Loughner, C.P.[Christopher P.],
Lary, D.J.[David J.],
Sparling, L.C.[Lynn C.],
Cohen, R.C.[Ronald C.],
DeCola, P.[Phil],
Stockwell, W.R.,
A Method to Determine the Spatial Resolution Required to Observe Air
Quality From Space,
GeoRS(45), No. 5, May 2007, pp. 1308-1314.
IEEE DOI
0704
BibRef
Chen, W.[Wei],
Tang, H.Z.[Hong-Zhao],
Zhao, H.M.[Hai-Meng],
Yan, L.[Lei],
Analysis of Aerosol Properties in Beijing Based on Ground-Based Sun
Photometer and Air Quality Monitoring Observations from 2005 to 2014,
RS(8), No. 2, 2016, pp. 110.
DOI Link
1603
BibRef
Xie, X.Z.[Xing-Zhe],
Semanjski, I.[Ivana],
Gautama, S.[Sidharta],
Tsiligianni, E.[Evaggelia],
Deligiannis, N.[Nikos],
Rajan, R.T.[Raj Thilak],
Pasveer, F.[Frank],
Philips, W.[Wilfried],
A Review of Urban Air Pollution Monitoring and Exposure Assessment
Methods,
IJGI(6), No. 12, 2017, pp. xx-yy.
DOI Link
1801
BibRef
Kikuchi, M.,
Murakami, H.,
Suzuki, K.,
Nagao, T.M.,
Higurashi, A.,
Improved Hourly Estimates of Aerosol Optical Thickness Using
Spatiotemporal Variability Derived From Himawari-8 Geostationary
Satellite,
GeoRS(56), No. 6, June 2018, pp. 3442-3455.
IEEE DOI
1806
Aerosols, Clouds, Land surface, Pollution measurement,
Spatiotemporal phenomena, Aerosols, algorithms, remote sensing, satellites
BibRef
Cecilia, J.M.,
Timón, I.,
Soto, J.,
Santa, J.,
Pereñíguez, F.,
Muñoz, A.,
High-Throughput Infrastructure for Advanced ITS Services:
A Case Study on Air Pollution Monitoring,
ITS(19), No. 7, July 2018, pp. 2246-2257.
IEEE DOI
1807
Big Data, Heterogeneous networks,
Monitoring, Pollution, Real-time systems, Sensors, HPC,
intelligent transport systems
BibRef
Bitta, J.[Jan],
Pavlíková, I.[Irena],
Svozilík, V.[Vladislav],
Jancík, P.[Petr],
Air Pollution Dispersion Modelling Using Spatial Analyses,
IJGI(7), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Zhao, K.R.[Kun-Rong],
He, T.T.[Ting-Ting],
Wu, S.[Shuang],
Wang, S.L.[Song-Ling],
Dai, B.L.[Bi-Lan],
Yang, Q.F.[Qi-Fan],
Lei, Y.[Yutao],
Research on video classification method of key pollution sources
based on deep learning,
JVCIR(59), 2019, pp. 283-291.
Elsevier DOI
1903
Pollution sources, Deep learning,
Surveillance video classification, Convolution neural network
BibRef
Zhang, C.[Chao],
Yan, J.C.[Jun-Chi],
Li, C.S.[Chang-Sheng],
Wu, H.[Hao],
Bie, R.F.[Rong-Fang],
End-to-end learning for image-based air quality level estimation,
MVA(29), No. 4, May 2018, pp. 601-615.
Springer DOI
1805
BibRef
Zhang, H.P.[Hao-Peng],
Deng, Q.[Qin],
Deep Learning Based Fossil-Fuel Power Plant Monitoring in High
Resolution Remote Sensing Images: A Comparative Study,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
Monitoring pollution.
BibRef
Wang, Y.W.[Ya-Wen],
Trentmann, J.[Jörg],
Pfeifroth, U.[Uwe],
Yuan, W.P.[Wen-Ping],
Wild, M.[Martin],
Improvement of Air Pollution in China Inferred from Changes between
Satellite-Based and Measured Surface Solar Radiation,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Chen, B.[Bin],
Air Quality Index Forecasting via Deep Dictionary Learning,
IEICE(E103-D), No. 5, May 2020, pp. 1118-1125.
WWW Link.
2005
BibRef
de Vito, S.[Saverio],
di Francia, G.[Girolamo],
Esposito, E.[Elena],
Ferlito, S.[Sergio],
Formisano, F.[Fabrizio],
Massera, E.[Ettore],
Adaptive machine learning strategies for network calibration of IoT
smart air quality monitoring devices,
PRL(136), 2020, pp. 264-271.
