9.4.6 Albedo, Reflectance Map from Multiple Images

Chapter Contents (Back)
Photometric Stereo. Reflectance Map.

Wang, C.J.[Cheng-Jie], Kamata, S.I.[Sei-Ichiro], Ma, L.Z.[Li-Zhuang],
A fast multi-view based specular removal approach for pill extraction,
ICIP13(4126-4130)
IEEE DOI 1402
Specular reflection removal BibRef

Woodham, R.J.,
Analyzing Curved Surfaces Using Reflectance Map Techniques,
MIT-AI79(161-182). BibRef 7900

Woodham, R.J.,
Reflectance Map Techniques for Analyzing Surface Defects in Metal Casings,
MIT AI-TR-457, June 1978. BibRef 7806 Ph.D.Thesis.
WWW Link. BibRef

Tagare, H.D., and de Figueiredo, R.J.P.,
Simultaneous Estimation of Shape and Reflectance Map from Photometric Stereo,
CVGIP(55), No. 3, May 1992, pp. 275-286.
Elsevier DOI BibRef 9205
Earlier: ICCV90(340-343).
IEEE DOI
See also Theory of Photometric Stereo for a Class of Diffuse Non-Lambertian Surfaces, A. BibRef

Tagare, H.D., and de Figueiredo, R.J.P.,
A Framework for the Construction of Reflectance Maps for Machine Vision,
CVGIP(57), No. 3, May 1993, pp. 265-282.
DOI Link Discusses generation of reflectance maps, which can then be used in Shape from shading. BibRef 9305

Nayar, S.K., Ikeuchi, K., and Kanade, T.,
Determining Shape and Reflectance of Hybrid Surfaces by Photometric Sampling,
RA(6), No. 4, August 1990, pp. 418-431. BibRef 9008
Earlier:
Extracting Shape and Reflectance of Hybrid Surfaces by Photometric Sampling,
DARPA89(563-583). Color. This combines many ideas and used Lambertian surfaces and highlights and multiple light sources. Multiple colors are used integralso. BibRef

Chiao, C.C.[Chuan-Chin], Osorio, D.[Daniel], Vorobyev, M.[Misha], Cronin, T.W.[Thomas W.],
Characterization of natural illuminants in forests and the use of digital video data to reconstruct illuminant spectra,
JOSA-A(17), No. 10, October 2000, pp. 1713-1721. 0010
BibRef

Kirk, R.L.[Randolph L.], Soderblom, L.A.[Laurence A.], Cushing, G.[Glen], Tituus, T.A.[Timothy A.],
Joint Analysis of Visible and Infrared Images: A 'Magic Airbrush' for Qualitative and Quantitative Topography,
PhEngRS(71), No. 10, October 2005, pp. 1167-1178.
WWW Link. Simple algebraic processing of co-registered visible and day and night thermal IR images can be used to separate albedo and thermal inertia variations from topographic shading. 0602
BibRef

Drew, M.S.[Mark S.], Finlayson, G.D.[Graham D.],
Analytic solution for separating spectra into illumination and surface reflectance components,
JOSA-A(24), No. 2, February 2007, pp. 294-303.
WWW Link. 0801
BibRef

Morovic, P.[Peter], Finlayson, G.D.[Graham D.],
Metamer-set-based approach to estimating surface reflectance from camera RGB,
JOSA-A(23), No. 8, August 2006, pp. 1814-1822.
WWW Link. 0610
BibRef

Chandra, K.[Kartik], Healey, G.[Glenn],
Using Coupled Subspace Models for Reflectance/Illumination Separation,
GeoRS(46), No. 1, January 2008, pp. 284-290.
IEEE DOI 0712
BibRef
Earlier:
Using Coupled Subspace Models for Recovery of Reflectance Spectra from Airborne Images,
CVPR05(II: 1146-1151).
IEEE DOI 0507
BibRef

Jenny, P.[Patrick], Mourad, S.[Safer], Stamm, T.[Tobias], Vöge, M.[Markus], Simon, K.[Klaus],
Computing light statistics in heterogeneous media based on a mass weighted probability density function method,
JOSA-A(24), No. 8, August 2007, pp. 2206-2219.
WWW Link. 0801
BibRef

Kristjánsson, Á.[Árni],
Dynamic coding of temporal luminance variation,
JOSA-A(29), No. 6, June 2012, pp. 1180-1187 2012.
WWW Link. 1206
BibRef

