Mason, R.M.[Robert M.],
The Digital Approximation of Contours,
JACM(3), No. 4, October 1956, pp. 355-359.
BibRef
5610
And:
Remarks:
JACM(4), No. 4, October 1957, pp. 524-529.
BibRef
Brons, R.,
Linguistic Methods for the Description of a Straight Line on a Grid,
CGIP(3), No. 1, March 1974, pp. 48-62.
Elsevier DOI Strings representing straight lines.
BibRef
7403
Kim, C.E.[Chul E.],
On Cellular Straight Line Segments,
CGIP(18), No. 4, April 1982, pp. 369-381.
Elsevier DOI Digitize curves consistent with digitizing regions.
BibRef
8204
Rosenfeld, A.,
Kim, C.E.,
How a Digital Computer Can Tell Whether a Line is Straight,
AMM(89), 1982, pp. 230-235.
BibRef
8200
Kim, C.E.,
Three-Dimensional Line Segments,
PAMI(5), No. 2, March 1983, pp. 231-234.
BibRef
8303
Broder, A.,
Rosenfeld, A.,
A Note on Collinearity Merit,
PR(13), No. 3, 1981, pp. 237-239.
Not on the web site.
BibRef
8100
Bongiovanni, G.,
Luccio, F.,
Zorat, A.,
The Discrete Equation of the Straight Line,
TC(24), 1975, pp. 310-313.
BibRef
7500
Stout, Q.F.,
Drawing Straight Lines with a Pyramid Cellular Automaton,
IPL(15), 1982, pp. 233-237.
BibRef
8200
Hung, S.H.Y.,
On the Straightness of Digital Arcs,
PAMI(7), No. 2, March 1985, pp. 203-215.
BibRef
8503
Minoh, M.,
Sakai, T.,
Mesh-Oriented Line Drawings Tehory (MOLD Theory),
PAMI(8), No. 2, March 1986, pp. 210-221.
BibRef
8603
Dorst, L.,
Smeulders, A.W.M.,
Discrete Representation of Straight Lines,
PAMI(6), No. 4, July 1984, pp. 450-463.
Different straight lines that when digitized give the same (chain code)
representation.
BibRef
8407
Dorst, L.,
Duin, R.P.W.,
Spirograph Theory: A Framework for Calculations on
Digitized Straight Lines,
PAMI(6), No. 5, September 1984, pp. 632-639.
Effects of closely spaced lines.
BibRef
8409
Dorst, L.,
Smeulders, W.M.,
Best Linear Unbiased Estimators for Properties of
Digitized Straight Lines,
PAMI(8), No. 2, March 1986, pp. 276-282.
BibRef
8603
And:
Correction:
PAMI(8), No. 5, September 1986, pp. 676.
BibRef
Dorst, L.[Leo],
Smeulders, A.W.M.[Arnold W.M.],
Length Estimators for Digitized Contours,
CVGIP(40), No. 3, December 1987, pp. 311-333.
Elsevier DOI How to determine the continuous length from a discrete contour.
BibRef
8712
van Lierop, M.L.P.,
van Overveld, C.W.A.M., and
van de Wetering, H.M.M.,
Line Rasterization Algorithms That Satisfy the Subset Line Property,
CVGIP(41), No. 2, February 1988, pp. 210-228.
Elsevier DOI Generate raster line segments
BibRef
8802
Berenstein, C.A.,
Lavine, D.,
On the Number of Digital Straight Line Segments,
PAMI(10), No. 6, November 1988, pp. 880-887.
IEEE DOI
BibRef
8811
Maes, M.[Maurice],
Digitization of Straight Line Segments Closeness and Convexity,
CVGIP(52), No. 2, November 1990, pp. 297-305.
Elsevier DOI
BibRef
9011
Lindenbaum, M.,
Koplowitz, J.,
A New Parameterization of Digital Straight Lines,
PAMI(13), No. 8, August 1991, pp. 847-852.
IEEE DOI
BibRef
9108
O'Gorman, L.,
Subpixel Precision of Straight-Edged Shapes for
Registration And Measurement,
PAMI(18), No. 7, July 1996, pp. 746-751.