Elsevier DOI
2008
BibRef
Augustin, P.[Patrick],
Billet, S.[Sylvain],
Crumeyrolle, S.[Suzanne],
Deboudt, K.[Karine],
Dieudonné, E.[Elsa],
Flament, P.[Pascal],
Fourmentin, M.[Marc],
Guilbaud, S.[Sarah],
Hanoune, B.[Benjamin],
Landkocz, Y.[Yann],
Méausoone, C.[Clémence],
Roy, S.[Sayahnya],
Schmitt, F.G.[François G.],
Sentchev, A.[Alexei],
Sokolov, A.[Anton],
Impact of Sea Breeze Dynamics on Atmospheric Pollutants and Their
Toxicity in Industrial and Urban Coastal Environments,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Banach, M.[Marzena],
Dlugosz, R.[Rafal],
Pauk, J.[Jolanta],
Talaska, T.[Tomasz],
Hardware Efficient Solutions for Wireless Air Pollution Sensors
Dedicated to Dense Urban Areas,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Liang, Z.[Ze],
Wei, F.L.[Fei-Li],
Wang, Y.Y.[Yue-Yao],
Huang, J.[Jiao],
Jiang, H.[Hong],
Sun, F.Y.[Fu-Yue],
Li, S.C.[Shuang-Cheng],
The Context-Dependent Effect of Urban Form on Air Pollution:
A Panel Data Analysis,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Wu, D.[Dong],
Gong, J.H.[Jian-Hua],
Liang, J.M.[Jian-Ming],
Sun, J.[Jin],
Zhang, G.Y.[Guo-Yong],
Analyzing the Influence of Urban Street Greening and Street Buildings
on Summertime Air Pollution Based on Street View Image Data,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Kalajdjieski, J.[Jovan],
Zdravevski, E.[Eftim],
Corizzo, R.[Roberto],
Lameski, P.[Petre],
Kalajdziski, S.[Slobodan],
Pires, I.M.[Ivan Miguel],
Garcia, N.M.[Nuno M.],
Trajkovik, V.[Vladimir],
Air Pollution Prediction with Multi-Modal Data and Deep Neural
Networks,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Wang, W.L.[Wei-Lin],
Mao, W.J.[Wen-Jing],
Tong, X.L.[Xue-Li],
Xu, G.[Gang],
A Novel Recursive Model Based on a Convolutional Long Short-Term
Memory Neural Network for Air Pollution Prediction,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Xu, S.Q.[Shi-Qi],
Wang, S.S.[Shan-Shan],
Xia, M.[Men],
Lin, H.[Hua],
Xing, C.Z.[Cheng-Zhi],
Ji, X.G.[Xiang-Guang],
Su, W.J.[Wen-Jing],
Tan, W.[Wei],
Liu, C.[Cheng],
Hu, Q.H.[Qi-Hou],
Observations by Ground-Based MAX-DOAS of the Vertical Characters of
Winter Pollution and the Influencing Factors of HONO Generation in
Shanghai, China,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Ji, X.G.[Xiang-Guang],
Hu, Q.H.[Qi-Hou],
Hu, B.[Bo],
Wang, S.T.[Shun-Tian],
Liu, H.Y.[Han-Yang],
Xing, C.Z.[Cheng-Zhi],
Lin, H.[Hua],
Lin, J.[Jinan],
Vertical Structure of Air Pollutant Transport Flux as Determined by
Ground-Based Remote Sensing Observations in Fen-Wei Plain, China,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Choi, W.[Wonei],
Lee, H.[Hanlim],
Kim, J.[Jhoon],
Park, J.[Junsung],
First TROPOMI Retrieval of Aerosol Effective Height Using O4
Absorption Band at 477 nm and Aerosol Classification,
GeoRS(59), No. 12, December 2021, pp. 9873-9886.