Naik, N.[Nikhil], Barsi, C.[Christopher], Velten, A.[Andreas], Raskar, R.[Ramesh],
Estimating wide-angle, spatially varying reflectance using time-resolved inversion of backscattered light,
JOSA-A(31), No. 5, May 2014, pp. 957-963.
DOI Link 1405
Time-resolved imaging; Scattering; Image reconstruction techniques BibRef

Xiao, Z.Q.[Zhi-Qiang], Liang, S.L.[Shun-Lin], Wang, T.T.[Tong-Tong], Liu, Q.A.[Qi-Ang],
Reconstruction of Satellite-Retrieved Land-Surface Reflectance Based on Temporally-Continuous Vegetation Indices,
RS(7), No. 8, 2015, pp. 9844.
DOI Link 1509
BibRef

Oxholm, G.[Geoffrey], Nishino, K.[Ko],
Shape and Reflectance Estimation in the Wild,
PAMI(38), No. 2, February 2016, pp. 376-389.
IEEE DOI 1601
BibRef
Earlier:
Multiview Shape and Reflectance from Natural Illumination,
CVPR14(2163-2170)
IEEE DOI 1409
BibRef
Earlier:
Shape and Reflectance from Natural Illumination,
ECCV12(I: 528-541).
Springer DOI 1210
Estimation BibRef

Morimoto, T.[Takuma], Smithson, H.E.[Hannah E.],
Discrimination of spectral reflectance under environmental illumination,
JOSA-A(35), No. 4, April 2018, pp. B244-B255.
DOI Link 1804
Color vision, Psychophysics, Spectral discrimination, Color, rendering and metamerism BibRef

Alsam, A.[Ali], Rivertz, H.J.[Hans Jakob],
A mathematical approach to best luminance maps,
JOSA-A(35), No. 4, April 2018, pp. B239-B243.
DOI Link 1804
Image processing, Digital image processing, Color BibRef

Bian, J.H.[Jin-Hu], Li, A.[Ainong], Huang, C.Q.[Cheng-Quan], Zhang, R.[Rui], Zhan, X.[Xiwu],
A self-adaptive approach for producing clear-sky composites from VIIRS surface reflectance datasets,
PandRS(144), 2018, pp. 189-201.
Elsevier DOI 1809
VIIRS, Temporal compositing, Adaptive, Global, SA-Comp, Clear-sky BibRef

Asada, S.[Shigenobu], Kubo, H.[Hiroyuki], Funatomi, T.[Takuya], Mukaigawa, Y.[Yasuhiro],
Simultaneous Reproduction of Reflectance and Transmittance of Ink Paintings,
IEICE(E102-D), No. 4, April 2019, pp. 691-701.
WWW Link. 1904
BibRef

Bilal, M.[Muhammad], Nazeer, M.[Majid], Nichol, J.E.[Janet E.], Bleiweiss, M.P.[Max P.], Qiu, Z.F.[Zhong-Feng], Jäkel, E.[Evelyn], Campbell, J.R.[James R.], Atique, L.[Luqman], Huang, X.L.[Xiao-Lan], Lolli, S.[Simone],
A Simplified and Robust Surface Reflectance Estimation Method (SREM) for Use over Diverse Land Surfaces Using Multi-Sensor Data,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Bruegge, C.J.[Carol J.], Coburn, C.[Craig], Elmes, A.[Arthur], Helmlinger, M.C.[Mark C.], Kataoka, F.[Fumie], Kuester, M.[Michele], Kuze, A.[Akihiko], Ochoa, T.[Tina], Schaaf, C.[Crystal], Shiomi, K.[Kei], Schwandner, F.M.[Florian M.],
Bi-Directional Reflectance Factor Determination of the Railroad Valley Playa,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Bishop, M.P.[Michael P.], Young, B.W.[Brennan W.], Colby, J.D.[Jeffrey D.], Furfaro, R.[Roberto], Schiassi, E.[Enrico], Chi, Z.H.[Zhao-Hui],
Theoretical Evaluation of Anisotropic Reflectance Correction Approaches for Addressing Multi-Scale Topographic Effects on the Radiation-Transfer Cascade in Mountain Environments,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Tongbuasirilai, T.[Tanaboon], Unger, J.[Jonas], Kronander, J.[Joel], Kurt, M.[Murat],
Compact and intuitive data-driven BRDF models,
VC(36), No. 4, April 2020, pp. 855-872.
WWW Link. 2004
BibRef

