23.2.22.1 Air Quality, Air Pollution, Aerosols, General Pollution

Chapter Contents (Back)
Aerosols. Air Quality. Pollution. Atmospheric Measurements.
See also Sulfur Di-Oxide, Sulphur, SO2.
See also LiDAR for Aerosols, Aerosol Optical Depth, Air Quality. Changes due to Covid:
See also GIS: for COVID Specific Tracking, Spread, Analysis.

Loughner, C.P.[Christopher P.], Lary, D.J.[David J.], Sparling, L.C.[Lynn C.], Cohen, R.C.[Ronald C.], DeCola, P.[Phil], Stockwell, W.R.,
A Method to Determine the Spatial Resolution Required to Observe Air Quality From Space,
GeoRS(45), No. 5, May 2007, pp. 1308-1314.
IEEE DOI 0704
BibRef

Chen, W.[Wei], Tang, H.Z.[Hong-Zhao], Zhao, H.M.[Hai-Meng], Yan, L.[Lei],
Analysis of Aerosol Properties in Beijing Based on Ground-Based Sun Photometer and Air Quality Monitoring Observations from 2005 to 2014,
RS(8), No. 2, 2016, pp. 110.
DOI Link 1603
BibRef

Xie, X.Z.[Xing-Zhe], Semanjski, I.[Ivana], Gautama, S.[Sidharta], Tsiligianni, E.[Evaggelia], Deligiannis, N.[Nikos], Rajan, R.T.[Raj Thilak], Pasveer, F.[Frank], Philips, W.[Wilfried],
A Review of Urban Air Pollution Monitoring and Exposure Assessment Methods,
IJGI(6), No. 12, 2017, pp. xx-yy.
DOI Link 1801
BibRef

Kikuchi, M., Murakami, H., Suzuki, K., Nagao, T.M., Higurashi, A.,
Improved Hourly Estimates of Aerosol Optical Thickness Using Spatiotemporal Variability Derived From Himawari-8 Geostationary Satellite,
GeoRS(56), No. 6, June 2018, pp. 3442-3455.
IEEE DOI 1806
Aerosols, Clouds, Land surface, Pollution measurement, Spatiotemporal phenomena, Aerosols, algorithms, remote sensing, satellites BibRef

Cecilia, J.M., Timón, I., Soto, J., Santa, J., Pereñíguez, F., Muñoz, A.,
High-Throughput Infrastructure for Advanced ITS Services: A Case Study on Air Pollution Monitoring,
ITS(19), No. 7, July 2018, pp. 2246-2257.
IEEE DOI 1807
Big Data, Heterogeneous networks, Monitoring, Pollution, Real-time systems, Sensors, HPC, intelligent transport systems BibRef

Bitta, J.[Jan], Pavlíková, I.[Irena], Svozilík, V.[Vladislav], Jancík, P.[Petr],
Air Pollution Dispersion Modelling Using Spatial Analyses,
IJGI(7), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Zhao, K.R.[Kun-Rong], He, T.T.[Ting-Ting], Wu, S.[Shuang], Wang, S.L.[Song-Ling], Dai, B.L.[Bi-Lan], Yang, Q.F.[Qi-Fan], Lei, Y.[Yutao],
Research on video classification method of key pollution sources based on deep learning,
JVCIR(59), 2019, pp. 283-291.
Elsevier DOI 1903
Pollution sources, Deep learning, Surveillance video classification, Convolution neural network BibRef

Zhang, C.[Chao], Yan, J.C.[Jun-Chi], Li, C.S.[Chang-Sheng], Wu, H.[Hao], Bie, R.F.[Rong-Fang],
End-to-end learning for image-based air quality level estimation,
MVA(29), No. 4, May 2018, pp. 601-615.
Springer DOI 1805
BibRef

Zhang, H.P.[Hao-Peng], Deng, Q.[Qin],
Deep Learning Based Fossil-Fuel Power Plant Monitoring in High Resolution Remote Sensing Images: A Comparative Study,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905
Monitoring pollution. BibRef

Wang, Y.W.[Ya-Wen], Trentmann, J.[Jörg], Pfeifroth, U.[Uwe], Yuan, W.P.[Wen-Ping], Wild, M.[Martin],
Improvement of Air Pollution in China Inferred from Changes between Satellite-Based and Measured Surface Solar Radiation,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Chen, B.[Bin],
Air Quality Index Forecasting via Deep Dictionary Learning,
IEICE(E103-D), No. 5, May 2020, pp. 1118-1125.
WWW Link. 2005
BibRef

de Vito, S.[Saverio], di Francia, G.[Girolamo], Esposito, E.[Elena], Ferlito, S.[Sergio], Formisano, F.[Fabrizio], Massera, E.[Ettore],
Adaptive machine learning strategies for network calibration of IoT smart air quality monitoring devices,
PRL(136), 2020, pp. 264-271.
Elsevier DOI 2008
BibRef

