Schalkoff, R.J.[Robert J.],
Distributed Parameter Systems Approach to Feature Extraction and
Motion Estimation in Image Sequences,
IVC(1), No. 4, November 1983, pp. 227-233.
Elsevier DOI
BibRef
8311
Schalkoff, R.J.[Robert J.],
Analysis of the Weak Solution Approach to Image Motion Estimation,
PR(20), No. 2, 1987, pp. 189-197.
Elsevier DOI
BibRef
8700
Earlier:
Image Motion Analysis Using the Concept of Weak Solutions to
Distributed Parameter Systems,
CVPR83(232-239).
The discussion does not compare itself to other techniques.
BibRef
Schalkoff, R.J.[Robert J.],
Dynamic Imagery Modeling and Motion Estimation Using Weak Formulations,
PAMI(9), No. 4, July 1987, pp. 578-584.
A feature based approach. Unclear where it fits in.
BibRef
8707
Subbarao, M.[Muralidhara],
Bounds on Time-to-Collision and Rotational
Component from First-Order Derivatives of Image Flow,
CVGIP(50), No. 3, June 1990, pp. 329-341.
Elsevier DOI
BibRef
9006
Earlier:
Bounds on Translational and Angular Velocity Components from
First Order Derivatives of Image Flow,
AAAI-87(744-748).
For rigid motion.
BibRef
Negahdaripour, S.[Shahriar],
Horn, B.K.P.,
A Direct Method for Locating the Focus of Expansion,
CVGIP(46), No. 3, June 1989, pp. 303-326.
Elsevier DOI
BibRef
8906
And: A1 only:
MIT AI Memo-939, January 1987.
The FOE is in front of the camera, this reduces the ambiguities.
Analyze the spatial gradient and change in brightness to get the
FOE.
BibRef
Negahdaripour, S., and
Horn, B.K.P.,
Using Depth-is-Positive Constraint to Recover Translational
Motion,
CVWS87(138-144).
BibRef
8700
Negahdaripour, S., and
Ganesan, V.,
Simple Direct Computation of the FOE with Confidence Measures,
CVPR92(228-235).
IEEE DOI Estimate the FOE (many estimates), compute a new one from these
estimates.
BibRef
9200
Jain, R.C.[Ramesh C.],
Direct Computation of the Focus of Expansion,
PAMI(5), No. 1, January 1983, pp. 58-64.
Log Mapping.
BibRef
8301
Earlier:
An Approach for the Direct Computation of the Focus of Expansion,
PRIP82(262-268).
The focus of expansion is useful for computing the optic flow.
This paper seems to give a method that works for very clean data
with a moving observer. The FOE can be outside of the image.
BibRef
Jain, R.C.[Ramesh C.],
Complex Logarithmic Mapping and the Focus of Expansion,
Motion83(42-49).
Log Mapping. This introduces the mapping that he is using in the other recent
(83-84) papers.
BibRef
8300
Campani, M.[Marco],
Verri, A.[Alessandro],
Motion Analysis from First-Order Properties of Optical Flow,
CVGIP(56), No. 1, July 1992, pp. 90-107.
Elsevier DOI
BibRef
9207
Earlier:
Computing Optical Flow from an
Overconstrained System of Linear Algebraic Equations,
ICCV90(22-26).
IEEE DOI
BibRef
And: A2, A1:
An Algebraic Procedure for the Computation of Optical Flow
from First Order Derivatives of the Image Brightness,
Robust90(xx).
Piecewise linear vector field.
BibRef
Poggio, T.[Tomaso],
Verri, A.[Alessandro],
Torre, V.[Vincent],
Green Theorems and Qualitative Properties of the Optical Flow,
MIT AI Memo-1289, April 1991.
WWW Link.
BibRef
9104
Tistarelli, M., and
Sandini, G.,
On the Advantage of Polar and Log-Polar Mapping for Direct
Estimation of Time-to-Impact from Optical Flow,
PAMI(15), No. 4, April 1993, pp. 401-410.
IEEE DOI
Log Mapping.
See also Dynamic Aspects in Active Vision. Using a Log-Polar sensor the basic computations are easier.
Time to impact computations.
BibRef
9304
Tistarelli, M., and
Sandini, G.,
Direct Estimation of Time-to-Impact from Optical Flow,
Motion91(226-233).
Active Vision, Sensor.
Log Mapping. Using a CLM like sensor for depth computation.
BibRef
9100
Sandini, G., and
Tistarelli, M.,
Robust Obstacle Detection Using Optical Flow,
Robust90(xx).
BibRef
9000
Pollastri, F.,
Projection Center Calibration by Motion,
PRL(14), No. 12, December 1993, pp. 975-983.
BibRef
9312
Li, H.,
Global Interpretation Of Optical Flow Field: A Least-Squares
Approach,
ICPR92(I:668-671).
