Canopy Height Measurement

Chapter Contents (Back)
Canopy Height. LiDAR Canopy height: See also Forest Analysis, Canopy Heights, LiDAR. See also Tree Diameter, Tree Width, Stem Diameter, DBH. See also Tree Diameter, Tree Width, Stem Diameter, DBH.

Yu, X.W.[Xiao-Wei], Hyyppä, J.[Juha], Kukko, A.[Antero], Maltamo, M.[Matti], Kaartinen, H.[Harri],
Change Detection Techniques for Canopy Height Growth Measurements Using Airborne Laser Scanner Data,
PhEngRS(72), No. 12, December 2006, pp. 1339-1348.
WWW Link. 0704
The individual tree height growth of Scots pine was estimated from two laser surveys with three different techniques, and the accuracy of the estimation was evaluated with sample trees. BibRef

Simard, M., Pinto, N., Fisher, J.B., Baccini, A.,
Mapping forest canopy height globally with spaceborne lidar,
GeopResSpacePh(116), 2011, pp. 04021.
DOI Link
WWW Link. BibRef 1100

Simard, M., Fatoyinbo, T.L., Smetanka, C., Rivera-Monroy, V.H., Castañeda-Moya, E., Thomas, N., Van Der Stocken, T.,
Mangrove canopy height globally related to precipitation, temperature and cyclone frequency,
NatGeosci(12), 2018, pp. 40-45.
DOI Link BibRef 1800

Miliaresis, G., Delikaraoglou, D.,
Effects of Percent Tree Canopy Density and DEM Misregistration on SRTM/NED Vegetation Height Estimates.,
RS(1), No. 2, June 2009, pp. 36-49.
DOI Link 1203

Neuenschwander, A.L.[Amy L.], Magruder, L.A.[Lori A.],
The Potential Impact of Vertical Sampling Uncertainty on ICESat-2/ATLAS Terrain and Canopy Height Retrievals for Multiple Ecosystems,
RS(8), No. 12, 2016, pp. 1039.
DOI Link 1612

Chen, C.F.[Chuan-Fa], Wang, Y.[Yifu], Li, Y.Y.[Yan-Yan], Yue, T.X.[Tian-Xiang], Wang, X.[Xin],
Robust and Parameter-Free Algorithm for Constructing Pit-Free Canopy Height Models,
IJGI(6), No. 7, 2017, pp. xx-yy.
DOI Link 1708

Sumnall, M.[Matthew], Fox, T.R.[Thomas R.], Wynne, R.H.[Randolph H.], Thomas, V.A.[Valerie A.],
Mapping the height and spatial cover of features beneath the forest canopy at small-scales using airborne scanning discrete return Lidar,
PandRS(133), No. Supplement C, 2017, pp. 186-200.
Elsevier DOI 1711
Managed forest, Loblolly pine, Lidar, Voxel, Height-bin, Understorey layer, Height, Horizontal, cover BibRef

Wilke, N.[Norman], Siegmann, B.[Bastian], Klingbeil, L.[Lasse], Burkart, A.[Andreas], Kraska, T.[Thorsten], Muller, O.[Onno], van Doorn, A.[Anna], Heinemann, S.[Sascha], Rascher, U.[Uwe],
Quantifying Lodging Percentage and Lodging Severity Using a UAV-Based Canopy Height Model Combined with an Objective Threshold Approach,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link 1903

Wilke, N.[Norman], Siegmann, B.[Bastian], Frimpong, F., Muller, O., Klingbeil, L.[Lasse], Rascher, U.,
Quantifying Lodging Percentage, Lodging Development and Lodging Severity Using a Uav-based Canopy Height Model,
DOI Link 1912

Liu, M.B.[Ming-Bo], Cao, C.X.[Chun-Xiang], Chen, W.[Wei], Wang, X.J.[Xue-Jun],
Mapping Canopy Heights of Poplar Plantations in Plain Areas Using ZY3-02 Stereo and Multispectral Data,
IJGI(8), No. 3, 2019, pp. xx-yy.
DOI Link 1903

Swinfield, T.[Tom], Lindsell, J.A.[Jeremy A.], Williams, J.V.[Jonathan V.], Harrison, R.D.[Rhett D.], Agustiono, Habibi, Gemita, E.[Elva], Schönlieb, C.B.[Carola B.], Coomes, D.A.[David A.],
Accurate Measurement of Tropical Forest Canopy Heights and Aboveground Carbon Using Structure From Motion,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link 1905