IEEE DOI
9608
BibRef
Kishimoto, K.,
Characterizing Digital Convexity and Straightness in Terms of
Length and Total Absolute Curvature,
CVIU(63), No. 2, March 1996, pp. 326-333.
DOI Link
BibRef
9603
Chattopadhyay, S.,
Das, P.P.,
Estimation of the Original Length of a Straight Line Segment from
Its Digitization in Three Dimensions,
PR(25), No. 8, August 1992, pp. 787-798.
Elsevier DOI Properties of continuous curve vs. digitized contour.
BibRef
9208
Imiya, A.,
A Metric For Spatial Lines,
PRL(17), No. 12, October 25 1996, pp. 1265-1269.
9612
BibRef
Hu, Z.Y.,
Ma, S.D.,
Uniform Line Parameterization,
PRL(17), No. 5, May 1 1996, pp. 503-507.
9606
BibRef
Hu, Z.,
Ma, S.D.,
The Three Conditions of a Good Line Parameterization,
PRL(16), 1995, pp. 385-388.
BibRef
9500
Melter, R.A.,
Stojmenovic, I.,
Zunic, J.,
A New Characterization of Digital Lines by Least Square Fits,
PRL(14), 1993, pp. 83-88.
See also Parametrization of Digital Planes by Least-Squares Fits and Generalizations, A.
BibRef
9300
Chattopadhyay, S.,
Das, P.P.,
A New Method of Analysis for Discrete Straight Lines,
PRL(12), 1991, pp. 747-755.
BibRef
9100
Amarunnishad, T.M.,
Das, P.P.,
Estimation of Length for Digitized Straight Lines in Three Dimensions,
PRL(11), 1990, pp. 207-213.
BibRef
9000
Beckers, A.L.D.,
Smeulders, A.W.M.,
The Probability of a Random Straight Line in Two and Three Dimensions,
PRL(11), 1990, pp. 233-240.
BibRef
9000
Ronse, C.[Christian],
A Simple Proof of Rosenfeld's Characterization of
Digital Straight Line Segments,
PRL(3), 1985, pp. 323-326.
See also Digital Straight Line Segments.
BibRef
8500
Inselberg, A.[Alfred],
Dimsdale, B.[Bernard],
Multidimensional Lines I: Representation,
SIAM_JAM(54), No. 2, 1994, pp. 559-577.
Representation for computations.
BibRef
9400
Inselberg, A.[Alfred],
Dimsdale, B.[Bernard],
Multidimensional Lines II: Proximity and Applications,
SIAM_JAM(54), No. 2, 1994, pp. 578-596.
BibRef
9400
Inselberg, A.[Alfred],
The plane with parallel coordinates,
VC(1), 1985, pp. 69-91.
Springer DOI
BibRef
8500
Inselberg, A.[Alfred],
Chatterjee, A.[Avijit],
Dimsdale, B.[Bernard],
System using parallel coordinates for automated line detection
in noisy images,
US_Patent5,631,982, May 20, 1997
WWW Link.
BibRef
9705
Kovalevsky, V.A.[Vladimir A.],
A New Concept for Digital Geometry,
MDSG94(37)
See also Axiomatic Digital Topology.
BibRef
9400
Kovalevsky, V.A.[Vladimir A.],
New Definition and Fast Recognition of Digital Straight Segments and
Arcs,
ICPR90(II: 31-34).
IEEE DOI
9208
BibRef
Marchand-Maillet, S.,
Sharaiha, Y.M.,
Discrete Convexity, Straightness, and the 16-Neighborhood,
CVIU(66), No. 3, June 1997, pp. 316-329.
DOI Link
9706
BibRef
Congalton, R.G.,
Exploring and Evaluating the Consequences of Vector-to-Raster and
Raster-to-Vector Conversion,
PhEngRS(63), No. 4, April 1997, pp. 425-434.
9704
BibRef
Gross, A.D.,
Latecki, L.J.,
A Realistic Digitization Model of Straight-Lines,
CVIU(67), No. 2, August 1997, pp. 131-142.
