. 3, March 2008, pp. 1110-1123.
Elsevier DOI
0711
See also Distances between frequency features for 3D visual pattern partitioning. Spatio-temporal energy filtering, Feature integration;
Composite energy features, Apparent-motion segmentation and tracking
BibRef
Yang, H.[Hong],
Tian, J.W.[Jin-Wen],
Chu, Y.,
Tang, Q.,
Liu, J.[Jian],
Spatiotemporal Smooth Models for Moving Object Detection,
SPLetters(15), No. 1, 2008, pp. 497-500.
IEEE DOI
0806
BibRef
Li, Y.S.[Yan-Sheng],
Tan, Y.H.[Yi-Hua],
Yu, J.G.[Jin-Gang],
Qi, S.X.[Sheng-Xiang],
Tian, J.W.[Jin-Wen],
Kernel regression in mixed feature spaces for spatio-temporal
saliency detection,
CVIU(135), No. 1, 2015, pp. 126-140.
Elsevier DOI
1504
Spatio-temporal saliency
BibRef
Yang, H.[Hong],
Tan, Y.H.[Yi-Hua],
Tian, J.W.[Jin-Wen],
Liu, J.[Jian],
Accurate Dynamic Scene Model for Moving Object Detection,
ICIP07(VI: 157-160).
IEEE DOI
0709
BibRef
Gryn, J.M.[Jacob M.],
Wildes, R.P.[Richard P.],
Tsotsos, J.K.[John K.],
Detecting Motion Patterns via Direction Maps with Application to
Surveillance,
CVIU(113), No. 2, February 2009, pp. 291-307.
Elsevier DOI
0901
BibRef
And:
WACV05(I: 202-209).
IEEE DOI
0502
Surveillance, Direction maps, Dominant direction, Event detection;
Spatiotemporal analysis, Motion analysis
BibRef
Guan, Y.P.,
Spatio-temporal motion-based foreground segmentation and shadow
suppression,
IET-CV(4), No. 1, March 2010, pp. 50-60.
DOI Link
1001
BibRef
Luo, Y.[Yong],
Guan, Y.P.[Ye Peng],
Motion objects segmentation based on structural similarity background
modelling,
IET-CV(9), No. 4, 2015, pp. 476-488.
DOI Link
1509
computer vision
BibRef
Wedel, A.[Andreas],
Brox, T.[Thomas],
Vaudrey, T.[Tobi],
Rabe, C.[Clemens],
Franke, U.[Uwe],
Cremers, D.[Daniel],
Stereoscopic Scene Flow Computation for 3D Motion Understanding,
IJCV(95), No. 1, October 2011, pp. 29-51.
WWW Link.
1108
BibRef
Earlier: A1, A4, A3, A2, A5, A6:
Efficient Dense Scene Flow from Sparse or Dense Stereo Data,
ECCV08(I: 739-751).
Springer DOI
0810
See also Video Super Resolution Using Duality Based TV-L1 Optical Flow.
BibRef
Ochs, P.[Peter],
Malik, J.[Jitendra],
Brox, T.[Thomas],
Segmentation of Moving Objects by Long Term Video Analysis,
PAMI(36), No. 6, June 2014, pp. 1187-1200.
IEEE DOI
1406
BibRef
Earlier: A3, A2, Only:
Object Segmentation by Long Term Analysis of Point Trajectories,
ECCV10(V: 282-295).
Springer DOI
1009
BibRef
And: A1, A3, Only:
Higher order motion models and spectral clustering,
CVPR12(614-621).
IEEE DOI
1208
BibRef
And: A1, A3, Only:
Object segmentation in video: A hierarchical variational approach for
turning point trajectories into dense regions,
ICCV11(1583-1590).
IEEE DOI
1201
Adaptive optics
BibRef
Quiroga, J.[Julian],
Brox, T.[Thomas],
Devernay, F.[Frédéric],
Crowley, J.L.[James L.],
Dense Semi-rigid Scene Flow Estimation from RGBD Images,
ECCV14(VII: 567-582).