Augustin, P.[Patrick], Billet, S.[Sylvain], Crumeyrolle, S.[Suzanne], Deboudt, K.[Karine], Dieudonné, E.[Elsa], Flament, P.[Pascal], Fourmentin, M.[Marc], Guilbaud, S.[Sarah], Hanoune, B.[Benjamin], Landkocz, Y.[Yann], Méausoone, C.[Clémence], Roy, S.[Sayahnya], Schmitt, F.G.[François G.], Sentchev, A.[Alexei], Sokolov, A.[Anton],
Impact of Sea Breeze Dynamics on Atmospheric Pollutants and Their Toxicity in Industrial and Urban Coastal Environments,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Banach, M.[Marzena], Dlugosz, R.[Rafal], Pauk, J.[Jolanta], Talaska, T.[Tomasz],
Hardware Efficient Solutions for Wireless Air Pollution Sensors Dedicated to Dense Urban Areas,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Liang, Z.[Ze], Wei, F.L.[Fei-Li], Wang, Y.Y.[Yue-Yao], Huang, J.[Jiao], Jiang, H.[Hong], Sun, F.Y.[Fu-Yue], Li, S.C.[Shuang-Cheng],
The Context-Dependent Effect of Urban Form on Air Pollution: A Panel Data Analysis,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Wu, D.[Dong], Gong, J.H.[Jian-Hua], Liang, J.M.[Jian-Ming], Sun, J.[Jin], Zhang, G.Y.[Guo-Yong],
Analyzing the Influence of Urban Street Greening and Street Buildings on Summertime Air Pollution Based on Street View Image Data,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Kalajdjieski, J.[Jovan], Zdravevski, E.[Eftim], Corizzo, R.[Roberto], Lameski, P.[Petre], Kalajdziski, S.[Slobodan], Pires, I.M.[Ivan Miguel], Garcia, N.M.[Nuno M.], Trajkovik, V.[Vladimir],
Air Pollution Prediction with Multi-Modal Data and Deep Neural Networks,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Wang, W.L.[Wei-Lin], Mao, W.J.[Wen-Jing], Tong, X.L.[Xue-Li], Xu, G.[Gang],
A Novel Recursive Model Based on a Convolutional Long Short-Term Memory Neural Network for Air Pollution Prediction,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Xu, S.Q.[Shi-Qi], Wang, S.S.[Shan-Shan], Xia, M.[Men], Lin, H.[Hua], Xing, C.Z.[Cheng-Zhi], Ji, X.G.[Xiang-Guang], Su, W.J.[Wen-Jing], Tan, W.[Wei], Liu, C.[Cheng], Hu, Q.H.[Qi-Hou],
Observations by Ground-Based MAX-DOAS of the Vertical Characters of Winter Pollution and the Influencing Factors of HONO Generation in Shanghai, China,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Ji, X.G.[Xiang-Guang], Hu, Q.H.[Qi-Hou], Hu, B.[Bo], Wang, S.T.[Shun-Tian], Liu, H.Y.[Han-Yang], Xing, C.Z.[Cheng-Zhi], Lin, H.[Hua], Lin, J.[Jinan],
Vertical Structure of Air Pollutant Transport Flux as Determined by Ground-Based Remote Sensing Observations in Fen-Wei Plain, China,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Choi, W.[Wonei], Lee, H.[Hanlim], Kim, J.[Jhoon], Park, J.[Junsung],
First TROPOMI Retrieval of Aerosol Effective Height Using O4 Absorption Band at 477 nm and Aerosol Classification,
GeoRS(59), No. 12, December 2021, pp. 9873-9886.
IEEE DOI 2112
Aerosols, Absorption, Artificial intelligence, Sensors, Monitoring, Atmospheric measurements, Pollution measurement, Aerosol height, TROPOspheric Monitoring Instrument (TROPOMI) BibRef