IEEE DOI
2112
Aerosols, Absorption, Artificial intelligence, Sensors, Monitoring,
Atmospheric measurements, Pollution measurement, Aerosol height,
TROPOspheric Monitoring Instrument (TROPOMI)
BibRef
Li, H.[Hui],
Shi, R.[Rui],
Jin, S.K.[Shi-Kuan],
Wang, W.[Weiyan],
Fan, R.N.[Ruo-Nan],
Zhang, Y.Q.[Yi-Qun],
Liu, B.M.[Bo-Ming],
Zhao, P.[Peitao],
Gong, W.[Wei],
Zhao, Y.F.[Yue-Feng],
Study of Persistent Haze Pollution in Winter over Jinan (China) Based
on Ground-Based and Satellite Observations,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Tong, C.[Chao],
Zhang, C.X.[Cheng-Xin],
Liu, C.[Cheng],
Investigation on the Relationship between Satellite Air Quality
Measurements and Industrial Production by Generalized Additive
Modeling,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Shelestov, A.[Andrii],
Yailymova, H.[Hanna],
Yailymov, B.[Bohdan],
Kussul, N.[Nataliia],
Air Quality Estimation in Ukraine Using SDG 11.6.2 Indicator
Assessment,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Chen, L.R.[Li-Rong],
Wang, J.[Junyi],
Wang, H.[Hui],
Jin, T.C.[Tian-Cheng],
Urban Air Quality Assessment by Fusing Spatial and Temporal Data from
Multiple Study Sources Using Refined Estimation Methods,
IJGI(11), No. 6, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Qin, X.N.[Xue-Ning],
Do, T.H.[Tien Huu],
Hofman, J.[Jelle],
Bonet, E.R.[Esther Rodrigo],
Manna, V.P.L.[Valerio Panzica La],
Deligiannis, N.[Nikos],
Philips, W.[Wilfried],
Fine-Grained Urban Air Quality Mapping from Sparse Mobile Air
Pollution Measurements and Dense Traffic Density,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Banach, M.[Marzena],
Dlugosz, R.[Rafal],
Talaska, T.[Tomasz],
Pedrycz, W.[Witold],
Air Pollution Monitoring System with Prediction Abilities Based on
Smart Autonomous Sensors Equipped with ANNs with Novel Training
Scheme,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Chiesa, S.[Stefano],
di Pietro, A.[Antonio],
Pollino, M.[Maurizio],
Taraglio, S.[Sergio],
Urban Air Pollutant Monitoring through a Low-Cost Mobile Device
Connected to a Smart Road,
IJGI(11), No. 2, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Rahman, M.M.[Md Masudur],
Shuo, W.[Wang],
Zhao, W.X.[Wei-Xiong],
Xu, X.Z.[Xue-Zhe],
Zhang, W.J.[Wei-Jun],
Arshad, A.[Arfan],
Investigating the Relationship between Air Pollutants and
Meteorological Parameters Using Satellite Data over Bangladesh,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Suel, E.[Esra],
Sorek-Hamer, M.[Meytar],
Moise, I.[Izabela],
von Pohle, M.[Michael],
Sahasrabhojanee, A.[Adwait],
Asanjan, A.A.[Ata Akbari],
Arku, R.E.[Raphael E.],
Alli, A.S.[Abosede S.],
Barratt, B.[Benjamin],
Clark, S.N.[Sierra N.],
Middel, A.[Ariane],
Deardorff, E.[Emily],
Lingenfelter, V.[Violet],
Oza, N.C.[Nikunj C.],
Yadav, N.[Nishant],
Ezzati, M.[Majid],
Brauer, M.[Michael],
What You See Is What You Breathe? Estimating Air Pollution Spatial
Variation Using Street-Level Imagery,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Maulik, U.[Ujjwal],
Kundu, S.[Srimanta],
Automatic Vehicle Pollution Detection Using Feedback Based Iterative
Deep Learning,
ITS(24), No. 5, May 2023, pp. 4804-4814.
IEEE DOI
2305
Surveillance, Engines, Deep learning, Air pollution, Roads,
Iterative methods, Image color analysis, Vehicle pollution, majority voting
BibRef
Liang, A.[Ailin],
Gu, J.Y.[Jing-Yuan],
Xiang, C.Z.[Cheng-Zhi],
Multi-Source Satellite and WRF-Chem Analyses of Atmospheric Pollution
from Fires in Peninsular Southeast Asia,
RS(15), No. 23, 2023, pp. 5463.
DOI Link
2312
BibRef
Du, J.[Jia],
Li, D.[Dianjia],
Song, K.[Kaishan],
Zheng, Z.[Zhi],
Wang, Y.[Yan],
Comparative Analysis of the Impact of Two Common Residue Burning
Parameters on Urban Air Quality Indicators,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Shi, Z.[Zekai],
Zhang, M.[Meng],
Han, M.[Mei],
Zhang, Y.[Yaowei],
Ma, G.D.[Guo-Dong],
Ren, H.Y.[Hao-Yuan],
BresNet: Applying Residual Learning in Backpropagation Neural
Networks to Predict Ground Surface Concentration of Primary Air
Pollutants,
RS(16), No. 16, 2024, pp. 2897.
DOI Link
2408
BibRef
Zhang, T.[Tony],
Dick, R.P.[Robert P.],
Image-Based Air Quality Forecasting Through Multi-Level Attention,
ICIP22(686-690)
IEEE DOI
2211
Visualization, Atmospheric measurements, Fuses,
Atmospheric modeling, Predictive models, Time measurement, attention
BibRef
Chen, H.L.[Hui-Lin],
Yang, W.M.[Wen-Ming],
Liao, Q.M.[Qing-Min],
Two-Stream Non-Uniform Concentration Reasoning Network for Single
Image Air Pollution Estimation,
ICIP22(501-505)
IEEE DOI
2211
Costs, Aggregates, Estimation, Streaming media, Feature extraction,
Air pollution, Cognition, Air pollution estimation, attention mechanism
BibRef
Dubey, R.,
Bharadwaj, S.,
Zafar, M.I.,
Biswas, S.,
Collaborative Air Quality Mapping of Different Metropolitan Cities Of
India,
ISPRS21(B4-2021: 87-94).