Springer DOI
1408
BibRef
Xu, J.[Jiang],
Yuan, J.S.[Jun-Song],
Wu, Y.[Ying],
Learning spatio-temporal dependency of local patches for complex motion
segmentation,
CVIU(115), No. 3, March 2011, pp. 334-351.
Elsevier DOI
1103
Motion segmentation, Learning, Motion profile symmetry correlation;
Bipolar segmentation
BibRef
Wedel, A.[Andreas],
Cremers, D.[Daniel],
Stereo Scene Flow for 3D Motion Analysis,
Springer2011.
ISBN: 978-0-85729-964-2.
WWW Link.
1109
BibRef
Wedel, A.[Andreas],
Pock, T.,
Braun, J.,
Franke, U.,
Cremers, D.[Daniel],
Duality TV-L1 flow with fundamental matrix prior,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Klappstein, J.[Jens],
Vaudrey, T.[Tobi],
Rabe, C.[Clemens],
Wedel, A.[Andreas],
Klette, R.[Reinhard],
Moving Object Segmentation Using Optical Flow and Depth Information,
PSIVT09(611-623).
Springer DOI
0901
BibRef
Earlier: A2, A4, A3, A1, A5:
Evaluation of moving object segmentation comparing 6D-vision and
monocular motion constraints,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Wedel, A.[Andreas],
Meißner, A.[Annemarie],
Rabe, C.[Clemens],
Franke, U.[Uwe],
Cremers, D.[Daniel],
Detection and Segmentation of Independently Moving Objects from Dense
Scene Flow,
EMMCVPR09(14-27).
Springer DOI
0908
BibRef
Klappstein, J.[Jens],
Stein, F.[Fridtjof],
Franke, U.[Uwe],
Detectability of Moving Objects Using Correspondences over Two and
Three Frames,
DAGM07(112-121).
Springer DOI
0709
BibRef
Wu, B.[Bo],
Xu, L.F.[Lin-Feng],
Zeng, L.Y.[Liao-Yuan],
Wang, Z.N.[Zheng-Ning],
Wang, Y.[Yan],
A unified framework for spatiotemporal salient region detection,
JIVP(2013), No. 1, 2013, pp. 16.
DOI Link
1305
BibRef
Li, R.N.[Ruo-Nan],
Chellappa, R.[Rama],
Spatiotemporal Alignment of Visual Signals on a Special Manifold,
PAMI(35), No. 3, March 2013, pp. 697-715.
IEEE DOI
1303
BibRef
Earlier:
Aligning Spatio-Temporal Signals on a Special Manifold,
ECCV10(V: 547-560).
Springer DOI
1009
BibRef
And:
Group motion segmentation using a Spatio-Temporal Driving Force Model,
CVPR10(2038-2045).
IEEE DOI
1006
BibRef
Belardinelli, A.[Anna],
Carbone, A.[Andrea],
Schneider, W.X.[Werner X.],
Classification of multiscale spatiotemporal energy features for video
segmentation and dynamic objects prioritisation,
PRL(34), No. 7, 1 May 2013, pp. 713-722.
Elsevier DOI
1303
Video segmentation, Spatiotemporal features, Visual attention;
Object-based saliency
BibRef
Wang, W.G.[Wen-Guan],
Shen, J.B.[Jian-Bing],
Shao, L.[Ling],
Consistent Video Saliency Using Local Gradient Flow Optimization and
Global Refinement,
IP(24), No. 11, November 2015, pp. 4185-4196.
IEEE DOI
1509
gradient methods
BibRef
Wang, W.G.[Wen-Guan],
Shen, J.B.[Jian-Bing],
Shao, L.[Ling],
Video Salient Object Detection via Fully Convolutional Networks,
IP(27), No. 1, January 2018, pp. 38-49.