DOI Link
9708
BibRef
Earlier:
Modelling Digital Straight Lines,
ICPR96(II: 156-160).
IEEE DOI
9608
(Univ. of Hamburg, D)
See also Digitizations Preserving Topological and Differential Geometric-Properties.
BibRef
Gross, A.D.[Ari D.],
Latecki, L.J.[Longin J.],
Digitizations Preserving Topological and
Differential Geometric-Properties,
CVIU(62), No. 3, November 1995, pp. 370-381.
DOI Link
BibRef
9511
Earlier:
Digital Geometric Invariance and Shape Representation,
SCV95(121-126).
IEEE DOI
BibRef
Earlier:
Toward Non-Parametric Digital Shape Representation and Recovery,
ORCV94(313-325).
Springer DOI
9412
Graduate Center and Queens College CUNY. U. of Hamburg.
Studies the issue of what features are preserved with digitization.
What digitizations preserve topological properties.
See also Modelling Digital Straight Lines.
BibRef
Latecki, L.J.[Longin J.],
Gross, A.D.[Ari D.],
Digitization Constraints That Preserve Topology and Geometry,
SCV95(127-132).
IEEE DOI U. of Hamburg. Graduate Center and Queens College CUNY.
Camera constraints to preserve the properties.
BibRef
9500
Latecki, L.J.,
Conrad, C.,
Gross, A.D.,
Preserving Topology by a Digitization Process,
JMIV(8), No. 2, March 1998, pp. 131-159.
DOI Link
9803
BibRef
Thürmer, G.[Grit],
Closed curves in n-dimensional discrete space,
GM(65), No. 1-3, May 2003, pp. 43-60.
Elsevier DOI
0309
BibRef
Buzer, L.[Lilian],
A linear incremental algorithm for naive and standard digital lines and
planes recognition,
GM(65), No. 1-3, May 2003, pp. 61-76.
Elsevier DOI
0309
Incremental.
See also Linear Algorithm for Segmentation of Digital Curves, A.
BibRef
Buzer, L.[Lilian],
A simple algorithm for digital line recognition in the general case,
PR(40), No. 6, June 2007, pp. 1675-1684.
Elsevier DOI
0704
BibRef
Earlier:
Digital Line Recognition, Convex Hull, Thickness, a Unified and
Logarithmic Technique,
IWCIA06(189-198).
Springer DOI
0606
Digital line; Incremental recognition; Convex hull; Thickness; Implementation
See also Optimal Consensus Set for Digital Line and Plane Fitting.
BibRef
Kenmochi, Y.[Yukiko],
Buzer, L.[Lilian],
Talbot, H.[Hugues],
Efficiently Computing Optimal Consensus of Digital Line Fitting,
ICPR10(1064-1067).
IEEE DOI
1008
See also Optimal Consensus Set for Digital Line and Plane Fitting.
BibRef
Mokbel, M.F.[Mohamed F.],
Aref, W.G.[Walid G.],
Kamel, I.[Ibrahim],
Analysis of Multi-Dimensional Space-Filling Curves,
GeoInfo(7), No. 3, September 2003, pp. 179-209.
DOI Link
0309
BibRef
Cicerone, S.[Serafino],
Clementini, E.[Eliseo],
Efficient Estimation of Qualitative Topological Relations based on the
Weighted Walkthroughs Model,
GeoInfo(7), No. 3, September 2003, pp. 211-227.
DOI Link
0309
BibRef
Coeurjolly, D.[David],
Klette, R.[Reinhard],
A Comparative Evaluation of Length Estimators of Digital Curves,
PAMI(26), No. 2, February 2004, pp. 252-258.
IEEE Abstract.
0402
BibRef
Earlier:
A comparative evaluation of length estimators,
ICPR02(IV: 330-334).
IEEE DOI
0211
Evaluate a number of methods, propose a gradient-based method thatc
ombines one method with polygonization method.
See also Linear Algorithm for Segmentation of Digital Curves, A.
See also Discrete Representation of Straight Lines.