IEEE DOI
BibRef
9200
Enkelmann, W.[Wilfried],
Obstacle Detection by Evaluation of Optical Flow
Fields from Image Sequences,
IVC(9), No. 3, June 1991, pp. 160-168.
Elsevier DOI
BibRef
9106
Earlier:
ECCV90(134-138).
Springer DOI 2D optical flow to infer 3D object structure.
BibRef
Negahdaripour, S.,
Direct Computation of the FOE with Confidence Measures,
CVIU(64), No. 3, November 1996, pp. 323-350.
9612
DOI Link
BibRef
Heikkonen, J.[Jukka],
Recovering 3-D Motion Parameters from Optical Flow Field Using
Randomized Hough Transform,
PRL(16), 1995, pp. 971-978.
BibRef
9500
Earlier:
Recovering translational motion parameters from image sequences using
Randomized Hough Transform,
CAIP93(395-402).
Springer DOI
9309
BibRef
Heikkonen, J.,
Video recording and digital image processing in analyzing air flows,
ICPR92(I:129-132).
IEEE DOI
9208
BibRef
Arnspang, J.,
Ma, J.,
Image Irradiance Equations for a Zooming Camera,
PRL(10), 1989, pp. 189-194.
BibRef
8900
Branca, A.,
Stella, E.,
Attolico, G.,
Distante, A.,
Focus of Expansion Estimation by an
Error Backpropagation Neural-Network,
NeurCompApp(6), No. 3, 1997, pp. 142-147.
9803
BibRef
Florack, L.M.J.,
Niessen, W.J.,
Nielsen, M.,
The Intrinsic Structure of Optic Flow Incorporating Measurement Duality,
IJCV(27), No. 3, May 1998, pp. 263-286.
DOI Link
9805
BibRef
Nielsen, M.[Mads],
Niessen, W.J.,
Maas, R.,
Florack, L.M.J.,
ter Haar Romeny, B.M.,
On the Duality of Scalar and Density Flows,
ScaleSpace97(xx).
9702
BibRef
Olsen, O.F.[Ole Fogh],
Nielsen, M.[Mads],
The Generic Structure of the Optic Flow Field,
JMIV(24), No. 1, January 2006, pp. 37-53.
Springer DOI
0605
BibRef
Earlier: A2, A1:
The structure of the optic flow field,
ECCV98(II: 271).
Springer DOI
BibRef
Olsen, O.F.[Ole Fogh],
Nielsen, M.,
Generic Events for the Gradient Squared with Application to
Multi-Scale Segmentation,
ScaleSpace97(xx).
9702
BibRef
McQuirk, I.S.,
Horn, B.K.P.,
Lee, H.S.,
Wyatt, J.L.,
Estimating the Focus of Expansion in Analog VLSI,
IJCV(28), No. 3, July/August 1998, pp. 261-277.
DOI Link
9809
BibRef
Duric, Z.[Zoran],
Rosenfeld, A.[Azriel],
Duncan, J.[James],
The Applicability of Green's Theorem to Computation of Rate of Approach,
IJCV(31), No. 1, February 1999, pp. 83-98.
DOI Link
BibRef
9902
Earlier: A1, A3, A2:
ARPA94(II:1209-1217).
BibRef
Cucka, P.[Peter],
Duric, Z.[Zoran],
Rivlin, E.[Ehud],
Rosenfeld, A.[Azriel],
Qualitative Description of Camera Motion and
Scene Depth from Histograms of Normal Flow,
UMD--TR3925, August 1998.
Flow Histogram.
WWW Link.
BibRef
9808
Duric, Z.[Zoran],
Rivlin, E.[Ehud],
Rosenfeld, A.[Azriel],
Quantative Description of Camera Motion from Histograms of Normal Flow,
DARPA98(979-986).
BibRef
9800
Duric, Z.[Zoran],
Rivlin, E.[Ehud],
Rosenfeld, A.[Azriel],
Qualitative Description of Camera Motion from Histograms of Normal Flow,
ICPR00(Vol III: 194-198).
IEEE DOI
0009
BibRef
Menéndez, J.M.[José M.],
García, N.[Narciso],
Salgado, L.[Luis],
Rendón, E.[Enrique],
Model-based analytical FOE determination,
SP:IC(14), No. 10, August 1999, pp. 785-798.
Elsevier DOI
BibRef
9908
Earlier:
An algorithm for FOE localization,
ICIP96(III: 811-814).
IEEE DOI
9610
FoE from vector field.
BibRef
Srinivasan, S.[Sridhar],
Extracting Structure from Optical Flow Using the Fast Error Search
Technique,
IJCV(37), No. 3, June 2000, pp. 203-230.
