22.5.11.3.1 Tree Height Measurement

Chapter Contents (Back)
Tree Height. Diameter: See also Tree Diameter, Tree Width.

Hyyppa, J., Kelle, O., Lehikoinen, M., Inkinen, M.,
A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners,
GeoRS(39), No. 5, May 2001, pp. 969-975.
IEEE Top Reference. 0106
BibRef

Gong, P., Sheng, Y., Biging, G.S.,
3D Model-Based Tree Measurement from High-Resolution Aerial Imagery,
PhEngRS(68), No. 11, November 2002, pp. 1203-1212. An interactive 3D model-based tree interpreter is proposed to extract 3D tree parameters such as tree location, tree height, crown depth, crown radius, and crown surface curvature from multi-ocular high-resolution aerial images.
WWW Link. 0304
BibRef

Santoro, M., Askne, J., Dammert, P.B.G.,
Tree height influence on ERS interferometric phase in boreal forest,
GeoRS(43), No. 2, February 2005, pp. 207-217.
IEEE Abstract. 0501
BibRef

Yu, X.W.[Xiao-Wei], Hyyppä, J.[Juha], Kukko, A.[Antero], Maltamo, M.[Matti], Kaartinen, H.[Harri],
Change Detection Techniques for Canopy Height Growth Measurements Using Airborne Laser Scanner Data,
PhEngRS(72), No. 12, December 2006, pp. 1339-1348.
WWW Link. 0704
The individual tree height growth of Scots pine was estimated from two laser surveys with three different techniques, and the accuracy of the estimation was evaluated with sample trees. BibRef

Shi, Y.[Yuli], Choi, S.H.[Sung-Ho], Ni, X.L.[Xi-Liang], Ganguly, S., Zhang, G., Duong, H., Lefsky, M.A.[Michael A.], Simard, M.[Marc], Saatchi, S., Lee, S., Ni-Meister, W., Piao, S., Cao, C.X.[Chun-Xiang], Nemani, R., Myneni, R.B.[Ranga B.],
Allometric Scaling and Resource Limitations Model of Tree Heights: Part 1. Model Optimization and Testing over Continental USA,
RS(5), No. 1, January 2013, pp. 284-306.
DOI Link 1302
BibRef

Choi, S.H.[Sung-Ho], Ni, X.L.[Xi-Liang], Shi, Y.[Yuli], Ganguly, S., Zhang, G., Duong, H., Lefsky, M.A.[Michael A.], Simard, M.[Marc], Saatchi, S., Lee, S., Ni-Meister, W., Piao, S., Cao, C.X.[Chun-Xiang], Nemani, R., Myneni, R.B.[Ranga B.],
Allometric Scaling and Resource Limitations Model of Tree Heights: Part 2. Site Based Testing of the Model,
RS(5), No. 1, January 2013, pp. 202-223.
DOI Link 1302
BibRef

Ni, X.L.[Xi-Liang], Park, T.J.[Tae-Jin], Choi, S.H.[Sung-Ho], Shi, Y.[Yuli], Cao, C.X.[Chun-Xiang], Wang, X.J.[Xue-Jun], Lefsky, M.A.[Michael A.], Simard, M.[Marc], Myneni, R.B.[Ranga B.],
Allometric Scaling and Resource Limitations Model of Tree Heights: Part 3. Model Optimization and Testing over Continental China,
RS(6), No. 5, 2014, pp. 3533-3553.
DOI Link 1407
BibRef

Wang, Y.S.[Yun-Sheng], Lehtomäki, M.[Matti], Liang, X.L.[Xin-Lian], Pyörälä, J.[Jiri], Kukko, A.[Antero], Jaakkola, A.[Anttoni], Liu, J.B.[Jing-Bin], Feng, Z.[Ziyi], Chen, R.[Ruizhi], Hyyppä, J.[Juha],
Is field-measured tree height as reliable as believed: A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest,
PandRS(147), 2019, pp. 132-145.
Elsevier DOI 1901
Tree height, Field measurement, Airborne laser scanning, Terrestrial laser scanning, Accuracy, Individual tree, Forest inventory BibRef

Fradette, M.S.[Marie-Soleil], Leboeuf, A.[Antoine], Riopel, M.[Martin], Bégin, J.[Jean],
Method to Reduce the Bias on Digital Terrain Model and Canopy Height Model from LiDAR Data,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link 1904
BibRef

Krause, S.[Stuart], Sanders, T.G.M.[Tanja G.M.], Mund, J.P.[Jan-Peter], Greve, K.[Klaus],
UAV-Based Photogrammetric Tree Height Measurement for Intensive Forest Monitoring,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link 1904
BibRef