Jiang, D.[Dalin], Matsushita, B.[Bunkei], Yang, W.[Wei],
A simple and effective method for removing residual reflected skylight in above-water remote sensing reflectance measurements,
PandRS(165), 2020, pp. 16-27.
Elsevier DOI 2006
Above-water approach, Residual reflected skylight, Water absorption at 810 nm, Various waters BibRef

Zuo, X.X.[Xin-Xin], Wang, S.[Sen], Zheng, J.B.[Jiang-Bin], Pan, Z.G.[Zhi-Geng], Yang, R.G.[Rui-Gang],
Detailed Surface Geometry and Albedo Recovery from RGB-D Video under Natural Illumination,
PAMI(42), No. 10, October 2020, pp. 2720-2734.
IEEE DOI 2009
BibRef
Earlier: A1, A2, A3, A5, Only: ICCV17(3152-3161)
IEEE DOI 1802
Lighting, Shape, Geometry, Sensors, Image color analysis, Cameras, Color, Depth enhancement, intrinsic decomposition, shape from shading. albedo, expectation-maximisation algorithm, image matching, image motion analysis BibRef

Lanconelli, C.[Christian], Banks, A.C.[Andrew Clive], Muller, J.P.[Jan-Peter], Bruegge, C.[Carol], Cappucci, F.[Fabrizio], Gatebe, C.[Charles], Kharbouche, S.[Said], Morgan, O.[Olivier], Mota, B.[Bernardo], Gobron, N.[Nadine],
In-Situ and Aircraft Reflectance Measurement Effectiveness for CAL/VAL Activities: A Study over Railroad Valley,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link 2010
BibRef

Pathiranage, D.S.[Dinithi Siriwardana], Leigh, L.[Larry], Pinto, C.T.[Cibele Teixeira],
Evaluation of Low-Cost Radiometer for Surface Reflectance Retrieval and Orbital Sensor's Validation,
RS(15), No. 9, 2023, pp. xx-yy.
DOI Link 2305
BibRef

He, L.[Lingli], Weng, F.Z.[Fu-Zhong], Wen, J.H.[Jing-Han], Jia, T.[Tong],
Polarized Bidirectional Reflectance Distribution Function Matrix Derived from Two-Scale Roughness Theory and Its Applications in Active Remote Sensing,
RS(16), No. 9, 2024, pp. 1551.
DOI Link 2405
BibRef

Yu, W.T.[Wen-Tao], Huang, H.[Huabing], Liu, Q.[Qiang], Wang, J.[Jie],
Integrating physical model and image simulations to correct topographic effects on surface reflectance,
PandRS(211), 2024, pp. 356-371.
Elsevier DOI 2405
Topographic correction, Surface reflectance, Image simulation, Physical model, Landsat BibRef


Kim, K., Gu, J., Tyree, S., Molchanov, P., Nießner, M., Kautz, J.,
A Lightweight Approach for On-the-Fly Reflectance Estimation,
ICCV17(20-28)
IEEE DOI 1802
image colour analysis, image fusion, image sensors, inference mechanisms, learning (artificial intelligence), BibRef

Mélou, J.[Jean], Quéau, Y.[Yvain], Durou, J.D.[Jean-Denis], Castan, F.[Fabien], Cremers, D.[Daniel],
Beyond Multi-view Stereo: Shading-Reflectance Decomposition,
SSVM17(694-705).
Springer DOI 1706
BibRef

Rematas, K., Ritschel, T., Fritz, M., Gavves, E., Tuytelaars, T.,
Deep Reflectance Maps,
CVPR16(4508-4516)
IEEE DOI 1612
BibRef

Ackermann, J.[Jens], Goesele, M.[Michael],
How Bright Is the Moon? Recovering and Using Absolute Luminance Values from Internet Images,
CCIW13(90-104).
Springer DOI 1304
BibRef

Nefian, A.V.[Ara V.], Alexandrov, O.[Oleg], Moratto, Z.[Zachary], Kim, T.[Taemin], Beyer, R.A.[Ross A.],
Photometric Lunar surface reconstruction,
ICIP13(2354-2357)
IEEE DOI 1402
BibRef

Nefian, A.V.[Ara V.], Kim, T.[Taemin], Moratto, Z.[Zachary], Beyer, R.A.[Ross A.], Fong, T.[Terry],
Lunar Terrain and Albedo Reconstruction of the Apollo 15 Zone,
ISVC10(I: 688-697).
Springer DOI 1011

See also Orthographic Stereo Correlator on the Terrain Model for Apollo Metric Images. BibRef