DOI Link
2201
BibRef
Ridzuan, N.,
Ujang, U.,
Azri, S.,
Choon, T.L.,
3d Air Pollution Computational Fluid Modelling Data Analysis Using
Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle (UAV)
Approach,
SmartCityApp21(451-456).
DOI Link
2201
BibRef
Garcia, D.,
Vázquez-Gallego, F.,
Parés, M.E.,
On the Organization and Validation of a Pilot Test of a Mobile
Crowdsourced Air Quality Monitoring System,
ISPRS21(B4-2021: 361-366).
DOI Link
2201
BibRef
Chen, Z.[Zikun],
The Application of Artificial Intelligence on the Traceability and
Dispersion of Air Pollution,
ICIVC21(404-407)
IEEE DOI
2112
Image resolution, Atmospheric modeling, Computational modeling,
Stochastic processes, Interference, Position measurement,
fuzzy data processing
BibRef
Hofman, J.[Jelle],
Do, T.H.[Tien Huu],
Qin, X.[Xuening],
Rodrigo, E.[Esther],
Nikolaou, M.E.[Martha E.],
Philips, W.[Wilfried],
Deligiannis, N.[Nikos],
La Manna, V.P.[Valerio Panzica],
Spatiotemporal Air Quality Inference of Low-cost Sensor Data;
Application on a Cycling Monitoring Network,
MAES20(139-147).
Springer DOI
2103
BibRef
Parés, M.E.,
Garcia, D.,
Vázquez-Gallego, F.,
Mapping Air Quality with A Mobile Crowdsourced Air Quality Monitoring
System (C-AQM),
ISPRS20(B4:685-690).
DOI Link
2012
BibRef
Ridzuan, N.,
Ujang, U.,
Azri, S.,
Choon, T.L.,
Visualising Urban Air Quality Using Aermod, Calpuff and Cfd Models: A
Critical Review,
SmartCityApp20(355-363).
DOI Link
2012
BibRef
Luo, Z.,
Yu, Y.,
Zhang, D.,
Feng, S.,
Yu, H.,
Chang, Y.,
Shen, W.,
Air Quality Inference with Deep Convolutional Conditional Random
Field,
ICIVC20(296-302)
IEEE DOI
2009
Air quality, Convolution, Neural networks, Indexes,
Data models, Biological system modeling, air quality inference
BibRef
Alpan, K.,
Sekeroglu, B.,
Prediction of Pollutant Concentrations By Meteorological Data Using
Machine Learning Algorithms,
SmartCityApp20(21-27).
DOI Link
2012
BibRef
Casella, V.,
Franzini, M.,
Bellazzi, R.,
Larizza, C.,
Pala, D.,
Dynamic Assessment of Personal Exposure to Air Pollution for Everyone:
A Smartphone-based Approach,
ISPRS20(B4:655-663).
DOI Link
2012
BibRef
Zhang, T.,
Dick, R.P.,
Estimation of Multiple Atmospheric Pollutants Through Image Analysis,
ICIP19(2060-2064)
IEEE DOI
1910
Air Quality, Light Attenuation, Support Vector Regression, Atmospheric Modeling
BibRef
Ma, J.[Jian],
Li, K.[Kun],
Han, Y.H.[Ya-Hong],
Yang, J.Y.[Jing-Yu],
Image-based Air Pollution Estimation Using Hybrid Convolutional
Neural Network,
ICPR18(471-476)
IEEE DOI
1812
Air pollution, Feature extraction, Atmospheric measurements,
Pollution measurement, Convolutional neural networks, Scattering, Training
BibRef
Ghosh, R.,
Ghosh, D.,
Roy, S.,
Mukherjee, A.,
Exploring the self similar properties for monitoring of air quality
information,
ICAPR15(1-6)
IEEE DOI
1511
air pollution control
BibRef
Liu, G.L.[Gui-Liang],
Seemingly unrelated regression modeling of urban air quality by
direct Monte Carlo algorithm,
ICWAPR15(171-174)
IEEE DOI
1511
Bayes methods
BibRef
Wijeratne, I.K.,
Bijker, W.,
Mapping Dispersion of Urban Air Pollution with Remote Sensing,
IfromI06(xx-yy).
PDF File.
0607
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Aerosols, Aerosol Optical Depth, Air Quality, Specific Sites .