IEEE DOI
1712
convolution, image annotation, image segmentation, image sequences,
inference mechanisms, learning (artificial intelligence),
synthetic video data
BibRef
Wang, W.G.[Wen-Guan],
Shen, J.B.[Jian-Bing],
Sun, H.,
Shao, L.[Ling],
Video Co-Saliency Guided Co-Segmentation,
CirSysVideo(28), No. 8, August 2018, pp. 1727-1736.
IEEE DOI
1808
Visualization, Silicon, Video sequences, Estimation,
Motion segmentation, Proposals, Circuits and systems,
video co-segmentation
BibRef
Wang, W.G.[Wen-Guan],
Shen, J.B.[Jian-Bing],
Shao, L.[Ling],
Porikli, F.M.[Fatih Murat],
Correspondence Driven Saliency Transfer,
IP(25), No. 11, November 2016, pp. 5025-5034.
IEEE DOI
1610
estimation theory.
BibRef
Wang, W.G.[Wen-Guan],
Shen, J.B.[Jian-Bing],
Yang, R.,
Porikli, F.M.[Fatih Murat],
Saliency-Aware Video Object Segmentation,
PAMI(40), No. 1, January 2018, pp. 20-33.
IEEE DOI
1712
BibRef
Earlier: A1, A2, A4, Only:
Saliency-aware geodesic video object segmentation,
CVPR15(3395-3402)
IEEE DOI
1510
Image segmentation, Motion segmentation, Object segmentation,
Proposals, Skeleton, Spatiotemporal phenomena, Trajectory,
video object segmentation
BibRef
Wang, W.G.[Wen-Guan],
Shen, J.B.[Jian-Bing],
Xie, J.,
Porikli, F.M.[Fatih Murat],
Super-Trajectory for Video Segmentation,
ICCV17(1680-1688)
IEEE DOI
1802
image motion analysis, image representation, image segmentation,
pattern clustering, spatiotemporal phenomena,
Video sequences
BibRef
Wang, W.G.[Wen-Guan],
Shen, J.B.[Jian-Bing],
Li, X.L.[Xue-Long],
Porikli, F.M.[Fatih M.],
Robust Video Object Cosegmentation,
IP(24), No. 10, October 2015, pp. 3137-3148.
IEEE DOI
1507
feature extraction
BibRef
Wang, W.G.[Wen-Guan],
Shen, J.B.[Jian-Bing],
Porikli, F.M.[Fatih M.],
Selective Video Object Cutout,
IP(26), No. 12, December 2017, pp. 5645-5655.
IEEE DOI
1710
pyramid histogram-based confidence map,
structure information, uncertainty propagation,
BibRef
Ortego, D.[Diego],
San Miguel, J.C.[Juan C.],
Martínez, J.M.[José M.],
Long-Term Stationary Object Detection Based on Spatio-Temporal Change
Detection,
SPLetters(22), No. 12, December 2015, pp. 2368-2372.
IEEE DOI
1512
feature extraction
BibRef
Chen, C.Z.[Chengli-Zhao],
Li, S.[Shuai],
Qin, H.[Hong],
Hao, A.[Aimin],
Robust salient motion detection in non-stationary videos via novel
integrated strategies of spatio-temporal coherency clues and low-rank
analysis,
PR(52), No. 1, 2016, pp. 410-432.
Elsevier DOI
1601
Salient motion detection
BibRef
Chen, C.Z.[Chengli-Zhao],
Li, S.[Shuai],
Wang, Y.,
Qin, H.[Hong],
Hao, A.[Aimin],
Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank
Coherency Diffusion,
IP(26), No. 7, July 2017, pp. 3156-3170.