Yu, S.X.[Stella X.],
Angular embedding: From jarring intensity differences to perceived luminance,
CVPR09(2302-2309).
IEEE DOI 0906
Luminance information without depth. BibRef

Vasconcelos, C.N., Sa, A., Teixeira, L.P., Carvalho, P.C.P., Gattass, M.,
Real-Time Video Processing for Multi-Object Chromatic Tracking,
BMVC08(xx-yy).
PDF File. 0809
BibRef

Carvalho, P.C.P.[Paulo C. P.], Mendes, L., Martins, P., Santos, A.,
Extension and Evaluation of Selection criteria for the Estimation of Spectral Data,
ICIP06(1521-1524).
IEEE DOI 0610
BibRef

Bowen, A.[Adam], Mullins, A.[Andrew], Wilson, R.G.[Roland G.], Rajpoot, N.M.[Nasir M.],
Light Field Reconstruction Using a Planar Patch Model,
SCIA05(85-94).
Springer DOI 0506
BibRef
And: A2, A1, A3, A4:
Estimating Planar Patches for Light Field Reconstruction,
BMVC05(xx-yy).
HTML Version. 0509
BibRef

Du, F.[Fei], Okabe, T.[Takahiro], Sato, Y.[Yoichi], Sugimoto, A.,
Reflectance estimation from motion under complex illumination,
ICPR04(III: 218-222).
IEEE DOI 0409
BibRef

Blicher, A.P., Roy, S., Penev, P.S.,
Lightsphere: Fast Lighting Compensation for Matching a 2D Image to a 3D Model,
ICPR04(II: 157-162).
IEEE DOI 0409
BibRef

Mallick, S.P.[Satya P.], Zickler, T.E.[Todd E.], Belhumeur, P.N.[Peter N.], Kriegman, D.J.[David J.],
Specularity Removal in Images and Videos: A PDE Approach,
ECCV06(I: 550-563).
Springer DOI 0608
BibRef

Mallick, S.P.[Satya P.], Zickler, T.E.[Todd E.], Kriegman, D.J.[David J.], Belhumeur, P.N.[Peter N.],
Beyond Lambert: Reconstructing Specular Surfaces Using Color,
CVPR05(II: 619-626).
IEEE DOI 0507
BibRef

Magda, S.[Sebastian], Kriegman, D.J.[David J.], Zickler, T.E.[Todd E.], Belhumeur, P.N.[Peter N.],
Beyond Lambert: Reconstructing Surfaces with Arbitrary BRDFs,
ICCV01(II: 391-398).
IEEE DOI
PDF File. 0106
Bi-Directional Reflectance Distribution Function. 2 methods -- stereo, but swap camera and light for the pair of images. And Light field stereo (i.e. all possible point light sources). BibRef

Hertzmann, A., Seitz, S.M.,
Shape and materials by example: a photometric stereo approach,
CVPR03(I: 533-540).
IEEE DOI 0307
BibRef

Narasimhan, S.G., Ramesh, V., Nayar, S.K.,
A class of photometric invariants: separating material from shape and illumination,
ICCV03(1387-1394).
IEEE DOI 0311
BibRef

Chen, C.Y.[Chia-Yen], Klette, R., Kakarala, R.,
Albedo recovery using a photometric stereo approach,
ICPR02(III: 700-703).
IEEE DOI 0211
BibRef

Mukawa, N.,
Estimation of Shape, Reflection Coefficients and Illuminant Direction from Image Sequences,
ICCV90(507-512).
IEEE DOI BibRef 9000

Aparicio, J.I.[Javier Iglesia], García-Bermejo, J.G.[Jaime Gomez],
An Approach for Determining Phong Reflectance Parameters from Real Objects,
ICPR00(Vol III: 572-575).
IEEE DOI 0009
BibRef

Garcia-Bermejo, J.G.[Jaime Gomez], Diaz Pernas, F.J., Coronado, J.L.[J. Lopez],
An Approach for Determining Bidirectional Reflectance Parameters from Range and Brightness Data,
ICIP96(I: 41-44).
IEEE DOI BibRef 9600

Faure, F.[Franšois],
Inverting the reflectance map with binary search,
CAIP95(814-819).
Springer DOI 9509
BibRef

Chapter on 3-D Shape from X -- Shading, Textures, Lasers, Structured Light, Focus, Line Drawings continues in
Shape from Laser Ranging and Structured Light Images .


Last update:Nov 26, 2024 at 16:40:19