DOI Link
0008
BibRef
And:
UMD--TR3923, August 1998.
Fast Partial Search.
WWW Link.
BibRef
Earlier:
Fast Partial Search Solution to the 3D SFM Problem,
ICCV99(528-535).
IEEE DOI
BibRef
And:
Fast FOE Estimation with Applications to Depth Estimation and View
Synthesis,
DARPA98(987-994).
FOE estimation from optical flow.
BibRef
Yeasin, M.[Mohammed],
Optical Flow in Log-Mapped Image Plane-A New Approach,
PAMI(24), No. 1, January 2002, pp. 125-131.
IEEE DOI
0201
New approach allows for image intensity variations.
BibRef
Sazbon, D.[Didi],
Rotstein, H.P.[Héctor P.],
Rivlin, E.[Ehud],
Finding the focus of expansion and estimating range using optical flow
images and a matched filter,
MVA(15), No. 4, October 2004, pp. 229-236.
Springer DOI
0410
BibRef
Xiong, Y.L.[Ya-Lin],
Olson, C.F.[Clark F.],
Matthies, L.H.[Larry H.],
Computing Depth Maps from Descent Imagery,
MVA(16), No. 3, May 2005, pp. 139-147.
Springer DOI
0505
BibRef
Earlier:
CVPR01(I:392-397).
IEEE DOI
0110
Depth maps from descending space probes.
BibRef
Wu, F.C.,
Wang, L.,
Hu, Z.Y.,
FOE estimation: Can image measurement errors be totally 'corrected' by
the geometric method?,
PR(40), No. 7, July 2007, pp. 1971-1980.
Elsevier DOI
0704
FOE estimation; Geometric method; Inherent constraint
BibRef
Mochizuki, Y.,
Imiya, A.,
Spatial reasoning for robot navigation using the Helmholtz-Hodge
decomposition of omnidirectional optical flow,
IVCNZ09(1-6).
IEEE DOI
0911
BibRef
Mochizuki, Y.[Yoshihiko],
Kameda, Y.[Yusuke],
Imiya, A.[Atsushi],
Sakai, T.[Tomoya],
Imaizumi, T.[Takashi],
An Iterative Method for Superresolution of Optical Flow Derived by
Energy Minimisation,
ICPR10(2270-2273).
IEEE DOI
1008
BibRef
Mochizuki, Y.[Yoshihiko],
Kameda, Y.[Yusuke],
Imiya, A.[Atsushi],
Sakai, T.[Tomoya],
Imaizumi, T.[Takashi],
Two Step Variational Method for Subpixel Optical Flow Computation,
ISVC09(II: 1109-1118).
Springer DOI
0911
BibRef
Kashu, K.[Koji],
Imiya, A.[Atsushi],
Sakai, T.[Tomoya],
Subvoxel Super-Resolution of Volumetric Motion Field Using General
Order Prior,
ISVC11(II: 270-279).
Springer DOI
1109
BibRef
Earlier:
Multiscale Analysis of Volumetric Motion Field Using General Order
Prior,
ISVC10(I: 561-570).
Springer DOI
1011
BibRef
Kashu, K.[Koji],
Kameda, Y.[Yusuke],
Narita, M.[Masaki],
Imiya, A.[Atsushi],
Sakai, T.[Tomoya],
Continuity Order of Local Displacement in Volumetric Image Sequence,
WBIR10(48-59).
Springer DOI
1007
BibRef
Kashu, K.[Koji],
Kameda, Y.[Yusuke],
Imiya, A.[Atsushi],
Sakai, T.[Tomoya],
Mochizuki, Y.,
Computing the Local Continuity Order of Optical Flow Using Fractional
Variational Method,
EMMCVPR09(154-167).
Springer DOI
0908
BibRef
Kameda, Y.[Yusuke],
Imiya, A.[Atsushi],
The William Harvey Code: Mathematical Analysis of Optical Flow
Computation for Cardiac Motion,
HumMotBook08(4).
0802
BibRef
Earlier:
Classification of Optical Flow by Constraints,
CAIP07(61-68).
Springer DOI
0708
BibRef
Suhr, J.K.[Jae Kyu],
Jung, H.G.[Ho Gi],
Bae, K.H.[Kwang-Hyuk],
Kim, J.H.[Jai-Hie],
Outlier rejection for cameras on intelligent vehicles,
PRL(29), No. 6, 15 April 2008, pp. 828-840.
Elsevier DOI
0803
Outlier rejection; Motion constraint; Focus of expansion;
Automobile motion; Intelligent vehicle
BibRef
Markussen, B.[Bo],
Sporring, J.[Jon],
Erleben, K.[Kenny],
Guessing Tangents in Normal Flows,
JMIV(31), No. 2-3, July 2008, pp. 195-205.
WWW Link.