Li, H.[Hui], Shi, R.[Rui], Jin, S.K.[Shi-Kuan], Wang, W.[Weiyan], Fan, R.N.[Ruo-Nan], Zhang, Y.Q.[Yi-Qun], Liu, B.M.[Bo-Ming], Zhao, P.[Peitao], Gong, W.[Wei], Zhao, Y.F.[Yue-Feng],
Study of Persistent Haze Pollution in Winter over Jinan (China) Based on Ground-Based and Satellite Observations,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Tong, C.[Chao], Zhang, C.X.[Cheng-Xin], Liu, C.[Cheng],
Investigation on the Relationship between Satellite Air Quality Measurements and Industrial Production by Generalized Additive Modeling,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Shelestov, A.[Andrii], Yailymova, H.[Hanna], Yailymov, B.[Bohdan], Kussul, N.[Nataliia],
Air Quality Estimation in Ukraine Using SDG 11.6.2 Indicator Assessment,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Chen, L.R.[Li-Rong], Wang, J.[Junyi], Wang, H.[Hui], Jin, T.C.[Tian-Cheng],
Urban Air Quality Assessment by Fusing Spatial and Temporal Data from Multiple Study Sources Using Refined Estimation Methods,
IJGI(11), No. 6, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Qin, X.N.[Xue-Ning], Do, T.H.[Tien Huu], Hofman, J.[Jelle], Bonet, E.R.[Esther Rodrigo], Manna, V.P.L.[Valerio Panzica La], Deligiannis, N.[Nikos], Philips, W.[Wilfried],
Fine-Grained Urban Air Quality Mapping from Sparse Mobile Air Pollution Measurements and Dense Traffic Density,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Banach, M.[Marzena], Dlugosz, R.[Rafal], Talaska, T.[Tomasz], Pedrycz, W.[Witold],
Air Pollution Monitoring System with Prediction Abilities Based on Smart Autonomous Sensors Equipped with ANNs with Novel Training Scheme,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Chiesa, S.[Stefano], di Pietro, A.[Antonio], Pollino, M.[Maurizio], Taraglio, S.[Sergio],
Urban Air Pollutant Monitoring through a Low-Cost Mobile Device Connected to a Smart Road,
IJGI(11), No. 2, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Rahman, M.M.[Md Masudur], Shuo, W.[Wang], Zhao, W.X.[Wei-Xiong], Xu, X.Z.[Xue-Zhe], Zhang, W.J.[Wei-Jun], Arshad, A.[Arfan],
Investigating the Relationship between Air Pollutants and Meteorological Parameters Using Satellite Data over Bangladesh,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Suel, E.[Esra], Sorek-Hamer, M.[Meytar], Moise, I.[Izabela], von Pohle, M.[Michael], Sahasrabhojanee, A.[Adwait], Asanjan, A.A.[Ata Akbari], Arku, R.E.[Raphael E.], Alli, A.S.[Abosede S.], Barratt, B.[Benjamin], Clark, S.N.[Sierra N.], Middel, A.[Ariane], Deardorff, E.[Emily], Lingenfelter, V.[Violet], Oza, N.C.[Nikunj C.], Yadav, N.[Nishant], Ezzati, M.[Majid], Brauer, M.[Michael],
What You See Is What You Breathe? Estimating Air Pollution Spatial Variation Using Street-Level Imagery,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Maulik, U.[Ujjwal], Kundu, S.[Srimanta],
Automatic Vehicle Pollution Detection Using Feedback Based Iterative Deep Learning,
ITS(24), No. 5, May 2023, pp. 4804-4814.
IEEE DOI 2305
Surveillance, Engines, Deep learning, Air pollution, Roads, Iterative methods, Image color analysis, Vehicle pollution, majority voting BibRef

Liang, A.[Ailin], Gu, J.Y.[Jing-Yuan], Xiang, C.Z.[Cheng-Zhi],
Multi-Source Satellite and WRF-Chem Analyses of Atmospheric Pollution from Fires in Peninsular Southeast Asia,
RS(15), No. 23, 2023, pp. 5463.
DOI Link 2312
BibRef

Du, J.[Jia], Li, D.[Dianjia], Song, K.[Kaishan], Zheng, Z.[Zhi], Wang, Y.[Yan],
Comparative Analysis of the Impact of Two Common Residue Burning Parameters on Urban Air Quality Indicators,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link 2308
BibRef

Shi, Z.[Zekai], Zhang, M.[Meng], Han, M.[Mei], Zhang, Y.[Yaowei], Ma, G.D.[Guo-Dong], Ren, H.Y.[Hao-Yuan],
BresNet: Applying Residual Learning in Backpropagation Neural Networks to Predict Ground Surface Concentration of Primary Air Pollutants,
RS(16), No. 16, 2024, pp. 2897.
DOI Link 2408
BibRef


Angelis, G.F., Emvoliadis, A., Drosou, A., Tzovaras, D.,
MMAQ: A Multi-Modal Self-Supervised Approach for Estimating Air Quality from Remote Sensing Data,
ICIP24(319-325)
IEEE DOI 2411
Satellites, Atmospheric measurements, Land surface, Termination of employment, Self-supervised learning, air pollution BibRef

Zhang, T.[Tony], Dick, R.P.[Robert P.],
Image-Based Air Quality Forecasting Through Multi-Level Attention,
ICIP22(686-690)
IEEE DOI 2211
Visualization, Atmospheric measurements, Fuses, Atmospheric modeling, Predictive models, Time measurement, attention BibRef