See also New Definition and Fast Recognition of Digital Straight Segments and Arcs. (best initial result),
See also Theory of Nonuniformly Digitized Binary Pictures, A.
See also Minimum-Length Polygons in Approximation Sausages.
See also Measurement of the Lengths of Digitized Curved Lines.
See also Distance Transformations in Digital Images.
BibRef
Uscka-Wehlou, H.[Hanna],
Run-hierarchical structure of digital lines with irrational slopes in
terms of continued fractions and the Gauss map,
PR(42), No. 10, October 2009, pp. 2247-2254.
Elsevier DOI
0906
BibRef
Earlier:
Continued Fractions and Digital Lines with Irrational Slopes,
DGCI08(xx-yy).
Springer DOI
0804
Digital geometry; Digital line; Irrational slope; Continued fraction;
Quadratic surd; Gauss map
BibRef
Pottmann, H.[Helmut],
Wallner, J.[Johannes],
Computational Line Geometry,
Springer2001, ISBN: 978-3-642-04017-7
WWW Link.
Buy this book: Computational Line Geometry (Mathematics and Visualization)
1003
BibRef
Chen, N.[Nan],
Influence of conversion on the location of points and lines:
The change of location entropy and the probability of a vector point
inside the converted grid point,
PandRS(137), 2018, pp. 84-96.
Elsevier DOI
1802
Conversion, Probability theory, Entropy, Grid data model, Vector data model
BibRef
Baudrier, É.[Étienne],
Mazo, L.[Loïc],
Combinatorics of the Gauss Digitization Under Translation in 2D,
JMIV(61), No. 2, February 2019, pp. 224-236.
Springer DOI
1902
BibRef
Earlier: A2, A1:
Study on the Digitization Dual Combinatorics and Convex Case,
DGCI17(363-374).
Springer DOI
1711
BibRef
Mazo, L.[Loïc],
Baudrier, É.[Étienne],
About Multigrid Convergence of Some Length Estimators,
DGCI14(214-225).
Springer DOI
1410
Curve length.
BibRef
Chi, G.Y.[Guo-Yi],
Loi, K.[Keng_Liang],
Lasang, P.[Pongsak],
An Efficient Method to Find a Triangle with the Least Sum of Distances
from Its Vertices to the Covered Point,
CVS17(626-639).
Springer DOI
1711
BibRef
Cardoso, J.[João],
Miraldo, P.[Pedro],
Araujo, H.[Helder],
Plücker correction problem:
Analysis and improvements in efficiency,
ICPR16(2795-2800)
IEEE DOI
1705
A given six dimensional vector represents a 3D straight line in
Plücker coordinates.
Cameras, Linear programming, Matrix decomposition, Optimization,
Robot kinematics, Three-dimensional, displays
BibRef
Provot, L.[Laurent],
Gérard, Y.[Yan],
Estimation of the Derivatives of a Digital Function with a Convergent
Bounded Error,
DGCI11(284-295).
Springer DOI
1104
BibRef
Monteil, T.[Thierry],
Freeman Digitization and Tangent Word Based Estimators,
DGCI14(176-189).
Springer DOI
1410
BibRef
Monteil, T.[Thierry],
Another Definition for Digital Tangents,
DGCI11(95-103).
Springer DOI
1104
BibRef
Berthé, V.[Valérie],
Labbé, S.[Sébastien],
An Arithmetic and Combinatorial Approach to Three-Dimensional Discrete
Lines,
DGCI11(47-58).
Springer DOI
1104
Generating line segments in 3D
BibRef
Roussillon, T.[Tristan],
Lachaud, J.O.[Jacques-Olivier],
Delaunay Properties of Digital Straight Segments,
DGCI11(308-319).
Springer DOI
1104
See also What Does Digital Straightness Tell about Digital Convexity?.
BibRef
Richard, A.[Aurélie],
Largeteau-Skapin, G.[Gaëlle],
Rodríguez, M.[Marc],
Andres, E.[Eric],
Fuchs, L.[Laurent],
Ouattara, J.S.D.[Jean-Serge Dimitri],
Properties and Applications of the Simplified Generalized Perpendicular
Bisector,
DGCI11(296-307).