0711
BibRef
Maybank, S.J.,
Approximation to the Fisher-Rao metric for the focus of expansion,
Neurocomputing(71), 2008, pp. 2037-2045.
PDF File.
BibRef
0800
Xu, D.H.[Da-Hong],
Wang, R.S.[Run-Sheng],
An Improved FoE Model for Image Deblurring,
IJCV(81), No. 2, February 2009, pp. xx-yy.
Springer DOI
0901
BibRef
Gil-Jiménez, P.[Pedro],
Gómez-Moreno, H.[Hilario],
López-Sastre, R.J.[Roberto J.],
Bermejillo-Martín-Romo, A.[Alberto],
Estimating the focus of expansion in a video sequence using the
trajectories of interest points,
IVC(50), No. 1, 2016, pp. 14-26.
Elsevier DOI
1606
Focus of expansion
BibRef
Skelton, P.S.M.[Phillip S.M.],
Finn, A.[Anthony],
Brinkworth, R.S.A.[Russell S.A.],
Consistent estimation of rotational optical flow in real environments
using a biologically-inspired vision algorithm on embedded hardware,
IVC(92), 2019, pp. 103814.
Elsevier DOI
1912
BibRef
Earlier:
Real-Time Visual Rotational Velocity Estimation Using a
Biologically-Inspired Algorithm on Embedded Hardware,
DICTA17(1-8)
IEEE DOI
1804
Optical flow, Biologically inspired, Rotational velocity,
Embedded hardware, Robotic sensing.
image sequences, motion estimation, real-time systems,
biologically-inspired egomotion estimator,
BibRef
Aristidou, A.[Andreas],
Cameron, J.[Jonathan],
Lasenby, J.[Joan],
Predicting Missing Markers to Drive Real-Time Centre of Rotation
Estimation,
AMDO08(xx-yy).
Springer DOI
0807
BibRef
Mochizuki, Y.[Yoshihiko],
Imiya, A.[Atsushi],
Multiresolution Optical Flow Computation of Spherical Images,
CAIP11(II: 348-355).
Springer DOI
1109
BibRef
Kameda, Y.[Yusuke],
Ohnishi, N.[Naoya],
Imiya, A.[Atsushi],
Sakai, T.[Tomoya],
Optical Flow Computation from an Asynchronised Multiresolution Image
Sequence,
ISVC09(I: 403-414).
Springer DOI
0911
BibRef
Kameda, Y.[Yusuke],
Imiya, A.[Atsushi],
Ohnishi, N.[Naoya],
A Convergence Proof for the Horn-Schunck Optical-Flow Computation
Scheme Using Neighborhood Decomposition,
IWCIA08(xx-yy).
Springer DOI
0804
BibRef
Kameda, Y.[Yusuke],
Imiya, A.[Atsushi],
Sakai, T.[Tomoya],
Hierarchical Properties of Multi-resolution Optical Flow Computation,
CVVT12(II: 576-585).
Springer DOI
1210
BibRef
Ohnishi, N.[Naoya],
Kameda, Y.[Yusuke],
Imiya, A.[Atsushi],
Dorst, L.[Leo],
Klette, R.[Reinhard],
Dynamic Multiresolution Optical Flow Computation,
RobVis08(1-15).
Springer DOI
0802
BibRef
Gebert, G.,
Snyder, D.,
Lopez, J.,
Siddiqi, N.,
Evers, J.,
Optical flow angular rate determination,
ICIP03(I: 949-952).
IEEE DOI
0312
BibRef
Salgian, G.[Garbis],
Ballard, D.H.[Dana H.],
Looming Detection in Log-Polar Coordinates,
DARPA98(165-170).
BibRef
9800
Fleet, D.J.[David J.],
Black, M.J.[Michael J.],
Jepson, A.D.[Allan D.],
Motion Feature Detection Using Steerable Flow Fields,
CVPR98(274-281).
IEEE DOI
BibRef
9800
Branca, A.,
Stella, E., and
Distante, A.,
Passive Navigation Using Focus of Expansion,
WACV96(64-69).
IEEE DOI
9609
BibRef
Carlsson, S., and
Eklundh, J.O.,
Object Detection Using Model Based Prediction and
Motion Parallax,
ECCV90(297-306).
Springer DOI Optic flow is not as expected, thus an obstacle.
BibRef
9000
Guissin, R.,
Ullman, S.,
Direct Computation of the Focus of Expansion from
Velocity Field Measurements,
Motion91(146-155).
Log-Polar.
BibRef
9100
Castelow, D.A.,
Rerolle, A.J.,
A Monocular Ground Plane Estimation System,
BMVC91(xx-yy).
PDF File.
9109
BibRef
Chapter on Optical Flow Field Computations and Use continues in
Obstacle Detection, Time to Collision Techniques .