Bollandsås, O.M.[Ole Martin], Ørka, H.O.[Hans Ole], Dalponte, M.[Michele], Gobakken, T.[Terje], Næsset, E.[Erik],
Modelling Site Index in Forest Stands Using Airborne Hyperspectral Imagery and Bi-Temporal Laser Scanner Data,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905
Site index is most commonly expressed as the average height of the dominant trees at a certain index age. BibRef

Ni, W.[Wenjian], Zhang, Z.[Zhiyu], Sun, G.Q.[Guo-Qing], Liu, Q.H.[Qin-Huo],
Modeling the Stereoscopic Features of Mountainous Forest Landscapes for the Extraction of Forest Heights from Stereo Imagery,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link 1906
BibRef

He, H.Q.[Hai-Qing], Yan, Y.[Yeli], Chen, T.[Ting], Cheng, P.G.[Peng-Gen],
Tree Height Estimation of Forest Plantation in Mountainous Terrain from Bare-Earth Points Using a DoG-Coupled Radial Basis Function Neural Network,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Wang, X., Xu, F.,
A PolinSAR Inversion Error Model on Polarimetric System Parameters for Forest Height Mapping,
GeoRS(57), No. 8, August 2019, pp. 5669-5685.
IEEE DOI 1908
forestry, radar imaging, radar interferometry, radar polarimetry, remote sensing by radar, synthetic aperture radar, polarimetric system requirement BibRef

Huang, H.B.[Hua-Bing], Liu, C.X.[Cai-Xia], Wang, X.Y.[Xiao-Yi],
Constructing a Finer-Resolution Forest Height in China Using ICESat/GLAS, Landsat and ALOS PALSAR Data and Height Patterns of Natural Forests and Plantations,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Næsset, E.[Erik], Gobakken, T.[Terje], McRoberts, R.E.[Ronald E.],
A Model-Dependent Method for Monitoring Subtle Changes in Vegetation Height in the Boreal-Alpine Ecotone Using Bi-Temporal, Three Dimensional Point Data from Airborne Laser Scanning,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Osinska-Skotak, K.[Katarzyna], Bakula, K.[Krzysztof], Jelowicki, L.[Lukasz], Podkowa, A.[Anna],
Using Canopy Height Model Obtained with Dense Image Matching of Archival Photogrammetric Datasets in Area Analysis of Secondary Succession,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Liao, Z., He, B., Bai, X., Quan, X.,
Improving Forest Height Retrieval by Reducing the Ambiguity of Volume-Only Coherence Using Multi-Baseline PolInSAR Data,
GeoRS(57), No. 11, November 2019, pp. 8853-8866.
IEEE DOI 1911
Forestry, Decorrelation, Coherence, Laser radar, Synthetic aperture radar, Biomass, Solid modeling, Forest height, volume-only coherence BibRef

Boutsoukis, C.[Christos], Manakos, I.[Ioannis], Heurich, M.[Marco], Delopoulos, A.[Anastasios],
Canopy Height Estimation from Single Multispectral 2D Airborne Imagery Using Texture Analysis and Machine Learning in Structurally Rich Temperate Forests,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Nie, S., Wang, C., Xi, X., Luo, S., Zhu, X., Li, G., Liu, H., Tian, J., Zhang, S.,
Assessing the Impacts of Various Factors on Treetop Detection Using LiDAR-Derived Canopy Height Models,
GeoRS(57), No. 12, December 2019, pp. 10099-10115.
IEEE DOI 1912
Vegetation, Surface topography, Biological system modeling, Shape, Forestry, Remote sensing, Canopy height models (CHM), topographic normalization BibRef


Fang, R.,
Impacts Of Tree Height-dbh Allometry On Lidar-based Tree Aboveground Biomass Modeling,
ISPRS16(B8: 625-628).
DOI Link 1610
BibRef

Király, G., Brolly, G.,
Tree Height Estimation Methods for Terrestrial Laser Scanning in a Forest Reserve,
Laser07(211).
PDF File. 0709
BibRef

Takahashi, T., Awaya, Y., Hirata, Y., Furuya, N., Sakai, T., Sakai, A.,
Assessment of LiDAR-Derived Tree Heights Estimated from Different Flight Altitude Data in Mountainous Forests with Poor Laser Penetration Rates,
Laser07(401).
PDF File. 0709
BibRef

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Biomass Measurements, Forest, TanDEM-X, SAR, Radar Measurements .


Last update:Dec 12, 2019 at 13:23:06