Springer DOI
1104
BibRef
Said, M.[Mouhammad],
Lachaud, J.O.[Jacques-Olivier],
Computing the Characteristics of a SubSegment of a Digital Straight
Line in Logarithmic Time,
DGCI11(320-332).
Springer DOI
1104
BibRef
Kumaran, T.,
On Determining Slope and Derivative of Curve Components in a Binary
Image,
WSSIP09(1-4).
IEEE DOI
0906
BibRef
Pavlopoulou, C.[Christina],
Yu, S.X.[Stella X.],
A Unifying View of Contour Length Bias Correction,
ISVC09(I: 906-913).
Springer DOI
0911
BibRef
Brlek, S.[Srecko],
Koskas, M.[Michel],
Provençal, X.[Xavier],
A Linear Time and Space Algorithm for Detecting Path Intersection,
DGCI09(397-408).
Springer DOI
0909
BibRef
Daurat, A.[Alain],
Tajine, M.[Mohamed],
Zouaoui, M.[Mahdi],
Patterns in Discretized Parabolas and Length Estimation,
DGCI09(373-384).
Springer DOI
0909
BibRef
Gatellier, G.,
Labrouzy, A.,
Mourrain, B.,
Técourt, J.P.,
Computing the topology of three-dimensional algebraic curves,
INRIARR-5194, 2004.
HTML Version.
BibRef
0400
Beder, C.[Christian],
Fast Statistically Geometric Reasoning About Uncertain Line Segments in
2D- and 3D-Space,
DAGM04(375-382).
Springer DOI
0505
BibRef
Toh, V.[Vivian],
Glasbey, C.A.[Chris A.],
Gray, A.J.[Alison J.],
A Comparison of Digital Length Estimators for Image Features,
SCIA03(961-968).
Springer DOI
0310
BibRef
Kozera, R.[Ryszard],
Cumulative Chord Piecewise-Quartics for Length and Curve Estimation,
CAIP03(697-705).
Springer DOI
0311
BibRef
Kozera, R.[Ryszard],
Noakes, L.[Lyle],
Rasinski, M.[Mariusz],
Length Estimation for the Adjusted Exponential Parameterization,
ICCVG12(139-147).
Springer DOI
1210
BibRef
Kozera, R.[Ryszard],
Noakes, L.[Lyle],
Szmielew, P.[Piotr],
Length Estimation for Exponential Parameterization and epsilon-Uniform
Samplings,
PSIVTWS13(33-46).
Springer DOI
1402
BibRef
Kozera, R.[Ryszard],
Noakes, L.[Lyle],
Klette, R.[Reinhard],
External versus Internal Parameterizations for Lengths of Curves with
Nonuniform Samplings,
WTRCV02(413-427).
0204
BibRef
Earlier: A2, A1, A3:
Length Estimation for Curves with Non-Uniform Sampling,
CAIP01(518 ff.).
Springer DOI
0210
BibRef
August, J.[Jonas],
Zucker, S.W.[Steven W.],
A Markov Process Using Curvature for Filtering Curve Images,
EMMCVPR01(497-512).
Springer DOI
0205
BibRef
Povazan, I.[Ivo],
The Structure of Digital Straight Line Segments and Euclid's
Algorithm,
TR1998.
WWW Link. A definition of
Digital Straight Line Segments (DSLS) without using
the equation of the Euclidean straight line (y=kx + q).
BibRef
9800
Hu, Z.,
Destine, J.,
Performance Comparison of Line Parametrizations,
ICPR92(III:335-338).
IEEE DOI
BibRef
9200
Lindenbaum, M.,
Koplowitz, J.,
Bruckstein, A.M.,
On the Number of Digital Straight Lines on an NxN Grid,
CVPR88(610-615).
IEEE DOI
BibRef
8800
Roberts, K.S.,
A new representation for a line,
CVPR88(635-640).
IEEE DOI
0403
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Triangular, Hexagonal Grids, Geometry, Computations .