Chen, H.L.[Hui-Lin], Yang, W.M.[Wen-Ming], Liao, Q.M.[Qing-Min],
Two-Stream Non-Uniform Concentration Reasoning Network for Single Image Air Pollution Estimation,
ICIP22(501-505)
IEEE DOI 2211
Costs, Aggregates, Estimation, Streaming media, Feature extraction, Air pollution, Cognition, Air pollution estimation, attention mechanism BibRef

Dubey, R., Bharadwaj, S., Zafar, M.I., Biswas, S.,
Collaborative Air Quality Mapping of Different Metropolitan Cities Of India,
ISPRS21(B4-2021: 87-94).
DOI Link 2201
BibRef

Ridzuan, N., Ujang, U., Azri, S., Choon, T.L.,
3d Air Pollution Computational Fluid Modelling Data Analysis Using Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle (UAV) Approach,
SmartCityApp21(451-456).
DOI Link 2201
BibRef

Garcia, D., Vázquez-Gallego, F., Parés, M.E.,
On the Organization and Validation of a Pilot Test of a Mobile Crowdsourced Air Quality Monitoring System,
ISPRS21(B4-2021: 361-366).
DOI Link 2201
BibRef

Chen, Z.[Zikun],
The Application of Artificial Intelligence on the Traceability and Dispersion of Air Pollution,
ICIVC21(404-407)
IEEE DOI 2112
Image resolution, Atmospheric modeling, Computational modeling, Stochastic processes, Interference, Position measurement, fuzzy data processing BibRef

Hofman, J.[Jelle], Do, T.H.[Tien Huu], Qin, X.[Xuening], Rodrigo, E.[Esther], Nikolaou, M.E.[Martha E.], Philips, W.[Wilfried], Deligiannis, N.[Nikos], La Manna, V.P.[Valerio Panzica],
Spatiotemporal Air Quality Inference of Low-cost Sensor Data; Application on a Cycling Monitoring Network,
MAES20(139-147).
Springer DOI 2103
BibRef

Parés, M.E., Garcia, D., Vázquez-Gallego, F.,
Mapping Air Quality with A Mobile Crowdsourced Air Quality Monitoring System (C-AQM),
ISPRS20(B4:685-690).
DOI Link 2012
BibRef

Ridzuan, N., Ujang, U., Azri, S., Choon, T.L.,
Visualising Urban Air Quality Using Aermod, Calpuff and Cfd Models: A Critical Review,
SmartCityApp20(355-363).
DOI Link 2012
BibRef

Luo, Z., Yu, Y., Zhang, D., Feng, S., Yu, H., Chang, Y., Shen, W.,
Air Quality Inference with Deep Convolutional Conditional Random Field,
ICIVC20(296-302)
IEEE DOI 2009
Air quality, Convolution, Neural networks, Indexes, Data models, Biological system modeling, air quality inference BibRef

Alpan, K., Sekeroglu, B.,
Prediction of Pollutant Concentrations By Meteorological Data Using Machine Learning Algorithms,
SmartCityApp20(21-27).
DOI Link 2012
BibRef

Casella, V., Franzini, M., Bellazzi, R., Larizza, C., Pala, D.,
Dynamic Assessment of Personal Exposure to Air Pollution for Everyone: A Smartphone-based Approach,
ISPRS20(B4:655-663).
DOI Link 2012
BibRef

Zhang, T., Dick, R.P.,
Estimation of Multiple Atmospheric Pollutants Through Image Analysis,
ICIP19(2060-2064)
IEEE DOI 1910
Air Quality, Light Attenuation, Support Vector Regression, Atmospheric Modeling BibRef

Ma, J.[Jian], Li, K.[Kun], Han, Y.H.[Ya-Hong], Yang, J.Y.[Jing-Yu],
Image-based Air Pollution Estimation Using Hybrid Convolutional Neural Network,
ICPR18(471-476)
IEEE DOI 1812
Air pollution, Feature extraction, Atmospheric measurements, Pollution measurement, Convolutional neural networks, Scattering, Training BibRef

Ghosh, R., Ghosh, D., Roy, S., Mukherjee, A.,
Exploring the self similar properties for monitoring of air quality information,
ICAPR15(1-6)
IEEE DOI 1511
air pollution control BibRef

Liu, G.L.[Gui-Liang],
Seemingly unrelated regression modeling of urban air quality by direct Monte Carlo algorithm,
ICWAPR15(171-174)
IEEE DOI 1511
Bayes methods BibRef

Wijeratne, I.K., Bijker, W.,
Mapping Dispersion of Urban Air Pollution with Remote Sensing,
IfromI06(xx-yy).
PDF File. 0607
BibRef

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Aerosols, Aerosol Optical Depth, Air Quality, Specific Sites .


Last update:Nov 26, 2024 at 16:40:19