IEEE DOI
1706
Cameras, Computational modeling, Feature extraction,
Image color analysis, Motion detection, Robustness,
Video sequences, Spatial-temporal saliency fusion,
low-rank coherency guided saliency diffusion, video saliency,
visual, saliency
BibRef
Chen, C.Z.[Chengli-Zhao],
Li, Y.,
Li, S.[Shuai],
Qin, H.[Hong],
Hao, A.[Aimin],
A Novel Bottom-Up Saliency Detection Method for Video With Dynamic
Background,
SPLetters(25), No. 2, February 2018, pp. 154-158.
IEEE DOI
1802
cameras, filtering theory, image motion analysis, image sequences,
object detection, video signal processing,
video saliency
BibRef
Galteri, L.,
Seidenari, L.[Lorenzo],
Bertini, M.,
del Bimbo, A.[Alberto],
Spatio-Temporal Closed-Loop Object Detection,
IP(26), No. 3, March 2017, pp. 1253-1263.
IEEE DOI
1703
computer vision
BibRef
Cuffaro, G.[Giovanni],
Becattini, F.[Federico],
Baecchi, C.[Claudio],
Seidenari, L.[Lorenzo],
del Bimbo, A.[Alberto],
Segmentation Free Object Discovery in Video,
MotionRep16(III: 25-31).
Springer DOI
1611
BibRef
Spampinato, C.[Concetto],
Palazzo, S.[Simone],
Giordano, D.[Daniela],
Gamifying Video Object Segmentation,
PAMI(39), No. 10, October 2017, pp. 1942-1958.
IEEE DOI
1709
BibRef
Earlier: A1, A2, Only:
Enhancing object detection performance by integrating motion objectness
and perceptual organization,
ICPR12(3640-3643).
WWW Link.
1302
is the blob an object of interest..
Data mining, Games, Motion segmentation,
Object segmentation, Visualization, Interactive video annotation,
games with a purpose, human in the loop, spatio-temporal,
superpixel segmentation
BibRef
Giordano, D.[Daniela],
Kavasidis, I.[Isaak],
Palazzo, S.[Simone],
Spampinato, C.[Concetto],
Rejecting False Positives in Video Object Segmentation,
CAIP15(I:100-112).
Springer DOI
1511
BibRef
Tu, Z.G.[Zhi-Gang],
Guo, Z.[Zuwei],
Xie, W.[Wei],
Yan, M.J.[Meng-Jia],
Veltkamp, R.C.[Remco C.],
Li, B.X.[Bao-Xin],
Yuan, J.S.[Jun-Song],
Fusing disparate object signatures for salient object detection in
video,
PR(72), No. 1, 2017, pp. 285-299.
Elsevier DOI
1708
Spatiotemporal saliency computation
BibRef
Ray, K.S.[Kumar S.],
Chakraborty, S.[Soma],
Object detection by spatio-temporal analysis and tracking of the
detected objects in a video with variable background,
JVCIR(58), 2019, pp. 662-674.
Elsevier DOI
1901
Variable background, Object detection, Gabor filter,
Spatio-temporal analysis, Minimum Spanning Tree (MST),
Occlusion
BibRef
Peng, Y.X.[Yu-Xin],
Zhao, Y.Z.[Yun-Zhen],
Zhang, J.C.[Jun-Chao],
Two-Stream Collaborative Learning With Spatial-Temporal Attention for
Video Classification,
CirSysVideo(29), No. 3, March 2019, pp. 773-786.
IEEE DOI
1903
The static frame and optical flow.
Feature extraction, Adaptation models, Video sequences,
Collaboration, Semantics, Collaborative work, Weapons,
adaptively weighted learning
BibRef
Tashlinskii, A.G.,
Smirnov, P.V.,
Tsaryov, M.G.,
Pixel-by-pixel Estimation of Scene Motion in Video,
PTVSBB17(61-65).
DOI Link
1805
BibRef
Erokhin, D.Y.,
Feldman, A.B.,
Korepanov, S.E.,
Detection And Tracking of Moving Objects with Real-time Onboard Vision
System,
PTVSBB17(67-71).