Neuenschwander, A.L.[Amy L.], Magruder, L.A.[Lori A.],
Canopy and Terrain Height Retrievals with ICESat-2: A First Look,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link 1908

Cui, L.[Lei], Jiao, Z.[Ziti], Dong, Y.D.[Ya-Dong], Sun, M.[Mei], Zhang, X.N.[Xiao-Ning], Yin, S.Y.[Si-Yang], Ding, A.[Anxin], Chang, Y.[Yaxuan], Guo, J.[Jing], Xie, R.[Rui],
Estimating Forest Canopy Height Using MODIS BRDF Data Emphasizing Typical-Angle Reflectances,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link 1910

Wang, Q.A.[Qi-Ang], Ni-Meister, W.[Wenge],
Forest Canopy Height and Gaps from Multiangular BRDF, Assessed with Airborne LiDAR Data,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911
(Short Title: Vegetation Structure from LiDAR and Multiangular Data) BibRef

Fradette, M.S.[Marie-Soleil], Leboeuf, A.[Antoine], Riopel, M.[Martin], Bégin, J.[Jean],
Method to Reduce the Bias on Digital Terrain Model and Canopy Height Model from LiDAR Data,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link 1904

Osinska-Skotak, K.[Katarzyna], Bakula, K.[Krzysztof], Jelowicki, L.[Lukasz], Podkowa, A.[Anna],
Using Canopy Height Model Obtained with Dense Image Matching of Archival Photogrammetric Datasets in Area Analysis of Secondary Succession,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909

Boutsoukis, C.[Christos], Manakos, I.[Ioannis], Heurich, M.[Marco], Delopoulos, A.[Anastasios],
Canopy Height Estimation from Single Multispectral 2D Airborne Imagery Using Texture Analysis and Machine Learning in Structurally Rich Temperate Forests,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912

Nie, S., Wang, C., Xi, X., Luo, S., Zhu, X., Li, G., Liu, H., Tian, J., Zhang, S.,
Assessing the Impacts of Various Factors on Treetop Detection Using LiDAR-Derived Canopy Height Models,
GeoRS(57), No. 12, December 2019, pp. 10099-10115.
Vegetation, Surface topography, Biological system modeling, Shape, Forestry, Remote sensing, Canopy height models (CHM), topographic normalization BibRef

Ghosh, S.M.[Sujit Madhab], Behera, M.D.[Mukunda Dev], Paramanik, S.[Somnath],
Canopy Height Estimation Using Sentinel Series Images through Machine Learning Models in a Mangrove Forest,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005

Yang, W.[Wei], Kondoh, A.[Akihiko],
Evaluation of the Simard et al. 2011 Global Canopy Height Map in Boreal Forests,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link 2004

Kashongwe, H.B.[Herve B.], Roy, D.P.[David P.], Bwangoy, J.R.B.[Jean Robert B.],
Democratic Republic of the Congo Tropical Forest Canopy Height and Aboveground Biomass Estimation with Landsat-8 Operational Land Imager (OLI) and Airborne LiDAR Data: The Effect of Seasonal Landsat Image Selection,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005

Shimizu, K.[Katsuto], Ota, T.[Tetsuji], Mizoue, N.[Nobuya], Saito, H.[Hideki],
Comparison of Multi-Temporal PlanetScope Data with Landsat 8 and Sentinel-2 Data for Estimating Airborne LiDAR Derived Canopy Height in Temperate Forests,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006

Liu, Q.W.[Qing-Wang], Fu, L.Y.[Li-Yong], Chen, Q.[Qiao], Wang, G.X.[Guang-Xing], Luo, P.[Peng], Sharma, R.P.[Ram P.], He, P.[Peng], Li, M.[Mei], Wang, M.X.[Meng-Xi], Duan, G.S.[Guang-Shuang],
Analysis of the Spatial Differences in Canopy Height Models from UAV LiDAR and Photogrammetry,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009

Arjasakusuma, S.[Sanjiwana], Kusuma, S.S.[Sandiaga Swahyu], Phinn, S.[Stuart],
Evaluating Variable Selection and Machine Learning Algorithms for Estimating Forest Heights by Combining Lidar and Hyperspectral Data,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link 2009

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Tree Height Measurement .

Last update:Oct 19, 2020 at 15:02:28