DOI Link
1805
BibRef
Haque, N.[Nazrul],
Reddy, N.D.[N. Dinesh],
Krishna, M.[Madhava],
Temporal Semantic Motion Segmentation Using Spatio Temporal
Optimization,
EMMCVPR17(93-108).
Springer DOI
1805
BibRef
Li, J.,
Zheng, A.,
Chen, X.,
Zhou, B.,
Primary Video Object Segmentation via Complementary CNNs and
Neighborhood Reversible Flow,
ICCV17(1426-1434)
IEEE DOI
1802
convolution, image segmentation, neural nets,
video signal processing, Complementary CNNs,
Training
BibRef
Taniai, T.,
Sinha, S.N.,
Sato, Y.,
Fast Multi-frame Stereo Scene Flow with Motion Segmentation,
CVPR17(6891-6900)
IEEE DOI
1711
Cameras, Motion segmentation, Optical imaging,
BibRef
Du, Y.,
Yuan, C.,
Li, B.,
Hu, W.,
Maybank, S.J.[Steve J.],
Spatio-Temporal Self-Organizing Map Deep Network for Dynamic Object
Detection from Videos,
CVPR17(4245-4254)
IEEE DOI
1711
Bayes methods, Dynamics, Kernel, Object detection,
Self-organizing feature maps, Videos
BibRef
Cheng, J.,
Tsai, Y.H.[Yi-Hsuan],
Wang, S.,
Yang, M.H.[Ming-Hsuan],
SegFlow:
Joint Learning for Video Object Segmentation and Optical Flow,
ICCV17(686-695)
IEEE DOI
1802
image segmentation, image sequences,
learning (artificial intelligence), video signal processing,
Training
BibRef
Tsai, Y.H.[Yi-Hsuan],
Yang, M.H.[Ming-Hsuan],
Black, M.J.[Michael J.],
Video Segmentation via Object Flow,
CVPR16(3899-3908)
IEEE DOI
1612
BibRef
Hur, J.[Junhwa],
Roth, S.[Stefan],
Iterative Residual Refinement for Joint Optical Flow and Occlusion
Estimation,
CVPR19(5747-5756).
IEEE DOI
2002
BibRef
Earlier:
MirrorFlow: Exploiting Symmetries in Joint Optical Flow and Occlusion
Estimation,
ICCV17(312-321)
IEEE DOI
1802
BibRef
Earlier:
Joint Optical Flow and Temporally Consistent Semantic Segmentation,
CVRoads16(I: 163-177).
Springer DOI
1611
image sequences, inference mechanisms, optimisation, MirrorFlow,
chicken-and-egg relation, forward-backward consistency,
Transforms
BibRef
Teney, D.[Damien],
Brown, M.[Matthew],
Segmentation of Dynamic Scenes with Distributions of Spatiotemporally
Oriented Energies,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Mukherjee, D.[Dibyendu],
Wu, Q.M.J.[Q.M. Jonathan],
Streaming spatio-temporal video segmentation using Gaussian Mixture
Model,
ICIP14(4388-4392)
IEEE DOI
1502
Clustering algorithms
BibRef
Morimitsu, H.[Henrique],
Cesar, Jr., R.M.[Roberto M.],
Bloch, I.[Isabelle],
A Spatio-temporal Approach for Multiple Object Detection in Videos
Using Graphs and Probability Maps,
ICIAR14(II: 421-428).
Springer DOI
1410
BibRef
Oneata, D.[Dan],
Revaud, J.[Jerome],
Verbeek, J.[Jakob],
Schmid, C.[Cordelia],
Spatio-temporal Object Detection Proposals,
ECCV14(III: 737-752).
Springer DOI
1408
The bounding boxes to use in event detection.
See also Action and Event Recognition with Fisher Vectors on a Compact Feature Set.
BibRef
Muddamsetty, S.M.[Satya M.],
Sidibe, D.[Desire],
Tremeau, A.[Alain],
Meriaudeau, F.[Fabrice],
Spatio-temporal Saliency Detection in Dynamic Scenes Using Local
Binary Patterns,
ICPR14(2353-2358)
IEEE DOI
1412
BibRef
Earlier:
A performance evaluation of fusion techniques for spatio-temporal
saliency detection in dynamic scenes,
ICIP13(3924-3928)
IEEE DOI
1402
Computational modeling.
Spatio-temporal saliency
BibRef
Nawaf, M.M.[Mohamad Motasem],
Hasnat, M.A.[M. Abul],
Sidibe, D.[Desire],
Tremeau, A.[Alain],
Color and flow based superpixels for 3D geometry respecting meshing,
WACV14(153-158)
IEEE DOI
1406
Adaptive optics
BibRef
Cheng, H.T.T.[Hsien-Ting Tim],
Ahuja, N.[Narendra],
Exploiting nonlocal spatiotemporal structure for video segmentation,
CVPR12(741-748).
IEEE DOI
1208
BibRef
Xie, D.F.[Dan-Feng],
Huang, Z.W.[Zhi-Wei],
Wang, S.Z.[Shi-Zheng],
Liu, H.G.[He-Guang],
Moving Objects Segmentation from compressed surveillance video based on
Motion Estimation,
ICPR12(3132-3135).
WWW Link.
1302
BibRef
Yang, J.W.[Jian-Wei],
Wang, S.Z.[Shi-Zheng],
Lei, Z.[Zhen],
Zhao, Y.Y.[Yan-Yun],
Li, S.Z.[Stan Z.],
Spatio-temporal LBP Based Moving Object Segmentation in Compressed
Domain,
AVSS12(252-257).
IEEE DOI
1211
BibRef
Lalos, C.[Constantinos],
Grabner, H.[Helmut],
Van Gool, L.J.[Luc J.],
Varvarigou, T.A.[Theodora A.],
Object Flow: Learning Object Displacement,
VS10(133-142).
Springer DOI
1109
BibRef
Zhao, H.[Hui],
Sun, X.J.[Xiang-Ju],
Meng, C.H.[Cai-Hong],
Moving object detection based on T-test combined with kirsch operator,
IASP11(199-203).
IEEE DOI
1112
BibRef
Gao, P.[Ping],
Sun, X.J.[Xiang-Ju],
Wang, W.[Wei],
Moving object detection based on Kirsch operator combined with
Optical Flow,
IASP10(620-624).
IEEE DOI
1004
BibRef
Qin, X.K.[Xiao-Ke],
Tang, L.[Liang],
Zhou, J.[Jie],
Object Extraction by Spatio-Temporal Assembling,
ICIP07(V: 153-156).
IEEE DOI
0709
BibRef
Galmar, E.[Eric],
Huet, B.[Benoit],
Graph-Based Spatio-temporal Region Extraction,
ICIAR06(I: 236-247).
Springer DOI
0610
BibRef
Kaempchen, N.[Nico],
Zocholl, M.[Markus],
Dietmayer, K.C.J.[Klaus C.J.],
Spatio-temporal Segmentation Using Laser-scanner and Video Sequences,
DAGM04(367-374).
Springer DOI
0505
BibRef
Yip, H.M.[Hoi-Man],
Pong, T.C.[Ting-Chuen],
Detection of moving objects using a spatiotemporal representation,
ICPR96(I: 483-487).
IEEE DOI
9608
(The Hong Kong Univ., HK)
BibRef
James, P.D.,
Spann, M.,
Multiresolution Motion Estimation/Segmentation Incorporating Feature
Correspondence and Optical Flow,
BMVC95(xx-yy).
PDF File.
9509
BibRef
Hirai, T.,
Sasakawa, K.,
Kuroda, S.,
Ikebata, S.,
Detection of small moving object by optical flow,
ICPR92(II:474-478).
IEEE DOI
9208
BibRef
Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Motion Segmentation by Tracking, Trajectories, Region Based Tracking .